請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63182
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃漢邦(Han-Pang Huang) | |
dc.contributor.author | Yi-Hsiu Lee | en |
dc.contributor.author | 李宜修 | zh_TW |
dc.date.accessioned | 2021-06-16T16:26:48Z | - |
dc.date.available | 2023-02-05 | |
dc.date.copyright | 2021-03-11 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-02-05 | |
dc.identifier.citation | [1] Point Cloud Library.Retrieved June, 10, 2016, from <http://pointclouds.org/> [2] Universal Robots.Retrieved May, 10, 2017, from <https://www.universal-robots.com/> [3] A. Albu‐Schäffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimböck, and G. J. I. R. a. i. j. Hirzinger, 'The Dlr Lightweight Robot: Design and Control Concepts for Robots in Human Environments,' 2007. [4] A. Bicchi and automation, 'Hands for Dexterous Manipulation and Robust Grasping: A Difficult Road toward Simplicity,' Vol. 16, No. 6, pp. 652-662, 2000. [5] S. R. Buss and Automation, 'Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least Squares Methods,' Vol. 17, No. 1-19, p. 16, 2004. [6] N. Ceriani, 'A Task-Consistent Safety System for Close Cooperation between Human Workers and Dual Arm Robotic Manipulators,' 2014. [7] J. J. Craig, Introduction to Robotics: Mechanics and Control, 3/E: Pearson Education India, 2009. [8] A. S. Deo, I. D. Walker, and R. Systems, 'Overview of Damped Least-Squares Methods for Inverse Kinematics of Robot Manipulators,' Vol. 14, No. 1, pp. 43-68, 1995. [9] C. Ericson, Real-Time Collision Detection: CRC Press, 2004. [10] F. Flacco, T. Kröger, A. De Luca, and O. Khatib, 'A Depth Space Approach to Human-Robot Collision Avoidance,' 2012 IEEE International Conference on Robotics and Automation: IEEE, pp. 338-345, 2012. [11] L. García-Delgado et al., 'Repulsive Function in Potential Field Based Control with Algorithm for Safer Avoidance,' Vol. 80, No. 1, pp. 59-70, 2015. [12] D. Gottlieb, 'Robots and Topology,' Proceedings. 1986 IEEE International Conference on Robotics and Automation, Vol. 3: IEEE, pp. 1689-1691, 1986. [13] J. Hernández-Barragán, C. López-Franco, A. Y. Alanis, N. Arana-Daniel, and M. López-Franco, 'Dual-Arm Cooperative Manipulation Based on Differential Evolution,' Vol. 16, No. 1, p. 1729881418825188, 2019. [14] I. J. G. ISO, Switzerland: International Organization for Standardization, '10218-1. 2007, Robots for Industrial Environment-Safety Requirements,' Vol. 3, 2007. [15] I. J. G. ISO, Switzerland: International Organization for Standardization, '10218-2: 2011: Robots and Robotic Devices–Safety Requirements for Industrial Robots–Part 2: Robot Systems and Integration,' Vol. 3, 2011. [16] O. Khatib, 'Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,' Autonomous Robot Vehicles: Springer, pp. 396-404, 1986. [17] H. Kim et al., 'Cooperation in the Air: A Learning-Based Approach for the Efficient Motion Planning of Aerial Manipulators,' Vol. 25, No. 4, pp. 76-85, 2018. [18] J. J. Kuffner and S. M. LaValle, 'Rrt-Connect: An Efficient Approach to Single-Query Path Planning,' Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), Vol. 2: IEEE, pp. 995-1001, 2000. [19] B. Lacevic, P. Rocco, and A. M. Zanchettin, 'Safety Assessment and Control of Robotic Manipulators Using Danger Field,' Vol. 29, No. 5, pp. 1257-1270, 2013. [20] S. M. LaValle, 'Rapidly-Exploring Random Trees: A New Tool for Path Planning,' 1998. [21] H. Lee, H. Kim, H. J. Kim, and Engineering, 'Planning and Control for Collision-Free Cooperative Aerial Transportation,' Vol. 15, No. 1, pp. 189-201, 2016. [22] H. Lee, H. Kim, W. Kim, H. J. Kim, and A. Letters, 'An Integrated Framework for Cooperative Aerial Manipulators in Unknown Environments,' Vol. 3, No. 3, pp. 2307-2314, 2018. [23] H. Lee, C. Y. Son, and H. J. Kim, 'Collision-Free Path Planning for Cooperative Aerial Manipulators under Velocity and Curvature Constraints,' Vol. 7, pp. 171153-171162, 2019. [24] A. Liegeois, man, and cybernetics, 'Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms,' Vol. 7, No. 12, pp. 868-871, 1977. [25] S.-Y. Lo, C.-A. Cheng, H.-P. Huang, and R. Systems, 'Virtual Impedance Control for Safe Human-Robot Interaction,' Vol. 82, No. 1, pp. 3-19, 2016. [26] A. Marino, G. Muscio, and F. Pierri, 'Distributed Cooperative Object Parameter Estimation and Manipulation without Explicit Communication,' 2017 IEEE International Conference on Robotics and Automation (ICRA): IEEE, pp. 2110-21116, 2017. [27] A. Marino, 'Distributed Adaptive Control of Networked Cooperative Mobile Manipulators,' Vol. 26, No. 5, pp. 1646-1660, 2017. [28] A.-J. Muñoz–Vázquez, V. Parra–Vega, A. Sánchez–Orta, F. J. T. o. t. I. o. M. Ruiz–Sánchez, and Control, 'A Novel Force-Velocity Field for Object Manipulation with a Model-Free Cooperative Controller,' Vol. 41, No. 2, pp. 573-581, 2019. [29] Y. Nakamura and H. Hanafusa, 'Inverse Kinematic Solutions with Singularity Robustness for Robot Manipulator Control,' 1986. [30] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram, 'Trajectory Modification Considering Dynamic Constraints of Autonomous Robots,' ROBOTIK 2012; 7th German Conference on Robotics: VDE, pp. 1-6, 2012. [31] J. S. Smith, R. Xu, and P. Vela, 'Egoteb: Egocentric, Perception Space Navigation Using Timed-Elastic-Bands,' 2020 IEEE International Conference on Robotics and Automation (ICRA): IEEE, pp. 2703-2709, 2020. [32] S. Tarbouriech, B. Navarro, P. Fraisse, A. Crosnier, A. Cherubini, and D. Sallé, 'Dual-Arm Relative Tasks Performance Using Sparse Kinematic Control,' 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): IEEE, pp. 6003-6009, 2018. [33] L.-W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manipulators: John Wiley Sons, 1999. [34] Y. C. Tsai, 'Motion Planning of a Dual-Arm Mobile Robot in Complex Environments,' Graduate Institute of Mechanical Engineering, National Taiwan University, 2008. [35] C. W. Wampler, Man, and Cybernetics, 'Manipulator Inverse Kinematic Solutions Based on Vector Formulations and Damped Least-Squares Methods,' Vol. 16, No. 1, pp. 93-101, 1986. [36] S. H. Wang, 'Motion Planning of a Dual-Arm Mobile Robot in Complex Environments,' Graduate Institute of Mechanical Engineering, National Taiwan University, 2012. [37] M. N. Zafar and J. Mohanta, 'Methodology for Path Planning and Optimization of Mobile Robots: A Review,' Vol. 133, pp. 141-152, 2018. [38] H. Zghal, R. V. Dubey, and J. A. Euler, 'Efficient Gradient Projection Optimization for Manipulators with Multiple Degrees of Redundancy,' Proceedings., IEEE International Conference on Robotics and Automation: IEEE, pp. 1006-1011, 1990. [39] N. Zheng, L. Han, and W. Xu, 'A Dual-Arm Cooperative Manipulator: Modularized Design and Coordinated Control,' 2018 IEEE International Conference on Information and Automation (ICIA): IEEE, pp. 945-950, 2018. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63182 | - |
dc.description.abstract | 本文主要是致力於在未知的動態環境下雙機械手臂的安全協作。透過所提出的控制架構,使機械手臂能合作的過程能確保使用者、任務以及本身的安全。本文共分為兩個部分。第一部分:路徑規劃結構,由全局與局部的規劃算法組成。對於全局規劃算法,我們使用RRT-Connect來產生避障的初始軌跡。接下來,局部規劃演算法Timed Elastic Band對於初始軌跡的平滑度與避障進行優化。此外,當障礙物侵入機械手臂的空間並即將造成碰撞時,使用虛擬阻抗控制使機器人平穩地避障。 第二部分:基於阻抗模型的協同控制算法,使機器人可以安全的執行任務,順應未知環境的外力干擾並且在協作的過程中控制雙臂抓取的內力,從而保障用戶、任務和機器人本身的安全,並透過模擬和實驗驗證。 | zh_TW |
dc.description.abstract | This thesis addresses the safe cooperation of dual manipulators in an unknown dynamic environment. The dual manipulators cooperative process is divided into two parts. First, we propose a path planning structure that consists of both a global and local planning algorithm. For the global planning algorithm, we use the rapidly exploring random tree (RRT)-Connect to obtain an initial trajectory that avoids possible obstacles in the environment. Then, we propose using a local planning algorithm, such as the timed elastic band algorithm, which optimizes the original path by considering its smoothness and the distance from the obstacles and waypoints. Moreover, when the obstacles invade the robots’ critical space, we use virtual impedance control to give the robots a robust, smooth, and consistent reaction for collision avoidance. Second, we propose a cooperative control algorithm based on an impedance model. This allows the robotic manipulators to safely perform tasks, achieve compliance with unknown environmental disturbances, and regulate the internal force in the cooperative process. The proposed safe cooperative multi-robot system can guarantee the safety of users, tasks, and the robots themselves. The system has been justified and demonstrated through simulations and experiments. The results are promising. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:26:48Z (GMT). No. of bitstreams: 1 U0001-0302202102111600.pdf: 5237794 bytes, checksum: 670d61b2d40da6d69790fb1f30123210 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 誌謝 i 摘要 iii Abstract v List of Tables ix List of Figures xi Nomenclature xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Contributions 7 1.3 Framework of Thesis 8 Chapter 2 Multi-Body Kinematics 11 2.1 Multi-Body Kinematics 12 2.1.1 Forward Kinematics (FK) 14 2.1.2 Manipulator Jacobian Matrix 16 2.1.3 Dual-Arm Mobile Manipulator Jacobian Matrix 19 2.1.4 Inverse Kinematics (IK) 20 2.1.5 Singularity Avoidance 21 2.1.6 Closed‐Loop Inverse Kinematics Algorithm 22 Chapter 3 Cooperative Theory and Control with a Real-Time Obstacle Avoidance Path Planning Structure 27 3.1 Global Planning for Obstacle Avoidance 30 3.1.1 The Basic RRT Algorithm 30 3.1.2 The RRT-Connect Algorithm 35 3.1.3 Dual-Arm Mobile Manipulator RRT-Connect Algorithm 37 3.2 Local Planning for Real-Time Collision Avoidance 40 3.2.1 Graph Optimization 40 3.2.2 Timed Elastic Band (TEB) 43 3.2.3 Way Points and Obstacles 44 3.2.4 Smoothness of the Curve 45 3.2.5 Virtual Impedance Control for Collision Avoidance 46 3.3 Grasping Planning 48 3.4 Cooperative Control Theory Based on Impedance Model 50 3.4.1 Object Motion and External Force Estimation 51 3.4.2 Internal Force Control 54 3.4.3 Trajectory Tracking and Environment Compliance 57 3.5 Summary 59 Chapter 4 Dual Manipulators System 61 4.1 Control Flow Chart 61 4.2 Specification of NTU Robot Manipulators 63 4.2.1 Six-DOF Robot Manipulator 63 4.2.2 Eight-DOF Robot Manipulator 66 4.2.3 Dual-Arm Mobile Manipulator 69 4.3 Hardware Platform 71 4.3.1 EtherCAT Based Controller 71 4.3.2 CAN-Bus Based Controller 73 4.3.3 Force/Torque Sensor 75 4.4 Software Platform 78 4.5 Summary 84 Chapter 5 Simulations and Experiments 85 5.1 Demonstration of Path Planning Structure 85 5.2 Demonstration of Dual-Arm Mobile Manipulator Path Planning 91 5.3 Cooperative Control Based on Impedance Model 93 Chapter 6 Conclusions and Future Works 99 6.1 Conclusions 99 6.2 Future Works 99 References 101 | |
dc.language.iso | en | |
dc.title | 雙機械手臂之動態軌跡規劃與控制 | zh_TW |
dc.title | Safe Cooperative Control and Dynamic Path Planning of Dual Manipulators | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉益宏(Yi-Hung Liu),劉孟昆(Meng-Kun Liu),程登湖(Teng-Hu Cheng) | |
dc.subject.keyword | 多機械手臂協同合作,虛擬阻抗控制,阻抗控制,時間彈性帶, | zh_TW |
dc.subject.keyword | cooperation of multi-robot manipulators,virtual impedance control,impedance control,timed elastic band, | en |
dc.relation.page | 103 | |
dc.identifier.doi | 10.6342/NTU202100425 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2021-02-08 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0302202102111600.pdf 目前未授權公開取用 | 5.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。