請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63180完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇國棟 | |
| dc.contributor.author | Wei-Chih Chen | en |
| dc.contributor.author | 陳威志 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:26:41Z | - |
| dc.date.available | 2018-02-01 | |
| dc.date.copyright | 2013-02-01 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-01-18 | |
| dc.identifier.citation | [1] H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Volkel, H. J. Woo and H. Thienpont, “Comparing glass and plastic refractive
microlenses fabricated with different technologies,” Journal of Optics A: Pure and Applied Optics, vol. 8, pp. S407-S429, 2006. [2] Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Applied Optics, vol. 46, pp. 1281-1284, April, 1988. [3] D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Meas. Sci. Technol., vol. 1, pp. 759-766, 1990. [4] T. R. Jay and M. B. Stern, “Preshaping photoresist for refractive microlens fabrication”, Optical Engineering ,vol. 33, pp. 3552-3555, 1994. [5] H. Ottevaere, B. Volckaerts, M. Vervaeke, P. Vynck, A. Hermanne, H. Thienpont, “Plastic Microlens Arrays by Deep Lithography with Protons: fabrication and characterization,” in Proceedings Symposium IEEE/LEOS Benelux Chapter, pp. 281-284, 2003. [6] K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, “Direct writing of microlenses in polycarbonate with excimer laser ablation,” Applied Optics, vol. 42, pp. 6349-6359, 2003. [7] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, ” Microjet fabrication of microlens arrays,” IEEE Photonics Technology Letters, vol. 6, pp. 1112-1114, Sep. 1994. [8] M. B. Stern and T. R. Jay, “Dry etching for coherent refractive microlens arrays,” Optical Engineering, vol. 33, pp. 3547-3551, Nov. 1994. [9] R. Forch, H. Schonherr, A. Tobias, and A. Jenkins, Surface Design: Applications in Bioscience and Nanotechnology, Wiley-VCH, 2009. [10] C. A. Miller, P. Neogi, “Interface phenomena: equilibrium and dynamic effects,” in Surfactant Science Series, vol. 17, 1985. [11] O. P. Parida, and N. Bhat, “Characterization of optical properties of SU-8 and fabrication of optical components,” in International Conference on Optics and Photonics CSIO, Nov. 2009. [12] S.-M. Kuo and C.-H. Lin, “Fabrication of aspherical SU-8 microlens array utilizing novel stamping process and electro-static pulling method”, Optics Express, vol. 18, pp. 19114-19119, 2010. [13] C.-J. Chang, C.-S. Yang, L.-H. Lan, P.-C, Wang and F.-G. Tseng, “Fabrication of a SU-8-based polymer-enclosed channel with a penetrating UV/ozone-modified interior surface for electrokinetic separation of proteins,” J. Micromech. Microeng, vol. 20, pp. 1-11, 2010. [14] H. P. Le, “Progress and Trends in Ink-jet Printing Technology” Journal of Imaging Science and Technology, vol. 42, 1998. [15] B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: state of the art and future developments,” Advanced Materials, vol. 16, pp. 203-213, Feb. 2004. [16] B. J. Kang, C. K. Lee and J. H. Oh, “All-inkjet-printed electrical components and circuit fabrication on a plastic substrate,” Microelectronic Engineering, vol. 97, pp. 251-254, 2012. [17] P. Calvert, “Inkjet printing for materials and devices,” Chemistry of Materials, vol. 13, pp. 3299-3305, 2001. [18] H. Sirringhaus, T. Kawase, and R. H. Friend, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, vol. 290, 2123-2126, 2000. [19] C. N. Hoth, P. Schilinsky, S. A. Choulis, C. J. Brabec., “Printing highly efficient organic solar cell,” Nano Letters, vol.8, pp. 2806-2813, 2008. [20] C. Altman, “Microlens array fabrication via microjet printing technologies,” altman.casimirinstitute.net, 2007. [21] B.-J. de Gans and U. S. Schubert, “Inkjet printing of polymer micro-arrays and libraries: instrumentation, requirements, and perspectives,” Macromolecular Rapid Communications, vol.24, pp.659-666, 2003. [22] R. Danzebrink, M. A. Aegerter, “Deposition of optical microlens arrays by ink-jet processes,” Thin Solid Films, vol. 392, pp. 223-225, 2001. [23] J. Y. Kim, K. Pfeiffer, A. Voigt, G. Gruetzner and J. Brugger, “Directly fabricated multi-scale microlens arrays on a hydrophobic flat surface by a simple ink-jet printing technique,” Journal of Materials Chemistry, vol. 22, pp. 3053-3058, 2012. [24] J.-P. Lu, W.-K. Huang, F.-C. Chen, “Self-positioning microlens arrays prepared using ink-jet printing,” SPIE, vol. 48, pp. 073606, 2009. [25] H.-C. Wei and G.-D. J. Su, “Fabrication of transparent and self-assembled microlens array using hydrophilic effect and electric fielding pulling,” Journal of Micromechanics and Microengineering, vol. 22, pp. 025007, 2012. [26] D. M. Hartmann, O. Kibar and S. C. Esener, “Characterization of a polymer microlens fabricated by use of the hydrophobic effect,” Optics Letters, vol. 25, pp. 975-977, 2000. [27] J. H. Song and H. M. Nur, “Defects and prevention in ceramic components fabricated by inkjet printing,” Journal of Materials Processing Technology, vol. 155-156, pp. 1286–1292, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63180 | - |
| dc.description.abstract | 本論文介紹兩種以噴墨方式製作之SU-8光阻之微透鏡的方法,這兩種方法皆證明了其製作可調控之接觸角之微透鏡的可行性。方法一使用蔽蔭遮罩和紫外線�臭氧機進行SU-8基層表面的改質,使之變為親水性,在已改質(親水)區域和未改質(疏水)區域之間形成了親水性的差異,這提供了侷限的效應,這同時也定義了微透鏡在基層上的位置。皮升大小的稀釋SU-8光阻液滴以噴墨方式滴在已改質的親水區域上來製作微透鏡陣列。方法二以矽基板作為基板,此矽基板不經過任何氧化物蝕刻,因為原生氧化層提供了良好的親水性。接著旋轉塗佈一層約5.8微米厚的SU-8光阻來定義他的疏水區域,也因為它的厚度也同時提供了邊界侷限效應,接者滴SU-8光阻液滴在親水區域上。方法二比方法一能達到的微透鏡之接觸角更高。兩種方法皆提供了簡單、符合成本效益、且無蝕刻轉換的微透鏡製程。 | zh_TW |
| dc.description.abstract | In this thesis, two methods of fabricating inkjet-printed SU-8 photoresist microlens arrays using hydrophilic confinement are introduced. Both methods have proved the feasibility of microlens array fabrication with controllable contact angles. Method 1 used UV/ozone treatment using a film of 10-μm-thick SU-8 shadow mask to modify SU-8 photoresist base layer surface (which is on glass substrate) making it become hydrophilic. Therefore, a hydrophilicity difference between treated (hydrophilic) and non-treated (hydrophobic) zones formed, which provides confinement effect. Picoliter sized diluted SU-8 photoresist drops were ink-jetted onto treated zones with different diameters to fabricate microlens arrays using a piezoelectric print head. Method 2 used silicon base layer without oxide etching because of good hydrophilicity of native oxide. A layer of SU-8 photoresist was spin-coated to form hydrophobic areas on the silicon base layer, also providing a boundary-confined effect due to its 5.8 μm thickness. Then SU-8 photoresist drops were also ink-jetted onto hydrophilic zones to form microlens array. Method 2 reached larger maximum contact angle than Method 1. Both methods provide simple, cost-effective fabrication process without need for etch transfer. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:26:41Z (GMT). No. of bitstreams: 1 ntu-102-R99941045-1.pdf: 6138804 bytes, checksum: 386ff6d3c601d3133750b72fba9fe267 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Review of fabrication technologies of microlens arrays 1 1.1.1 Thermal reflow of photoresist [2] 3 1.1.2 Laser beam writing [4] 4 1.1.3 Deep lithography with protons (DLP) [5] 5 1.1.4 Laser ablation [6] 6 1.1.5 Inkjet (or microjet) printing process 7 Chapter 2 Working Principles and Fabrication Process 13 2.1 Principles of hydrophilicity and hydrophobicity 13 2.2 SU-8 photoresist 16 2.3 Ultra-violet (UV)/ozone treatment 16 2.4 Fabrication Process of Method 1 17 2.4.1 SU-8 photoresist base layer 17 2.4.2 Shadow mask 18 2.4.3 UV/ozone treatment 21 2.4.4 Positioning before inkjet printing by self-assembly 21 2.4.5 Inkjet printing of microlens arrays 22 2.4.6 UV exposure of microlens arrays 22 2.5 Fabrication Process of Method 2 23 2.5.1 Silicon substrate (base layer) 24 2.5.2 SU-8 Photoresist Layer with Circular Holes on Silicon Base Layer 24 2.5.3 Self-assembling 25 Chapter 3 Inkjet printing fabrication system 26 3.1 Inkjet Printer Framework 26 3.2 The gas pressure and ink supply control system 28 3.3 The drop monitoring system 30 3.4 The dual-axis motion platform system 31 3.5 Program controlling system 32 3.5.1 Patterning Program 33 3.5.2 Drop testing program 34 3.5.3 Fabricating program 36 3.5.4 Positioning program 36 Chapter 4 Experimental results by Method 1 – using hydrophilic confinement through UV/ozone treatment to SU-8 photoresist base layer 39 Chapter 5 Experimental results by Method 2 – using hydrophilic confinement and boundary-confined effect on silicon base layer 55 Chapter 6 Conclusion 70 REFERENCE 73 | |
| dc.language.iso | en | |
| dc.subject | 噴墨 | zh_TW |
| dc.subject | 侷限效應 | zh_TW |
| dc.subject | 親水性 | zh_TW |
| dc.subject | 微透鏡 | zh_TW |
| dc.subject | 接觸角 | zh_TW |
| dc.subject | microlens | en |
| dc.subject | hydrophilicity | en |
| dc.subject | hydrophilic confinement | en |
| dc.subject | inkjet printing | en |
| dc.subject | contact angles | en |
| dc.title | 在玻璃基板與矽基板上應用噴墨方式製造之SU-8微透鏡陣列 | zh_TW |
| dc.title | Fabrication of inkjet-printed SU-8 photoresist microlens arrays on glass and silicon substrate using hydrophilic confinement | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡睿哲,黃鼎偉 | |
| dc.subject.keyword | 微透鏡,親水性,侷限效應,噴墨,接觸角, | zh_TW |
| dc.subject.keyword | microlens,hydrophilicity,hydrophilic confinement,inkjet printing,contact angles, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-01-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 5.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
