請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63169完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊任 | |
| dc.contributor.author | Chieh-Ling Liu | en |
| dc.contributor.author | 劉倢伶 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:26:07Z | - |
| dc.date.available | 2018-03-06 | |
| dc.date.copyright | 2013-03-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-01-21 | |
| dc.identifier.citation | 1. Nathan, C. 2006. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6: 173-182.
2. Coussens, L. M., and Z. Werb. 2002. Inflammation and cancer. Nature 420: 860-867. 3. Zhang, M., E. M. Alicot, I. Chiu, J. Li, N. Verna, T. Vorup-Jensen, B. Kessler, M. Shimaoka, R. Chan, D. Friend, U. Mahmood, R. Weissleder, F. D. Moore, and M. C. Carroll. 2006. Identification of the target self-antigens in reperfusion injury. J Exp Med 203: 141-152. 4. Rock, K. L., E. Latz, F. Ontiveros, and H. Kono. 2010. The sterile inflammatory response. Annu Rev Immunol 28: 321-342. 5. Chen, G. Y., and G. Nunez. 2010. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10: 826-837. 6. Kerrigan, C. L., and M. A. Stotland. 1993. Ischemia reperfusion injury: a review. Microsurgery 14: 165-175. 7. Lentsch, A. B., H. Yoshidome, W. G. Cheadle, F. N. Miller, and M. J. Edwards. 1998. Chemokine involvement in hepatic ischemia/reperfusion injury in mice: roles for macrophage inflammatory protein-2 and Kupffer cells. Hepatology 27: 507-512. 8. Shi, Y., A. D. Mucsi, and G. Ng. 2010. Monosodium urate crystals in inflammation and immunity. Immunol Rev 233: 203-217. 9. Majno, G., and I. Joris. 1995. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146: 3-15. 10. Kerr, J. F., A. H. Wyllie, and A. R. Currie. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239-257. 11. Searle, J., B. V. Harmon, C. J. Bishop, and J. F. R. Kerr. 1987. The Significance of Cell-Death by Apoptosis in Hepatobiliary Disease. Journal of Gastroenterology and Hepatology 2: 77-96. 12. Peter, M. E. 2011. Programmed cell death: Apoptosis meets necrosis. Nature 471: 310-312. 13. Bianchi, M. E. 2007. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81: 1-5. 14. Liu, Z. X., D. Han, B. Gunawan, and N. Kaplowitz. 2006. Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology 43: 1220-1230. 15. Kono, H., and K. L. Rock. 2008. How dying cells alert the immune system to danger. Nat Rev Immunol 8: 279-289. 16. Dinarello, C. A. 2000. Proinflammatory cytokines. Chest 118: 503-508. 17. Ermolaeva, M. A., M. C. Michallet, N. Papadopoulou, O. Utermohlen, K. Kranidioti, G. Kollias, J. Tschopp, and M. Pasparakis. 2008. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 9: 1037-1046. 18. Arend, W. P., G. Palmer, and C. Gabay. 2008. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev 223: 20-38. 19. Das, A., M. Hoare, N. Davies, A. R. Lopes, C. Dunn, P. T. Kennedy, G. Alexander, H. Finney, A. Lawson, F. J. Plunkett, A. Bertoletti, A. N. Akbar, and M. K. Maini. 2008. Functional skewing of the global CD8 T cell population in chronic hepatitis B virus infection. J Exp Med 205: 2111-2124. 20. Braddock, M., and A. Quinn. 2004. Targeting IL-1 in inflammatory disease: new opportunities for therapeutic intervention. Nat Rev Drug Discov 3: 330-339. 21. Scheller, J., A. Chalaris, D. Schmidt-Arras, and S. Rose-John. 2011. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813: 878-888. 22. Allen, S. J., S. E. Crown, and T. M. Handel. 2007. Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 25: 787-820. 23. Rossi, D., and A. Zlotnik. 2000. The biology of chemokines and their receptors. Annual Review of Immunology 18: 217-243. 24. Holt, M. P., and C. Ju. 2006. Mechanisms of drug-induced liver injury. AAPS J 8: E48-54. 25. Ostapowicz, G., R. J. Fontana, F. V. Schiodt, A. Larson, T. J. Davern, S. H. Han, T. M. McCashland, A. O. Shakil, J. E. Hay, L. Hynan, J. S. Crippin, A. T. Blei, G. Samuel, J. Reisch, and W. M. Lee. 2002. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 137: 947-954. 26. Dahlin, D. C., G. T. Miwa, A. Y. Lu, and S. D. Nelson. 1984. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci U S A 81: 1327-1331. 27. Jollow, D. J., J. R. Mitchell, W. Z. Potter, D. C. Davis, J. R. Gillette, and B. B. Brodie. 1973. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J Pharmacol Exp Ther 187: 195-202. 28. Williams, C. D., A. Farhood, and H. Jaeschke. 2010. Role of caspase-1 and interleukin-1beta in acetaminophen-induced hepatic inflammation and liver injury. Toxicol Appl Pharmacol 247: 169-178. 29. Mitchell, J. R., D. J. Jollow, W. Z. Potter, D. C. Davis, J. R. Gillette, and B. B. Brodie. 1973. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther 187: 185-194. 30. Kelly, K. J., W. W. Williams, Jr., R. B. Colvin, S. M. Meehan, T. A. Springer, J. C. Gutierrez-Ramos, and J. V. Bonventre. 1996. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97: 1056-1063. 31. Laskin, D. L., and A. M. Pilaro. 1986. Potential role of activated macrophages in acetaminophen hepatotoxicity. I. Isolation and characterization of activated macrophages from rat liver. Toxicol Appl Pharmacol 86: 204-215. 32. Liu, Z. X., S. Govindarajan, and N. Kaplowitz. 2004. Innate immune system plays a critical role in determining the progression and severity of acetaminophen hepatotoxicity. Gastroenterology 127: 1760-1774. 33. Connolly, M. K., D. Ayo, A. Malhotra, M. Hackman, A. S. Bedrosian, J. Ibrahim, N. E. Cieza-Rubio, A. H. Nguyen, J. R. Henning, M. Dorvil-Castro, H. L. Pachter, and G. Miller. 2011. Dendritic cell depletion exacerbates acetaminophen hepatotoxicity. Hepatology 54: 959-968. 34. Ishida, Y., T. Kondo, K. Tsuneyama, P. Lu, T. Takayasu, and N. Mukaida. 2004. The pathogenic roles of tumor necrosis factor receptor p55 in acetaminophen-induced liver injury in mice. J Leukoc Biol 75: 59-67. 35. Chen, C. J., H. Kono, D. Golenbock, G. Reed, S. Akira, and K. L. Rock. 2007. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13: 851-856. 36. Han, D., M. D. Ybanez, S. Ahmadi, K. Yeh, and N. Kaplowitz. 2009. Redox regulation of tumor necrosis factor signaling. Antioxid Redox Signal 11: 2245-2263. 37. Micheau, O., and J. Tschopp. 2003. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114: 181-190. 38. Wullaert, A., K. Heyninck, and R. Beyaert. 2006. Mechanisms of crosstalk between TNF-induced NF-kappaB and JNK activation in hepatocytes. Biochem Pharmacol 72: 1090-1101. 39. Bradley, J. R. 2008. TNF-mediated inflammatory disease. J Pathol 214: 149-160. 40. Cohen, I., P. Rider, Y. Carmi, A. Braiman, S. Dotan, M. R. White, E. Voronov, M. U. Martin, C. A. Dinarello, and R. N. Apte. 2010. Differential release of chromatin-bound IL-1 alpha discriminates between necrotic and apoptotic cell death by the ability to induce sterile inflammation. Proceedings of the National Academy of Sciences of the United States of America 107: 2574-2579. 41. Elkon, K. B. 2007. IL-1 alpha responds to necrotic cell death. Nature Medicine 13: 778-780. 42. Eigenbrod, T., J. H. Park, J. Harder, Y. Iwakura, and G. Nunez. 2008. Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. J Immunol 181: 8194-8198. 43. Imaeda, A. B., A. Watanabe, M. A. Sohail, S. Mahmood, M. Mohamadnejad, F. S. Sutterwala, R. A. Flavell, and W. Z. Mehal. 2009. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest 119: 305-314. 44. Blazka, M. E., M. R. Elwell, S. D. Holladay, R. E. Wilson, and M. I. Luster. 1996. Histopathology of acetaminophen-induced liver changes: Role of interleukin 1 alpha and tumor necrosis factor alpha. Toxicologic Pathology 24: 181-189. 45. Blazka, M. E., J. L. Wilmer, S. D. Holladay, R. E. Wilson, and M. I. Luster. 1995. Role of Proinflammatory Cytokines in Acetaminophen Hepatotoxicity. Toxicology and Applied Pharmacology 133: 43-52. 46. Hoque, R., M. A. Sohail, S. Salhanick, A. F. Malik, A. Ghani, S. C. Robson, and W. Z. Mehal. 2012. P2X7 receptor-mediated purinergic signaling promotes liver injury in acetaminophen hepatotoxicity in mice. American Journal of Physiology-Gastrointestinal and Liver Physiology 302: G1171-G1179. 47. Gardner, C. R., J. D. Laskin, D. M. Dambach, H. Chiu, S. K. Durham, P. Zhou, M. Bruno, D. R. Gerecke, M. K. Gordon, and D. L. Laskin. 2003. Exaggerated hepatotoxicity of acetaminophen in mice lacking tumor necrosis factor receptor-1. Potential role of inflammatory mediators. Toxicol Appl Pharmacol 192: 119-130. 48. Maddox, J. F., C. J. Amuzie, M. Li, S. W. Newport, E. Sparkenbaugh, C. F. Cuff, J. J. Pestka, G. H. Cantor, R. A. Roth, and P. E. Ganey. 2010. Bacterial- and viral-induced inflammation increases sensitivity to acetaminophen hepatotoxicity. J Toxicol Environ Health A 73: 58-73. 49. Chen, C. J., Y. Shi, A. Hearn, K. Fitzgerald, D. Golenbock, G. Reed, S. Akira, and K. L. Rock. 2006. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 116: 2262-2271. 50. 黃思穎. 2010. Identification of the role of TNF-a ind macrophage in sterile inflammatory response. In Institute of Microbiology and Biochemistry. National Taiwan University, Taipei. 51. Kuhla, A., C. Eipel, N. Siebert, K. Abshagen, M. D. Menger, and B. Vollmar. 2008. Hepatocellular apoptosis is mediated by TNFalpha-dependent Fas/FasLigand cytotoxicity in a murine model of acute liver failure. Apoptosis 13: 1427-1438. 52. Shaw, P. J., P. E. Ganey, and R. A. Roth. 2009. Tumor necrosis factor alpha is a proximal mediator of synergistic hepatotoxicity from trovafloxacin/lipopolysaccharide coexposure. J Pharmacol Exp Ther 328: 62-68. 53. Kono, H., D. Karmarkar, Y. Iwakura, and K. L. Rock. 2010. Identification of the cellular sensor that stimulates the inflammatory response to sterile cell death. J Immunol 184: 4470-4478. 54. Schwabe, R. F., and D. A. Brenner. 2006. Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 290: G583-589. 55. Lu, Y. C., W. C. Yeh, and P. S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42: 145-151. 56. Xaus, J., M. Comalada, A. F. Valledor, J. Lloberas, F. Lopez-Soriano, J. M. Argiles, C. Bogdan, and A. Celada. 2000. LPS induces apoptosis in macrophages mostly through the autocrine production of TNF-alpha. Blood 95: 3823-3831. 57. Jang, C. H., J. H. Choi, M. S. Byun, and D. M. Jue. 2006. Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology (Oxford) 45: 703-710. 58. Schroder, K., R. Zhou, and J. Tschopp. 2010. The NLRP3 inflammasome: a sensor for metabolic danger? Science 327: 296-300. 59. Boess, F., M. Bopst, R. Althaus, S. Polsky, S. D. Cohen, H. P. Eugster, and U. A. Boelsterli. 1998. Acetaminophen hepatotoxicity in tumor necrosis factor/lymphotoxin-alpha gene knockout mice. Hepatology 27: 1021-1029. 60. Chiu, H., C. R. Gardner, D. M. Dambach, J. A. Brittingham, S. K. Durham, J. D. Laskin, and D. L. Laskin. 2003. Role of p55 tumor necrosis factor receptor 1 in acetaminophen-induced antioxidant defense. Am J Physiol Gastrointest Liver Physiol 285: G959-966. 61. Horiuchi, T., H. Mitoma, S. Harashima, H. Tsukamoto, and T. Shimoda. 2010. Transmembrane TNF-alpha: structure, function and interaction with anti-TNF agents. Rheumatology (Oxford) 49: 1215-1228. 62. Wajant, H., K. Pfizenmaier, and P. Scheurich. 2003. Tumor necrosis factor signaling. Cell Death Differ 10: 45-65. 63. Gandhi, A., T. Guo, and R. Ghose. 2010. Role of c-Jun N-terminal kinase (JNK) in regulating tumor necrosis factor-alpha (TNF-alpha) mediated increase of acetaminophen (APAP) and chlorpromazine (CPZ) toxicity in murine hepatocytes. J Toxicol Sci 35: 163-173. 64. Lacour, S., D. Antonios, J. C. Gautier, and M. Pallardy. 2009. Acetaminophen and lipopolysaccharide act in synergy for the production of pro-inflammatory cytokines in murine RAW264.7 macrophages. J Immunotoxicol 6: 84-93. 65. Shaw, P. J., K. M. Beggs, E. M. Sparkenbaugh, C. M. Dugan, P. E. Ganey, and R. A. Roth. 2009. Trovafloxacin enhances TNF-induced inflammatory stress and cell death signaling and reduces TNF clearance in a murine model of idiosyncratic hepatotoxicity. Toxicol Sci 111: 288-301. 66. Liu, J., L. E. Sendelbach, A. Parkinson, and C. D. Klaassen. 2000. Endotoxin pretreatment protects against the hepatotoxicity of acetaminophen and carbon tetrachloride: role of cytochrome P450 suppression. Toxicology 147: 167-176. 67. 黃靖惠. 2010. TNF-a 及 IL-1 在Concanavalin A及 酒精誘導的急性肝炎所扮演的角色. In Institute of Microbiology and Biochemistry. National Taiwan University, Taipei. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63169 | - |
| dc.description.abstract | 細胞壞死後會釋出的許多物質會引起無菌發炎反應,所引起的發炎反應其目的為移除細胞殘骸,以避免造成周圍組織持續性的傷害。本實驗中分別給予WT和TNF受體缺陷(TNFR1-/-)小鼠過量的acetaminophen (APAP),觀察到TNFR1-/-小鼠在血清中肝功能指數(ALT activity)、促發炎激素(proinflammatory cytokines)的釋放有降低的情形;而且,提前給予小鼠阻斷TNF訊息傳遞的藥物”Enbrel”,發現可有效降低APAP引起的肝損傷及其引起的發炎反應,顯示TNFR1在APAP誘導的肝損傷模式中扮演重要角色。接著,藉由產生骨髓置換小鼠(bone marrow chimeras),我們想探討在APAP引起肝損傷的模式中,TNF是作用於由從骨髓分化而來的細胞(bone marrow derived cells),抑或於非從骨髓分化而來的細胞(non-bone marrow derived cells)。實驗結果顯示將WT小鼠的骨髓置換至TNFR1-/-小鼠中,ALT及proinflammatory cytokines有上升的情形,顯示表現在從骨髓分化而來的細胞上的TNFR1受到TNF刺激後引起之反應對於APAP引起肝損傷是重要的。接著,分離小鼠的肝臟細胞並進行體外培養,發現TNF並未加強APAP引起的肝細胞毒性。在腹腔注射脂多醣引起小鼠體內TNF的產生也無法加劇APAP引起的肝毒性,反而可以顯著的保護小鼠免於嚴重的肝損傷。由本研究結果顯示,在APAP引起的無菌發炎反應中,TNF的訊號作用在從骨髓分化而來的細胞上的TNFR1,且此訊號對於APAP引起的無菌發炎反應及肝損傷是相當重要的,但若要釐清負責接收TNF訊號的細胞種類,則需要更進一步的研究。另外,本研究也給予IL-1受體缺陷(IL-1R -/-)小鼠過量APAP,發現IL-1R -/-小鼠的肝損傷及發炎反應都有較WT小鼠顯著降低的情形。綜合以上結果,我們確認了TNF作用在骨髓細胞分化而來的TNFR1,在APAP引起的肝細胞受損中的角色,並了解TNF和IL-1β可能透過協同作用(synergistic effect)在APAP引起的肝細胞壞死中扮演重要角色。 | zh_TW |
| dc.description.abstract | Cell death in vivo could induce an acute inflammatory response via the release of various intracellular components. This type of inflammatory response is called sterile inflammatory response. The function of sterile inflammatory response is to clear up cell debris and promote tissue repair. However, uncontrolled leukocytes recruitement and activation could result in severe tissue damage, thus causing various inflammatory diseases. Here we used acetaminophen-induced liver injury and inflammation as a model to study the role of TNF in sterile inflammation. The results showed that both liver injury and the production of proinflammatory cytokines were attenuated in TNFR1-/- mice. Furthermore, mice which were pretreated with EnbrelR were also protected from APAP-induced hepatotoxicity. Next, we generated bone marrow chimeras to study whether bone marrow-derived cells or non-bone marrow derived cells are responsible for receiving the TNF signal. The results showed that TNFR1-/- mice reconstituted with WT bone marrow had increased levels of ALT and proinflammatory cytokines, which indicated that TNFR1 expression on bone marrow-derived cells may played a critical role in APAP-induced liver hepatotoxicity. Consistently, TNF treatment did not sensitize hepatocytes to APAP toxicity in vitro. Interestingly, using LPS to stimulate TNF production in vivo did not sensitize mice to APAP-induced liver injury. Instead, LPS and APAP cotreatment showed significantly protective effect on liver injury. Our results demonstrateded that TNF stimulation on bone marrow-derived cells may play an important role in mediating APAP-induced liver injury and inflammation; however, more research needs to be done to understand which cell type is responsible for receiving the TNF signal. Apart from TNF, the role of IL-1/IL-1R in APAP-induced liver injury was examined as well. The results showed that IL-1R-deficient mice were protected from APAP-induced liver injury. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:26:07Z (GMT). No. of bitstreams: 1 ntu-102-R99b22004-1.pdf: 1330685 bytes, checksum: 2472ee6d9a4bd65f54c81348d349a1f2 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract III Abbreviaiton V Contents VII Content of figures X Introduction 1 1. Inflammation 1 2. Sterile inflammation 2 3. The role of cytokines and chemokines in sterile inflammation 4 4. Acetaminophen-induced liver injury 6 5. The role of TNF and TNF receptor in APAP-induced liver injury 8 6. IL-1/IL-1R signaling in APAP-induced liver injury 10 7. Rationale of this study 11 Specific Aims 13 Materials and Methods 14 1. Animals 14 2. Reagents and medium 14 3. APAP-induced liver injury 14 4. Analysis of alanine aminotransferase (ALT) and cytokines 15 5. Bone marrow chimeric mice generation 16 6. Flow cytometric analysis 16 7. Hepatocyte separation 17 8. Cell viability examination 18 9. Statistics 19 Results 20 1. APAP-induced liver injury and inflammation were markedly reduced in TNFR1-/- mice 20 2. Pretreatment with Enbrel also prevents mice from APAP-induced hepatotoxicity 21 3. Transfer of WT bone marrow restored APAP hepatotoxicity and proinflammatory cytokine production in TNFR1-/- mice 22 4. In vitro TNF treatment caanot sensitize murine hepatocyte to APAP-induced hepatotoxicity 24 5. LPS-induced TNF production cannot potentiate APAP-induced liver injury and inflammatory response in vivo 25 6. IL-1/IL-1R signal also plays role in APAP-induced liver injury and inflammation 26 Discussion 27 Figures and Tables 32 Reference 48 | |
| dc.language.iso | en | |
| dc.subject | 腫瘤壞死因子 | zh_TW |
| dc.subject | 對乙醯氨基酚 | zh_TW |
| dc.subject | 細胞損傷 | zh_TW |
| dc.subject | 肝細胞分離術 | zh_TW |
| dc.subject | 發炎 | zh_TW |
| dc.subject | 骨髓置換術 | zh_TW |
| dc.subject | hepatocyte separaiton | en |
| dc.subject | Cell injury | en |
| dc.subject | inflammation | en |
| dc.subject | TNF | en |
| dc.subject | acetaminophen (APAP) | en |
| dc.subject | bone marrow-chimera | en |
| dc.title | 探討TNF在由對乙醯氨基酚引起的急性肝損傷中扮演的角色 | zh_TW |
| dc.title | Identification of the role of TNF in Acetaminophen-induced Acute Liver Injury | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 徐秉寧,陳念榮 | |
| dc.subject.keyword | 細胞損傷,發炎,腫瘤壞死因子,對乙醯氨基酚,骨髓置換術,肝細胞分離術, | zh_TW |
| dc.subject.keyword | Cell injury,inflammation,TNF,acetaminophen (APAP),bone marrow-chimera,hepatocyte separaiton, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-01-21 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
