請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63131完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴亮全(Liang-Chuan Lai) | |
| dc.contributor.author | En-Yu Li | en |
| dc.contributor.author | 李恩宇 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:24:14Z | - |
| dc.date.available | 2018-03-04 | |
| dc.date.copyright | 2013-03-04 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-01-24 | |
| dc.identifier.citation | 1. Gulledge, C.J. and M.W. Dewhirst, Tumor oxygenation: a matter of supply and demand. Anticancer Res, 1996. 16(2): p. 741-9.
2. Vaupel, P., F. Kallinowski, and P. Okunieff, Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res, 1989. 49(23): p. 6449-65. 3. Brizel, D.M., et al., Patterns and variability of tumor oxygenation in human soft tissue sarcomas, cervical carcinomas, and lymph node metastases. Int J Radiat Oncol Biol Phys, 1995. 32(4): p. 1121-5. 4. Welsh, S.J., D.V. Dinenno, and B.L. Tracy, Variability of quadriceps femoris motor neuron discharge and muscle force in human aging. Exp Brain Res, 2007. 179(2): p. 219-33. 5. Maruyama, Y., et al., Tumor growth suppression in pancreatic cancer by a putative metastasis suppressor gene Cap43/NDRG1/Drg-1 through modulation of angiogenesis. Cancer Res, 2006. 66(12): p. 6233-42. 6. Corn, P.G. and W.S. El-Deiry, Microarray analysis of p53-dependent gene expression in response to hypoxia and DNA damage. Cancer Biol Ther, 2007. 6(12): p. 1858-66. 7. Bristow, R.G. and R.P. Hill, Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer, 2008. 8(3): p. 180-92. 8. Knowles, H.J. and A.L. Harris, Hypoxia and oxidative stress in breast cancer. Hypoxia and tumourigenesis. Breast Cancer Res, 2001. 3(5): p. 318-22. 9. Semenza, G.L., Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 2010. 29(5): p. 625-34. 10. Semenza, G.L., Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol, 2009. 19(1): p. 12-6. 11. Denny, W.A., Prodrug strategies in cancer therapy. Eur J Med Chem, 2001. 36(7-8): p. 577-95. 12. Hockel, M., et al., Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res, 1996. 56(19): p. 4509-15. 13. Goonewardene, T.I., H.M. Sowter, and A.L. Harris, Hypoxia-induced pathways in breast cancer. Microsc Res Tech, 2002. 59(1): p. 41-8. 14. Salnikow, K., et al., Carcinogenic metals induce hypoxia-inducible factor-stimulated transcription by reactive oxygen species-independent mechanism. Cancer Res, 2000. 60(13): p. 3375-8. 15. Ho, V.T. and H.F. Bunn, Effects of transition metals on the expression of the erythropoietin gene: further evidence that the oxygen sensor is a heme protein. Biochem Biophys Res Commun, 1996. 223(1): p. 175-80. 16. Epstein, A.C., et al., C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell, 2001. 107(1): p. 43-54. 17. Piquemal, D., et al., Differential expression of the RTP/Drg1/Ndr1 gene product in proliferating and growth arrested cells. Biochim Biophys Acta, 1999. 1450(3): p. 364-73. 18. van Belzen, N., et al., A novel gene which is up-regulated during colon epithelial cell differentiation and down-regulated in colorectal neoplasms. Lab Invest, 1997. 77(1): p. 85-92. 19. Kurdistani, S.K., et al., Inhibition of tumor cell growth by RTP/rit42 and its responsiveness to p53 and DNA damage. Cancer Res, 1998. 58(19): p. 4439-44. 20. Zhou, D.J., K. Salnikow, and M. Costa, Cap43, a novel gene specifically induced by Ni2+ compounds. Cancer Research, 1998. 58(10): p. 2182-2189. 21. Guan, R.J., et al., Drg-1 as a differentiation-related, putative metastatic suppressor gene in human colon cancer. Cancer Res, 2000. 60(3): p. 749-55. 22. Bandyopadhyay, S., et al., The Drg-1 gene suppresses tumor metastasis in prostate cancer. Cancer Res, 2003. 63(8): p. 1731-6. 23. Bandyopadhyay, S., et al., Role of the putative tumor metastasis suppressor gene Drg-1 in breast cancer progression. Oncogene, 2004. 23(33): p. 5675-81. 24. Stein, S., et al., NDRG1 is necessary for p53-dependent apoptosis. J Biol Chem, 2004. 279(47): p. 48930-40. 25. Kim, K.T., et al., Function of Drg1/Rit42 in p53-dependent mitotic spindle checkpoint. J Biol Chem, 2004. 279(37): p. 38597-602. 26. Wang, Z., et al., Correlation of N-myc downstream-regulated gene 1 overexpression with progressive growth of colorectal neoplasm. World J Gastroenterol, 2004. 10(4): p. 550-4. 27. Cangul, H., Hypoxia upregulates the expression of the NDRG1 gene leading to its overexpression in various human cancers. BMC Genet, 2004. 5: p. 27. 28. Zhang, P., K.M. Tchou-Wong, and M. Costa, Egr-1 mediates hypoxia-inducible transcription of the NDRG1 gene through an overlapping Egr-1/Sp1 binding site in the promoter. Cancer Res, 2007. 67(19): p. 9125-33. 29. Toffoli, S., et al., NDRG1 and CRK-I/II are regulators of endothelial cell migration under intermittent hypoxia. Angiogenesis, 2009. 12(4): p. 339-354. 30. Schmidt, J.V. and C.A. Bradfield, Ah receptor signaling pathways. Annual Review of Cell and Developmental Biology, 1996. 12: p. 55-89. 31. Denison, M.S., et al., Ligand binding and activation of the Ah receptor. Chemico-Biological Interactions, 2002. 141(1-2): p. 3-24. 32. Wilhelmsson, A., et al., The Specific DNA-Binding Activity of the Dioxin Receptor Is Modulated by the 90 Kd Heat-Shock Protein. Embo Journal, 1990. 9(1): p. 69-76. 33. Johnson, J.L. and D.O. Toft, A Novel Chaperone Complex for Steroid-Receptors Involving Heat-Shock Proteins, Immunophilins, and P23. Journal of Biological Chemistry, 1994. 269(40): p. 24989-24993. 34. Carver, L.A. and C.A. Bradfield, Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. Journal of Biological Chemistry, 1997. 272(17): p. 11452-11456. 35. Hankinson, O., The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol, 1995. 35: p. 307-40. 36. Bacsi, S.G., S. Reisz-Porszasz, and O. Hankinson, Orientation of the heterodimeric aryl hydrocarbon (dioxin) receptor complex on its asymmetric DNA recognition sequence. Mol Pharmacol, 1995. 47(3): p. 432-8. 37. Swanson, H.I., W.K. Chan, and C.A. Bradfield, DNA binding specificities and pairing rules of the Ah receptor, ARNT, and SIM proteins. Journal of Biological Chemistry, 1995. 270(44): p. 26292-302. 38. Gu, Y.Z., J.B. Hogenesch, and C.A. Bradfield, The PAS superfamily: Sensors of environmental and developmental signals. Annual Review of Pharmacology and Toxicology, 2000. 40: p. 519-561. 39. Wenger, R.H. and M. Gassmann, Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem, 1997. 378(7): p. 609-16. 40. Wang, G.L. and G.L. Semenza, Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. Journal of Biological Chemistry, 1993. 268(29): p. 21513-8. 41. Semenza, G.L., et al., Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci U S A, 1991. 88(13): p. 5680-4. 42. Nie, M., A.L. Blankenship, and J.P. Giesy, Interactions between aryl hydrocarbon receptor (AhR) and hypoxia signaling pathways. Environ Toxicol Pharmacol, 2001. 10(1-2): p. 17-27. 43. Zhang, N. and M.K. Walker, Crosstalk between the aryl hydrocarbon receptor and hypoxia on the constitutive expression of cytochrome P4501A1 mRNA. Cardiovasc Toxicol, 2007. 7(4): p. 282-90. 44. Takacova, M., et al., Role of aryl hydrocarbon receptor in modulation of the expression of the hypoxia marker carbonic anhydrase IX. Biochem J, 2009. 419(2): p. 419-25. 45. Chan, W.K., et al., Cross-talk between the aryl hydrocarbon receptor and hypoxia inducible factor signaling pathways. Demonstration of competition and compensation. Journal of Biological Chemistry, 1999. 274(17): p. 12115-23. 46. Terzuoli, E., et al., Aminoflavone, a ligand of the aryl hydrocarbon receptor, inhibits HIF-1alpha expression in an AhR-independent fashion. Cancer Res, 2010. 70(17): p. 6837-48. 47. Brown, J.M. and A.J. Giaccia, The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res, 1998. 58(7): p. 1408-16. 48. Cartharius, K., et al., MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics, 2005. 21(13): p. 2933-42. 49. Wang, G.L., et al., Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A, 1995. 92(12): p. 5510-4. 50. Semenza, G.L., Transcriptional regulation by hypoxia-inducible factor 1 molecular mechanisms of oxygen homeostasis. Trends Cardiovasc Med, 1996. 6(5): p. 151-7. 51. Salnikow, K., et al., Hyperinducibility of hypoxia-responsive genes without p53/p21-dependent checkpoint in aggressive prostate cancer. Cancer Res, 2000. 60(20): p. 5630-4. 52. Salnikow, K., et al., The regulation of hypoxic genes by calcium involves c-Jun/AP-1, which cooperates with hypoxia-inducible factor 1 in response to hypoxia. Mol Cell Biol, 2002. 22(6): p. 1734-41. 53. Bunn, H.F. and R.O. Poyton, Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev, 1996. 76(3): p. 839-85. 54. Harris, A.L., Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2002. 2(1): p. 38-47. 55. Karaczyn, A., et al., Ascorbate depletion mediates up-regulation of hypoxia-associated proteins by cell density and nickel. J Cell Biochem, 2006. 97(5): p. 1025-35. 56. Wykoff, C.C., et al., Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res, 2000. 60(24): p. 7075-83. 57. Denison, M.S. and S.R. Nagy, Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol, 2003. 43: p. 309-34. 58. Gillner, M., et al., Interactions of indoles with specific binding sites for 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat liver. Mol Pharmacol, 1985. 28(4): p. 357-63. 59. Daujat, M., et al., Omeprazole, an inducer of human CYP1A1 and 1A2, is not a ligand for the Ah receptor. Biochem Biophys Res Commun, 1992. 188(2): p. 820-5. 60. Lesca, P., et al., Evidence for the ligand-independent activation of the AH receptor. Biochem Biophys Res Commun, 1995. 209(2): p. 474-82. 61. Pollenz, R.S., C.A. Sattler, and A. Poland, The aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator protein show distinct subcellular localizations in Hepa 1c1c7 cells by immunofluorescence microscopy. Mol Pharmacol, 1994. 45(3): p. 428-38. 62. Hord, N.G. and G.H. Perdew, Physicochemical and immunocytochemical analysis of the aryl hydrocarbon receptor nuclear translocator: characterization of two monoclonal antibodies to the aryl hydrocarbon receptor nuclear translocator. Mol Pharmacol, 1994. 46(4): p. 618-26. 63. Dittmar, K.D., et al., Folding of the glucocorticoid receptor by the heat shock protein (hsp) 90-based chaperone machinery. The role of p23 is to stabilize receptor.hsp90 heterocomplexes formed by hsp90.p60.hsp70. J Biol Chem, 1997. 272(34): p. 21213-20. 64. Kazlauskas, A., L. Poellinger, and I. Pongratz, Evidence that the co-chaperone p23 regulates ligand responsiveness of the dioxin (Aryl hydrocarbon) receptor. J Biol Chem, 1999. 274(19): p. 13519-24. 65. Poksay, K.S., et al., The small chaperone protein p23 and its cleaved product p19 in cellular stress. J Mol Neurosci, 2012. 46(2): p. 303-14. 66. Choi, H., et al., Curcumin inhibits hypoxia-inducible factor-1 by degrading aryl hydrocarbon receptor nuclear translocator: a mechanism of tumor growth inhibition. Mol Pharmacol, 2006. 70(5): p. 1664-71. 67. Gassmann, M., et al., Oxygen- and dioxin-regulated gene expression in mouse hepatoma cells. Kidney Int, 1997. 51(2): p. 567-74. 68. Zhang, J., et al., Human differentiation-related gene NDRG1 is a Myc downstream-regulated gene that is repressed by Myc on the core promoter region. Gene, 2008. 417(1-2): p. 5-12. 69. Fotovati, A., et al., N-myc downstream-regulated gene 1 (NDRG1) a differentiation marker of human breast cancer. Pathol Oncol Res, 2011. 17(3): p. 525-33. 70. Ramadoss, P., C. Marcus, and G.H. Perdew, Role of the aryl hydrocarbon receptor in drug metabolism. Expert Opin Drug Metab Toxicol, 2005. 1(1): p. 9-21. 71. Liehr, J.G., Is estradiol a genotoxic mutagenic carcinogen? Endocr Rev, 2000. 21(1): p. 40-54. 72. Safe, S., Molecular biology of the Ah receptor and its role in carcinogenesis. Toxicol Lett, 2001. 120(1-3): p. 1-7. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63131 | - |
| dc.description.abstract | 研究觀察發現腫瘤細胞缺氧會造成其治療上的抗性增強,並有更多預後不良的狀況,因此腫瘤的缺氧現象在過去十幾年被深度的研究探討。先前我們實驗室發現N-myc downstream-regulated gene 1 (NDRG1)在缺氧刺激下會大量表現,並且在腫瘤適應周遭氧濃度變動的過程中可能扮演重要角色。然而在缺氧狀況下,調控NDRG1轉錄的機制仍然不明。因此,本篇研究的目的在於鑑定出新的轉錄因子,能夠調控NDRG1在周遭氧濃度變化刺激下的轉錄。首先,利用生物資訊工具MatInspector和MatchTM 1.0去搜尋NDRG1啟動子(-783 ~ +312 鹼基對)上的轉錄因子結合位點,並根據分析結果中所有候選轉錄因子的序列相似度和其結合位點的數量,發現芳香烴受體(AHR)具有最高的潛力,故挑選出來做後續的實驗驗證。由西方墨點法的結果發現在缺氧或氯化鈷模擬缺氧之下,細胞核內的芳香烴受體的量增加。而在冷光酶報導基因分析法的結果當中,可知在擬缺氧環境下,位於NDRG1啟動子內-402 ~ -398鹼基對的芳香烴受體結合位點扮演調控其轉錄的關鍵角色。更進一步,在利用小片段干擾核糖核酸機制抑制芳香烴受體表現之後,擬缺氧誘發NDRG1的表現也隨之降低。總的來說,在這些結果中我們首度發現芳香烴受體能透過啟動子中,一個由軟體預判的芳香烴受體結合位點,正調控NDRG1在擬缺氧誘發下的轉錄,未來也許可以藉此發現而拓展出特定的治療方法,以避免腫瘤在缺氧下更趨惡性。 | zh_TW |
| dc.description.abstract | Hypoxia has been intensively investigated over the past decades based on the observations that hypoxic tumors were more resistant to therapy and had a worse prognosis. Previously, our lab identified that N-myc downstream-regulated gene 1 (NDRG1) was strongly up-regulated under hypoxia and may play an important role in tumor adaptation to fluctuation of oxygen concentrations. However, the regulatory mechanism of NDRG1 under hypoxia remains elusive. Therefore, the purpose of this study is to identify the novel transcription factors that regulate NDRG1 upon changes in oxygen concentrations. First of all, bioinformatic tools, MatInspector and MatchTM 1.0, were used to search the DNA binding sites of transcription factors in the promoter of NDRG1. Based on the similarities and numbers of transcription factor binding sites existing in the NDRG1 promoter (-783 ~ +312 bp), aryl hydrocarbon receptor (AHR) was identified as the most potential candidate and herein chosen for further validation. Western blotting showed that nuclear AHR was up-regulated in the presence of cobalt and hypoxia. Luciferase reporter assays showed that binding site of AHR at -402 ~ -398 bp played a crucial role in regulating NDRG1 under hypoxia-mimicking conditions. Moreover, hypoxia-mimetic induction of NDRG1 by was attenuated by knockdown of AHR expression using short interfering RNA. In summary, these results showed for the first time that AHR positively regulates NDRG1 transcription through a putative AHR binding site in the promoter by hypoxia-mimetic signaling, which may lead to development of a specific therapeutic regime to prevent tumor malignancy under hypoxia. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:24:14Z (GMT). No. of bitstreams: 1 ntu-102-R99441005-1.pdf: 1155868 bytes, checksum: cfebe77e290aaf16249ef1885d721767 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Index
中文摘要 ii Abstract iii Chapter 1 Introduction 1 1.1 Hypoxia in solid tumor and its metal mimics 1 1.2 Relationship between NDRG1 and hypoxia 2 1.3 Cross-talk between AHR and hypoxia 4 1.4 Motivations and aims 5 Chapter 2 Materials and Methods 7 2.1 Cell culture and reagents 7 2.2 NDRG1 promoter constructs 7 2.3 Site-directed mutagenesis 9 2.4 Luciferase reporter assay 10 2.5 Western blot analysis 10 2.6 Quantitative real-time RT-PCR 11 2.7 RNA interference via lentivirus 12 2.8 Conservation analysis 12 2.9 Prediction of transcription factor binding sites 13 Chapter 3 Results 14 3.1 In silico analysis of transcription factor binding site in the human NDRG1 promoter region 14 3.2 Conservation analysis of the predicted AHR/ARNT binding sites among several species 18 3.3 Endogenous expression of AHR under hypoxia and hypoxia-mimetic conditions 20 3.4 Identification of the regulatory relationship between AHR and the NDGR1 promoter through the predicted binding sites 21 3.5 Effect of AHR knockdown on NDRG1 expression 26 Chapter 4 Discussion 28 4.1 Hypoxia-inducible NDRG1 promoter activity via binding of transcription factors 28 4.2 Ligand-dependent versus ligand-independent activation of the AHR 30 4.3 Induction of NDRG1 underlying cross-talk between AHR and hypoxia pathway 32 4.4 Accuracy of promoter analysis and its limitations 34 4.5 Alterations of morphology in the viral-infected MCF7 cells expressing AHR-specific shRNA#3 35 4.6 AHR and carcinogenesis 36 4.7 Summary and further works 37 References 38 Supplementary Data 49 | |
| dc.language.iso | en | |
| dc.subject | 冷光?報導基因分析法 | zh_TW |
| dc.subject | 轉錄因子結合位點 | zh_TW |
| dc.subject | 啟動子 | zh_TW |
| dc.subject | 生物資訊工具 | zh_TW |
| dc.subject | 缺氧 | zh_TW |
| dc.subject | NDRG1 | zh_TW |
| dc.subject | 芳香烴受體 | zh_TW |
| dc.subject | luciferase reporter assays | en |
| dc.subject | NDRG1 | en |
| dc.subject | hypoxia | en |
| dc.subject | bioinformatic tools | en |
| dc.subject | promoter | en |
| dc.subject | transcription factor binding sites | en |
| dc.subject | aryl hydrocarbon receptor | en |
| dc.title | 芳香烴受體於擬缺氧狀況下調控NDRG1基因的轉錄 | zh_TW |
| dc.title | Aryl Hydrocarbon Receptor Regulates NDRG1 Transcription under Hypoxia Mimic Conditions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡孟君(Meng-Chun Hu),莊曜宇(Eric Y. Chuang),蔡孟勳(Mong-Hsun Tsai) | |
| dc.subject.keyword | 芳香烴受體,NDRG1,缺氧,生物資訊工具,啟動子,轉錄因子結合位點,冷光?報導基因分析法, | zh_TW |
| dc.subject.keyword | aryl hydrocarbon receptor,NDRG1,hypoxia,bioinformatic tools,promoter,transcription factor binding sites,luciferase reporter assays, | en |
| dc.relation.page | 50 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-01-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
