Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63113
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞峰(Ruey-Feng Chang)
dc.contributor.authorYi-Wei Shenen
dc.contributor.author沈毅偉zh_TW
dc.date.accessioned2021-06-16T16:23:22Z-
dc.date.available2018-02-16
dc.date.copyright2013-02-16
dc.date.issued2013
dc.date.submitted2013-01-28
dc.identifier.citation[1] C. DeSantis, R. Siegel, P. Bandi, and A. Jemal, 'Breast cancer statistics, 2011,' CA Cancer J Clin, Oct 3 2011.
[2] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, 'Global cancer statistics,' CA Cancer J Clin, vol. 61, pp. 69-90, Mar-Apr 2011.
[3] M. Moskowitz, 'Screening is not diagnosis,' Radiology, vol. 133, pp. 265-268, 1979.
[4] T. E. Wilson, M. A. Helvie, and D. A. August, 'Breast cancer in the elderly patient: early detection with mammography,' Radiology, vol. 190, pp. 203-7, Jan 1994.
[5] M. A. Roubidoux, M. A. Helvie, N. E. Lai, and C. Paramagul, 'Bilateral breast cancer: early detection with mammography,' Radiology, vol. 196, pp. 427-31, Aug 1995.
[6] T. M. Kolb, J. Lichy, and J. H. Newhouse, 'Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations,' Radiology, vol. 225, pp. 165-75, Oct 2002.
[7] N. F. Boyd, G. S. Dite, J. Stone, A. Gunasekara, D. R. English, M. R. McCredie, G. G. Giles, D. Tritchler, A. Chiarelli, M. J. Yaffe, and J. L. Hopper, 'Heritability of mammographic density, a risk factor for breast cancer,' N Engl J Med, vol. 347, pp. 886-94, Sep 19 2002.
[8] N. F. Boyd, J. W. Byng, R. A. Jong, E. K. Fishell, L. E. Little, A. B. Miller, G. A. Lockwood, D. L. Tritchler, and M. J. Yaffe, 'Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study,' J Natl Cancer Inst, vol. 87, pp. 670-5, May 3 1995.
[9] N. F. Boyd, H. Guo, L. J. Martin, L. Sun, J. Stone, E. Fishell, R. A. Jong, G. Hislop, A. Chiarelli, S. Minkin, and M. J. Yaffe, 'Mammographic density and the risk and detection of breast cancer,' N Engl J Med, vol. 356, pp. 227-36, Jan 18 2007.
[10] T. M. Kolb, J. Lichy, and J. H. Newhouse, 'Occult cancer in women with dense breasts: Detection with screening US - Diagnostic yield and tumor characteristics,' Radiology, vol. 207, pp. 191-199, Apr 1998.
[11] P. Crystal, S. D. Strano, S. Shcharynski, and M. J. Koretz, 'Using sonography to screen women with mammographically dense breasts,' American Journal of Roentgenology, vol. 181, pp. 177-182, Jul 2003.
[12] V. Corsetti, A. Ferrari, M. Ghirardi, R. Bergonzini, S. Bellarosa, O. Angelini, C. Bani, and S. Ciatto, 'Role of ultrasonography in detecting mammographically occult breast carcinoma in women with dense breasts,' Radiologia Medica, vol. 111, pp. 440-448, Apr 2006.
[13] W. A. Berg, J. D. Blume, J. B. Cormack, E. B. Mendelson, D. Lehrer, M. Bohm-Velez, E. D. Pisano, R. A. Jong, W. P. Evans, M. J. Morton, M. C. Mahoney, L. H. Larsen, R. G. Barr, D. M. Farria, H. S. Marques, K. Boparai, and A. Investigators, 'Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer,' Jama-Journal of the American Medical Association, vol. 299, pp. 2151-2163, May 14 2008.
[14] E. Tohno, E. Ueno, and H. Watanabe, 'Ultrasound screening of breast cancer,' Breast Cancer, vol. 16, pp. 18-22, 2009.
[15] R.-F. Chang, K.-C. Chang-Chien, H.-J. Chen, D.-R. Chen, E. Takada, and W. Kyung Moon, 'Whole breast computer-aided screening using free-hand ultrasound,' International Congress Series, vol. 1281, pp. 1075-1080, 2005.
[16] Y.-H. Chou, C.-M. Tiu, J. Chen, and R.-F. Chang, 'Automated Full-field Breast Ultrasonography: The Past and The Present,' Journal of Medical Ultrasound, vol. 15, pp. 31-44, 2007.
[17] Y. Ikedo, D. Fukuoka, T. Hara, H. Fujita, E. Takada, T. Endo, and T. Morita, 'Development of a fully automatic scheme for detection of masses in whole breast ultrasound images,' Medical Physics, vol. 34, pp. 4378-4388, Nov 2007.
[18] M. Tozaki, S. Isobe, M. Yamaguchi, Y. Ogawa, M. Kohara, C. Joo, and E. Fukuma, 'Optimal scanning technique to cover the whole breast using an automated breast volume scanner,' Japanese Journal of Radiology, vol. 28, pp. 325-328, May 2010.
[19] K. M. Kelly, J. Dean, W. S. Comulada, and S. J. Lee, 'Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts,' European Radiology, vol. 20, pp. 734-742, Mar 2010.
[20] R. F. Chang, K. C. Chang-Chien, E. Takada, C. S. Huang, Y. H. Chou, C. M. Kuo, and J. H. Chen, 'Rapid image stitching and computer-aided detection for multipass automated breast ultrasound,' Medical Physics, vol. 37, pp. 2063-2073, May 2010.
[21] W. K. Moon, Y. W. Shen, C. S. Huang, L. R. Chiang, and R. F. Chang, 'Computer-Aided Diagnosis for the Classification of Breast Masses in Automated Whole Breast Ultrasound Images,' Ultrasound in Medicine and Biology, vol. 37, pp. 539-548, Apr 2011.
[22] W. K. Moon, Y. W. Shen, C. S. Huang, S. C. Luo, A. Kuzucan, J. H. Chen, and R. F. Chang, 'Comparative study of density analysis using automated whole breast ultrasound and MRI,' Medical Physics, vol. 38, pp. 382-389, Jan. 2011.
[23] K. M. Kelly and G. A. Richwald, 'Automated whole-breast ultrasound: advancing the performance of breast cancer screening,' Semin Ultrasound CT MR, vol. 32, pp. 273-80, Aug. 2011.
[24] W. K. Moon, C. M. Lo, J. M. Chang, C. S. Huang, J. H. Chen, and R. F. Chang, 'Computer-aided classification of breast masses using speckle features of automated breast ultrasound images,' Medical Physics, vol. 39, pp. 6465-6473, 2012.
[25] K. Drukker, M. L. Giger, K. Horsch, M. A. Kupinski, C. J. Vyborny, and E. B. Mendelson, 'Computerized lesion detection on breast ultrasound,' Medical Physics, vol. 29, pp. 1438-46, Jul 2002.
[26] K. Drukker, M. L. Giger, and E. B. Mendelson, 'Computerized analysis of shadowing on breast ultrasound for improved lesion detection,' Medical Physics, vol. 30, pp. 1833-42, Jul 2003.
[27] M. A. Kutay, A. P. Petropulu, and C. W. Piccoli, 'Breast tissue characterization based on modeling of ultrasonic echoes using the power-law shot noise model,' Pattern Recognition Letters, vol. 24, pp. 741-756, 2003.
[28] K. Drukker, M. L. Giger, C. J. Vyborny, and E. B. Mendelson, 'Computerized detection and classification of cancer on breast ultrasound1,' Academic Radiology, vol. 11, pp. 526-535, May 2004.
[29] K. Drukker, M. L. Giger, and C. E. Metz, 'Robustness of Computerized Lesion Detection and Classification Scheme across Different Breast US Platforms1,' Radiology, vol. 237, pp. 834-840, December 2005 2005.
[30] K. V. Mogatadakala, K. D. Donohue, C. W. Piccoli, and F. Forsberg, 'Detection of breast lesion regions in ultrasound images using wavelets and order statistics,' Medical Physics, vol. 33, pp. 840-849, Apr 2006.
[31] J. C. Bezdek, R. Ehrlich, and W. Full, 'Fcm - the Fuzzy C-Means Clustering-Algorithm,' Computers & Geosciences, vol. 10, pp. 191-203, 1984.
[32] J. B. Macqueen, 'Some Methods for classification and analysis of multivariate observations,' in Procedings of the Fifth Berkeley Symposium on Math, Statistics, and Probability, 1967, pp. 281-297.
[33] K.-S. Chuang, H.-L. Tzeng, S. Chen, J. Wu, and T.-J. Chen, 'Fuzzy c-means clustering with spatial information for image segmentation,' Computerized Medical Imaging and Graphics, vol. 30, pp. 9-15, 2006.
[34] J.-H. Chen, C.-S. Huang, K.-C. C. Chien, E. Takada, W. K. Moon, J. H. K. Wu, N. Cho, Y.-F. Wang, and R.-F. Chang, 'Breast density analysis for whole breast ultrasound images,' Medical Physics, vol. 36, pp. 4933-4943, 2009.
[35] Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller, G. Gerig, and R. Kikinis, 'Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images,' Med Image Anal, vol. 2, pp. 143-168, 1998.
[36] A. Frangi, W. Niessen, K. Vincken, and M. Viergever, 'Multiscale vessel enhancement filtering,' in Medical Image Computing and Computer-Assisted Intervention - Miccai'98. vol. 1496, W. Wells, A. Colchester, and S. Delp, Eds., ed: Springer Berlin / Heidelberg, 1998, pp. 130-137.
[37] D. B. Kopans, 'Basic Physics and Doubts about Relationship between Mammographically Determined Tissue Density and Breast Cancer Risk,' Radiology, vol. 246, pp. 348-353, February 2008 2008.
[38] R. F. Chang, W. J. Wu, W. K. Moon, and D. R. Chen, 'Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis,' Ultrasound in Medicine and Biology, vol. 29, pp. 679-686, May 2003.
[39] O. V. Michailovich and A. Tannenbaum, 'Despeckling of medical ultrasound images,' Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 53, pp. 64-78, 2006.
[40] J.-S. Lee, 'Digital image smoothing and the sigma filter,' Computer Vision, Graphics, and Image Processing, vol. 24, pp. 255-269, Nov. 1983.
[41] P. Perona and J. Malik, 'Scale-space and edge detection using anisotropic diffusion,' Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 12, pp. 629-639, 1990.
[42] R. Adams and L. Bischof, 'Seeded Region Growing,' Ieee Transactions on Pattern Analysis and Machine Intelligence, vol. 16, pp. 641-647, Jun 1994.
[43] J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science ... on Applied and Computational Mathematics): Cambridge University Press, 1999.
[44] R. N. Czerwinski, D. L. Jones, and W. D. O'Brien, Jr., 'Line and boundary detection in speckle images,' IEEE Trans.Image Process, vol. 7, pp. 1700-1714, 12 1998.
[45] R. N. Czerwinski, D. L. Jones, and W. D. O'Brien, Jr., 'Detection of lines and boundaries in speckle images-application to medical ultrasound,' IEEE Trans.Med.Imag., vol. 18, pp. 126-136, 02 1999.
[46] D. Hosmer and S. Lemeshow, Applied logistic regression (Wiley Series in probability and statistics): Wiley Interscience, 2000.
[47] L. Liberman and J. H. Menell, 'Breast imaging reporting and data system (BI-RADS),' Radiol Clin North Am, vol. 40, pp. 409-30, v, 2002.
[48] A. Rakotomamonjy, P. Deforge, and P. Marche, 'Wavelet-based speckle noise reduction in ultrasound B-scan images,' Ultrason.Imaging, vol. 22, pp. 73-94, 04 2000.
[49] E. Marom, S. Kresic-Juric, and L. Bergstein, 'Speckle noise in bar-code scanning systems--power spectral density and SNR,' Appl.Opt., vol. 42, pp. 161-174, 01/10/ 2003.
[50] K. Z. Abd-Elmoniem, A. B. M. Youssef, and Y. M. Kadah, 'Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion,' IEEE Trans.Biomedical Engineering, vol. 49, pp. 997-1014, 09 2002.
[51] M. L. Giger, H. Al Hallaq, Z. Huo, C. Moran, D. E. Wolverton, C. W. Chan, and W. Zhong, 'Computerized analysis of lesions in US images of the breast,' Acad.Radiol., vol. 6, pp. 665-674, 11 1999.
[52] K. Horsch, M. L. Giger, C. J. Vyborny, and L. A. Venta, 'Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography,' Acad.Radiol., vol. 11, pp. 272-280, 03 2004.
[53] R. C. Gonzalez and R. E. Woods, Digital Image Processing: Reading, MA: Addison-Wesley, 1992.
[54] H. Tang, T. Zhuang, and E. X. Wu, 'Realizations of fast 2-D/3-D image filtering and enhancement,' IEEE Trans.Med.Imaging, vol. 20, pp. 132-140, 02 2001.
[55] M. B. Dillencourt, H. Samet, and M. Tamminen, 'A general approach to connected-component labeling for arbitrary image representations,' J. ACM, vol. 39, pp. 253-280, 1992.
[56] W. C. Shen, R. F. Chang, and W. K. Moon, 'Computer aided classification system for breast ultrasound based on Breast Imaging Reporting and Data System (BI-RADS),' Ultrasound in Medicine and Biology, vol. 33, pp. 1688-98, Nov 2007.
[57] E. Bribiesca, 'An easy measure of compactness for 2D and 3D shapes,' Pattern Recognition, vol. 41, pp. 543-554, Feb 2008.
[58] R. Kohavi and G. H. John, 'Wrappers for feature subset selection,' Artif. Intell., vol. 97, pp. 273-324, 1997.
[59] R. R. Picard and R. D. Cook, 'Cross-Validation of Regression Models,' Journal of the American Statistical Association, vol. 79, pp. 575-583, 1984.
[60] D. P. Chakraborty, E. S. Breatnach, M. V. Yester, B. Soto, G. T. Barnes, and R. G. Fraser, 'Digital and Conventional Chest Imaging - a Modified Roc Study of Observer Performance Using Simulated Nodules,' Radiology, vol. 158, pp. 35-39, Jan 1986.
[61] B. Sahiner, H. P. Chan, L. M. Hadjiiski, M. A. Roubidoux, C. Paramagul, J. E. Bailey, A. V. Nees, C. E. Blane, D. D. Adler, S. K. Patterson, K. A. Klein, R. W. Pinsky, and M. A. Helvie, 'Multi-modality CADx: ROC Study of the Effect on Radiologists' Accuracy in Characterizing Breast Masses on Mammograms and 3D Ultrasound Images,' Academic Radiology, vol. 16, pp. 810-818, Jul 2009.
[62] P. C. Vos, J. O. Barentsz, N. Karssemeijer, and H. J. Huisman, 'Automatic computer-aided detection of prostate cancer based on multiparametric magnetic resonance image analysis,' Physics in Medicine and Biology, vol. 57, pp. 1527-1542, Mar. 2012.
[63] H. Madjar and J. Jellins, The practice of breast ultrasound: techniques, findings, differential diagnosis. New York: Thieme, 2000.
[64] R. A. Groeneveld and G. Meeden, 'Measuring skewness and kurtosis,' Journal of the Royal Statistical Society, vol. 33, pp. 391-399, Dec. 1984.
[65] J. M. Chang, W. K. Moon, N. Cho, J. S. Park, and S. J. Kim, 'Radiologists' performance in the detection of benign and malignant masses with 3D automated breast ultrasound (ABUS),' Eur J Radiol, vol. 78, pp. 99-103, Apr. 2011.
[66] L. A. Meinel, A. H. Stolpen, K. S. Berbaum, L. L. Fajardo, and J. M. Reinhardt, 'Breast MRI lesion classification: Improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system,' Journal of Magnetic Resonance Imaging, vol. 25, pp. 89-95, Jan. 2007.
[67] D. P. Chakraborty, 'Validation and statistical power comparison of methods for analyzing free-response observer performance studies,' Academic Radiology, vol. 15, pp. 1554-1566, Dec. 2008.
[68] S. Holm, 'A Simple Sequentially Rejective Multiple Test Procedure,' Scandinavian Journal of Statistics, vol. 6, pp. 65-70, 1979.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63113-
dc.description.abstract由於全乳房自動超音波在掃描乳房時是全自動操作,能降低不同使用者在操作上造成的差異,而且操作者毋須在掃描時檢測腫瘤是否存在於超音波影像中,而是在掃描影像之後再檢查影像,可以有效地減少病人在檢查的時間,三維的全乳房自動超音波影像能準確地定位出腫瘤的位置以利於之後病人的追蹤,因此在近年來,全乳房自動超音波已經成為在檢測乳癌上的一種常用的工具。然而,三維全乳房自動超音波影像通常包含了數百張二維超音波影像,醫生診斷三維全乳房自動超音波影像是否有腫瘤存在會需要花費許多時間且容易因為檢查大量資料產生疲倦而造成誤判。為了能夠減少醫生在檢測全乳房自動超音波影像的時間,可以使用電腦輔助偵測系統幫助醫生篩選出在影像中疑似腫瘤的區域。然而,在大量資料中的全乳房自動超音波影像中實作出能夠有效偵測出疑似腫瘤區域的電腦輔助偵測系統是非常困難的,因此到目前為止,只有少數在全乳房自動超音波影像的電腦輔助偵測系統被實作並提出。在此論文中,將會介紹二種全乳房自動超音波影像的電腦輔助偵測系統。在第一篇研究中,使用模糊平均分群法(FCM)從全乳房自動超音波影像的三個正交視角分別偵測出可疑腫瘤區域,接著結合這三個正交視角所偵測的結果以得到更準確的偵測結果。在第二篇研究中,使用了海森分析(Hessian analysis)在全乳房自動超音波影像中偵測腫瘤。由於腫瘤在超音波影像中的灰階值通常都比周圍組織的灰階值暗,腫瘤可以被視為一種球體結構,此球體結構可以使用海森分析偵測出。這二個電腦輔助偵測系統的實驗結果均能夠在全乳房自動超音波影像對偵測腫瘤有著不錯的靈敏度。zh_TW
dc.description.abstractAutomated whole breast ultrasound (ABUS) has been a novel screening tool in recent years due to the operator-independent, time efficient, and reproducibility. However, a three-dimensional (3-D) ABUS image contains hundreds of two-dimensional (2-D) ultrasound (US) images and physicians should need a lot of time to diagnose hundreds of images in an ABUS image. It is time-consuming to review a 3-D ABUS image and the misdetection might occur due to physicians’ fatigues. In order to reduce the review time and the misdetection by physicians, computer-aided detection (CADe) systems have been proposed to assist physicians in interpretation of these images. However, only few studies for development of CADe systems on ABUS images have been reported because it is difficult to detect tumors from a large number of images. In the thesis, two CADe methods for ABUS images were proposed. In the first study, the tumor detection based on the fuzzy c-mean (FCM) technique was applied to thee orthogonal view respectively and then the detected results in the three views were combined to obtain the more accurate results. In the second study, the tumor detection based on Hessian analysis was proposed. Because lesions are usually darker than the surrounding tissue, the lesions could be regarded as the dark blob structures and could be detected by using the Hessian analysis. The results showed that the two CADe systems could provide the high sensitivity for the breast tumor detection on ABUS images.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:23:22Z (GMT). No. of bitstreams: 1
ntu-102-D96922019-1.pdf: 2173040 bytes, checksum: 9472438fb2dccdb3a0ba78037db42ab0 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書 I
Acknowledgements II
摘要 III
Abstract V
Contents VII
List of Figures X
List of Tables XIV
Chapter 1 Introduction 1
1.1. Research Motivation 1
1.2. Issue Descriptions 3
1.2.1. Fuzzy C-means Technique 4
1.2.2. Hessian Analysis Technique 5
1.3. Organization 6
Chapter 2 Review of Three Dimensional Breast Ultrasound Techniques 7
2.1. Automated Whole Breast Ultrasound 7
2.2. Related Studies 8
2.3. CADe System Procedures 10
2.3.1. Preprocessing 11
2.3.2. Segmentation 13
2.3.3. Classification 14
Chapter 3 Multi-view Tumor Detection for Whole Breast Ultrasound Image 16
3.1. Data Acquisition 17
3.2. Preprocessing Techniques 18
3.3. Tumor Candidate Detection 21
3.4. Feature Extraction 22
3.4.1. Intensity Features 23
3.4.2. Morphology Features 24
3.4.3. Location and Size Features 25
3.4.4. Multi-view Tumor Likelihood Estimation 26
3.5. Results 28
3.6. Discussion 33
3.7. Conclusion 37
Chapter 4 Computer-aided Tumor Detection Based on Multi-scale Blob Detection Algorithm in Automated Breast Ultrasound Images 38
4.1. Materials 39
4.2. Methods 40
4.2.1. Speckle Noise Reduction 41
4.2.2. Tumor Candidate Detection based on Multi-scale Blob Detection 43
4.2.3. Tumor Candidate Selection 47
4.2.4. Feature Extraction 49
4.2.4.1. Blobness Features 49
4.2.4.2. Internal Echo Features 51
4.2.4.3. Morphology Features 52
4.2.5. Tumor Likelihood Estimation 53
4.2.6. System Performance Evaluation 54
4.3. Results 57
4.4. Discussion 68
4.5. Conclusion 71
Chapter 5 Conclusion and Future Directions 73
References 75
Publications 87
dc.language.isoen
dc.subject乳癌zh_TW
dc.subject全乳房自動超音波zh_TW
dc.subject電腦輔助偵測系統zh_TW
dc.subjectBreast canceren
dc.subjectComputer-aided detectionen
dc.subjectAutomated whole breast ultrasounden
dc.title全乳房自動超音波之腫瘤偵測zh_TW
dc.titleTumor Detection for Automated Whole Breast Ultrasounden
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree博士
dc.contributor.oralexamcommittee黃俊升(Chun-Sheng Huang),康立威(Li-Wei Kang),廖弘源(Hung-Yuan Liao),薛智文(Chih-Wen Hsueh)
dc.subject.keyword乳癌,全乳房自動超音波,電腦輔助偵測系統,zh_TW
dc.subject.keywordBreast cancer,Computer-aided detection,Automated whole breast ultrasound,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2013-01-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved