請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63043完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳明杰 | |
| dc.contributor.author | Yeng-Bang Tsai | en |
| dc.contributor.author | 蔡彥邦 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:20:04Z | - |
| dc.date.available | 2015-03-15 | |
| dc.date.copyright | 2013-03-15 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-01 | |
| dc.identifier.citation | 參考文獻
1. 洪志遠 (2007) 蓮華池集水區不飽和土壤的水力特性。國立台灣大學森林環境暨資源學系碩士論文。 2. 陳明杰、何正品 (1996) 蓮華池森林集水區坡面土壤水分變化之研究。中華林學季刊 29(2):15-33。 3. 陳明杰、黃襦慧 (2006) 張力滲透計應用於蓮華池五號集水區土壤水力傳導 度測定分析。中華林學季刊 39(2):207-220。 4. 陳明杰、洪志遠 (2007) 福山林地土壤飽和與不飽和水力傳導度的特性。台大實驗林研究報告 21(3):229-243。 5. 陸象豫、唐凱軍、古秀宇、黃惠雪 (2000) 林業試驗所各林區氣候狀況。台灣 林業科學 15(3):429-440。 6. 黃襦慧 (2004) 蓮華池林地未飽和土壤水力傳導度特性之研究。國立台灣大 學森林環境暨資源學系碩士論文。 7. 黃正良、廖學誠、金恆鑣、孫正春(2003) 蓮華池人工林及天然林集水區土壤 水力傳導度之比較(一)—Guelph 滲透計法。中華林學季刊 36(2):187-198。 8. 黃正良、廖學誠、陳明杰、金恆鑣、陸象豫 (2002) 蓮華池試驗林森林水文研究之回顧分析,台大實驗林研究報告 16(2):95-14。 9. 葛錦昭、楊炳炎、林淵霖、楊楚淇、漆陞忠 (1978) 台灣森林集水區經營試驗 初步報告。林業試驗所試驗報告第304號:50頁。 10. 萬鑫森譯(1987) 基礎土壤物理學。茂昌圖書公司。 11. 大手信人、鈴木雅一、窪田順平(1989) 森林土壤の測定土壤水分特性(I)飽和-不飽和透水特性の鉛直分布の測定法と2,3の測定結果日林誌70(8):367-370。 12. 竹下敬司 (1985) 森林土壤と水源かん養機能。森林立地 5(2):19-26。 13. Anderson, M. G. and T. B. Burt, 1990. Process studies in hillslope hydrology. John Wiley and Sons. New York. pp. 43-126. 14. Beven, K. and P. Germann, 1982. Macropores and water flow in soil. Water Resour. Res. 18: 1311-1325. 15. Bower, H., 1986. Intake rate: Cylinder infiltrometer. p. 825–843. In A. Klute (ed.) Methods of soil analysis. 2nd ed. Part 1. SSSA Book Ser. 5. ASA and SSSA, Madison, WI. 16. Bores, Th.M., F.J.M.P. van Deurzen, L.A.A.J. Eppink and R.E. Ruytenberg, 1992. Comparison of infiltration rates measured with an infiltrometer, a rainulator and a permeameter for erosion research in SE Nigeria. Soil technology 5(1): 13-26. 17. Brooks R. H. and A. T. Corey, 1964. Hydraulic properties of porous media. Hydrologic Paper, Colorado State Univ. 3: 1-27. 18. Buttle, J. M. and D. A. House, 1997. Spatial variability of saturated hydraulic conductivity in shallow macroporous soils in a forested basin. J. Hydro. 230: 127-142. 19. Buttle, J. M. and D. J. McDonald, 2000. Soil macroporosity and infiltration characteristics of a forest podzol. Hydrological Processes 14: 831-848. 20. Dunn, G. H. and R. E. Phillips, 1991. Macroporosity of a well-drained soil under no-till and conventional tillage. Soil Sci. Soc. Am. J. 55: 817-823. 21. Elrick, D.E., Reynolds, W.D., and Tan, K.A. 1989. Hydraulic conductivity measurements in the unsaturated zone using improved well analyses. Ground Water Monit. Rev. 9: 184–193. 22. Gardner, W. R., 1958. Some steady-state soulutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci. 85: 228-232. 23. Luxmoore, R. J., P. M. Jardine and G. V. Wilson, J.R. Jones and L.W. Zelazny, 1990. Physical and chemical controls of preferred path flow though a forested hillslope. Geoderma. 46:139-154. 24. Munoz-Carpena, R., Realado, C.M., Alvarez-Benedi, J., and Bartoli, F. 2002. Field evaluateon of the new Philip-Dunne Permeameter for measureing saturated hydraulic conductiveity. Soil sci. 167:9-24. 25. Reynolds, W.D. and Elrick, D.E. 1990. Ponded infiltration from a single ring: I. Analysis of Steady Flow. Soil Sci. Soc. Am. J. 54: 1233–1241. 26. Reynolds, W. D., E. G. Gregorich, and W. E. Curnoe, 1993. Characterisation of water transmission properties in tilled and untilled soils using tension infiltrometers. Soil and Tillage Research Volume 33(2) : 117-131. 27. Reynolds, W. D. and D. E. Elrick, 1991. Determination of hydraulic conductivity using a tension infiltrometer. Soil Sci. Soc. Am. J. 55: 633-639. 28. Reynolds, W. D., B.T. Bowman, P. R. Brunke, C.F. Drury, and C.S. Tan, 2000. Comparison of tension infiltrometer, pressure infiltrometer, and soil core estimates of saturated hydraulic conductivity. Soil sci. soc. Am. J. 64: 478-484. 29. Reynolds, W.D., D.E. Elrick, and E.G. Youngs. 2002. Ring or cylinder infiltrometers (vadose zone). P. 818-843. In J.H. Dane and G.C. Topp (ed.), Methods of Soil Analysis: Part 4 -Physical Methods. Soil Science Society of America, Inc., Madison, WI. 30. Martin R. Carter, E. G. Gregorich, soil sampling and methods of analysis, 2006. 31. Waduwawatte, B., B.C. Si, and K. Noborio, 2004a. Determination of hydraulic properties in sloping landscapes from tension and double-ring infiltrometers. Vadose zone journal (3): 964-970. 32. Waduwawatte, B. and B.C. Si, 2004b. Near-saturated surface soil hydraulic properties under different land uses in the St Denis National Wildlife Area, Saskatchewan,Canada. Hydrological Processes 18: 2835-2850. 33. Watson, K. W. and R. J. Luxmoore, 1986. Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Sci. Soc. Am. J. 50: 578-582. 34. Wilson, G. V. and R. J. Luxmoore, 1988. Infiltration, macroporosity, and mesoporosity distribution on two forest watersheds. Soil Sci. Soc. Am. J. 52: 329-335. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63043 | - |
| dc.description.abstract | 本研究探討蓮華池林地土壤的水力傳導度特性。研究區域位於蓮華池四號集水區(四號)及五號集水區(五號),於坡面選定四條樣線,每一條樣線在山脊、山腹處分別選取一點,使用雙環入滲計對深度0 cm及20 cm進行現地滲透試驗。同時,以直徑20 cm、長度40 cm的採土圓筒採取大型不擾動土樣,於實驗室進行定水頭與變水頭滲透試驗,以比較現地及室內的測定方式其飽和水力傳導度是否有差異。另外採取不擾動土壤試體分析物理性質,供對照現地與室內的試驗結果,說明土壤總體密度、大孔隙等對飽和水力傳導度的影響。
雙環入滲計的試驗結果,五號的平均飽和水力傳導度大於四號一次方左右。五號的土壤大孔隙率顯著高於四號,而且,五號的土壤為粘質壤土,其砂粒含量較高,四號的土壤為坋質粘土,粘粒含量高。上述因素是造成五號的飽和水力傳導度較四號為高的原因。經迴歸分析,飽和水力傳導度與大孔隙率、乾總體密度等具有良好的相關。其次,比較雙環入滲計與室內定水頭與變水頭滲透試驗結果,雙環入滲計試驗所得之飽和水力傳導度大於定水頭滲透試驗結果,原因為定水頭試驗時從試體下方供水,受到深度30~40 cm的土壤較0~20 cm緻密的影響,造成試體的飽和水力傳導度偏低;而變水頭試驗所得之飽和水力傳導度大於雙環入滲計的試驗結果,原因為變水頭滲透試驗時壓力水頭較高,以及在滲透性良好的土壤可能會有高估飽和水力傳導度的情形。另外,雙環入滲計的結果與前人之Guelph滲透計、張力滲透計的結果比較,顯示雙環入滲計與Guelph滲透計所得飽和水力傳導度相近,而張力滲透計所得之飽和水力傳導度小於雙環入滲計及Guelph滲透計。 本研究另以室內人工模擬降雨,進行大型不擾動土樣之不飽和滲透試驗,依Brooks and Corey之不飽和水力傳導度與壓力水頭的函數分析結果,五號的孔隙分佈參數(η)值較四號小,五號的總體密度低,土壤疏鬆且含有較多的大孔隙,顯示五號土壤孔隙組成的不均質性比四號明顯。而四號的限界毛管水頭(Ψcr)值大於五號,顯示四號的土壤質地偏細且細孔隙含量偏高,是造成飽和水力傳導度較低的原因。 | zh_TW |
| dc.description.abstract | The study investigate about the saturated hydraulic properties of soil in forest watershed. This study area was at Lienhuachih watershed No. 4 and No. 5, where we choose four transects respectively selected from ridge and hillslope. Each location comprised soil depths of 0 cm and 20 cm, where Double-ring infiltrometer was used to measure field infiltration rate, and calculate the hydraulic conductivities in each point. At the same time, use the 20 cm of diameter and 40 cm of length cylinder to dig the large-scale undisturb soil samples, in order to compare the difference measurement types (Constant-Head Permeability Test and Falling-Head Permeability Test ) whether the conclusions are differ or not. Besides, collect small undisturbed soil to do physical analysis so as to compared the field and lab infiltration results and illustrate the influence of soil texture, large macroporosity, coarse porosity to the penetrate rate. By the way, we compared the difference properties in Guelph infiltrometer, tension infiltrometer and double-ring infiltrometer.
The results of double ring infiltration test, the average saturated hydraulic conductivity in watershed No.5 are large than in No.4. The soil texture of No.5 is clay loam, and there is more sand; the texture of No.4 is silt clay, there is more clay. The clay water retention capacity is better than sand, so that the saturated hydraulic conductivity is watershed No.5 more large than No.4. In comparison with double ring infiltration, constant head permeability test and falling head permeability, the saturated hydraulic conductivity of double ring infiltration is all large than constant head permeability. The reason that constant head permeability’s water flow is through down to above, the soil at 30 cm is closely knit than 0~20 cm so that the saturated hydraulic conductivity is low. The saturated hydraulic conductivity of falling head permeability test is all large than double ring infiltration. The reason that falling head permeability test’s pressure head is large than double ring’s, and the falling head permeability test in good permeability soil may overestimate. Besides, we compare the hydraulic conductivity of Guelph infiltrometer, tension infiltrometer and double-ring infiltrometer. The saturated hydraulic conductivity of tension infiltrometer is lower than Guelph infiltrometer and double-ring infiltrometer, and the results of Guelph infiltrometer is closely by double-ring infiltrometer. The lab simulated rainfall conclusion, use the Brooks and Corey method to get the unsaturated hydraulic conductivity properties with water pressure head. The soil pore size distribution parameter (η) of No. 5 watershed is more large than No. 4, show that the soil porosity structure in watershed No.5 was more heterogeneous. There are more abundant soil aggressive structure and loose properties. The critical capillary head of No.4 is large than No.5, appeared that soil texture in No.4 is silt clay and micropores content is relatively high, that’s the reason why there has the smller saturated hydraulic conductivity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:20:04Z (GMT). No. of bitstreams: 1 ntu-102-R96625038-1.pdf: 945324 bytes, checksum: fca2287027250033ac292dab22c77add (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 I
目錄 IV 表次 V 圖次 VI 第一章 前言 1 第二章 前人研究 3 第一節 土壤水分之能量狀態 3 第二節 土壤孔隙與水分移動 4 第三節 土壤水力傳導度的測定 5 第四節 大孔隙對水分移動的影響 7 第五節 不同測定方法之水力傳導度的比較 8 第三章 研究材料與方法 10 第一節 原理 10 一、達西定律 10 二、雙環入滲計 10 第二節 研究區域概況 13 ㄧ、位置 13 二、地質與土壤 13 三、氣候特性 14 四、植群生態 14 五、試驗地點 15 第三節 研究方法 17 一、雙環入滲計操作方法 二、室內水力傳導度的室內驗17 第四章 結果與討論 24 第一節 土壤物理性質測定 24 第二節 雙環入滲計之飽和水力傳導度測定 29 第三節 室內滲透試驗結果 32 第四節 雙環入滲計與室內滲透試驗結果之比較 35 第五節 飽和水力傳導度與土壤物性的關係 37 第六節 現地不同測定方法之飽和水力傳導度比較41 第七節 室內不飽和滲透試驗 43 第五章 結論 52 參考文獻 54 | |
| dc.language.iso | zh-TW | |
| dc.subject | 雙環入滲計 | zh_TW |
| dc.subject | 蓮華池 | zh_TW |
| dc.subject | 變水頭滲透試驗 | zh_TW |
| dc.subject | 定水頭滲透試驗 | zh_TW |
| dc.subject | 水力傳導度 | zh_TW |
| dc.subject | Constant head permeability test | en |
| dc.subject | Double-ring infiltrometer | en |
| dc.subject | Falling head permeability test | en |
| dc.subject | Hydraulic conductivity | en |
| dc.subject | Lienhuachih | en |
| dc.title | 蓮華池林地土壤水力傳導度不同測定方法之比較 | zh_TW |
| dc.title | comparison of hydraulic conductivity measurement by different methods in Lienhuachih forest land | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 盧惠生,劉正川,黃瓊彪 | |
| dc.subject.keyword | 水力傳導度,定水頭滲透試驗,變水頭滲透試驗,蓮華池,雙環入滲計, | zh_TW |
| dc.subject.keyword | Constant head permeability test,Double-ring infiltrometer,Falling head permeability test,Hydraulic conductivity,Lienhuachih, | en |
| dc.relation.page | 56 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-01 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 923.17 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
