Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63028
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor余化龍(Hua-Lung Yu)
dc.contributor.authorBo-Lin Chenen
dc.contributor.author陳柏林zh_TW
dc.date.accessioned2021-06-16T16:19:25Z-
dc.date.available2013-02-21
dc.date.copyright2013-02-21
dc.date.issued2013
dc.date.submitted2013-02-02
dc.identifier.citationBasist, A., Bell, G. D., & Meentemeyer, V. (1994). Statistical relationships between topography and precipitation patterns. Journal of Climate, 7(9), 1305–1315. doi:10.1175/1520-0442(1994)007<1305:SRBTAP>2.0.CO;2
Ben-Hur, A., & Guyon, I. (2003). Detecting stable clusters using principal component analysis. In M. J. Brownstein & A. Khodursky (Eds.), Functional Genomics (Vol. 224, pp. 159–182). Humana Press.
Bohl, V. G., & Junker, N. W. (1987). Using climatologically favored thickness to locate the axis of heaviest rainfall. National Weather Digest, 12(3), 5–10.
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327. doi:10.1016/0304-4076(86)90063-1
Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: forecasting and control. San Francisco: Holden-Day.
Boyd, C. R., Tolson, M. A., & Copes, W. S. (1987). Evaluating trauma care: the TRISS method. Trauma Score and the Injury Severity Score. The Journal of Trauma, 27(4), 370–378.
Brunsdon, C., Mcclatchey, J., & Unwin, D. J. (2001). Spatial variations in the average rainfall–altitude relationship in Great Britain: an approach using geographically weighted regression. International Journal of Climatology, 21(4), 455–466. doi:10.1002/joc.614
Buell, C. E. (1975). The topography of the empirical orthogonal functions. Preprints Fourth Conference on Probability and Statistics in Atmospheric Sciences (pp. 188–193). Tallahassee, FL: American Meteorological Society.
Buell, C. E. (1979). On the physical interpretation of empirical orthogonal functions. Preprints, Sixth Conference on Probability and Statistics in Atmospheric Sciences (pp. 112–117). Banff, Alberta: American Meteorological Society.
Buishand, T. A. (1978). The binary DARMA (1,1) process as a model for wet-dry sequences (p. 49). Wageningen: Agricultural University.
Buishand, Tjerk Adriaan. (1977). Stochastic modelling of daily rainfall sequences (p. 212). Wageningen: H. Veenman & Zonen B. V.
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245–276. doi:10.1207/s15327906mbr0102_10
Cattell, R. B., & Vogelmann, S. (1977). A comprehensive trial of the scree and KG criteria for determining the number of factors. Multivariate Behavioral Research, 12(3), 289–325. doi:10.1207/s15327906mbr1203_2
Cavazos, T., & Hewitson, B. C. (2005). Performance of NCEP–NCAR reanalysis variables in statistical downscaling of daily precipitation. Climate Research, 28(2), 95–107. doi:10.3354/cr028095
Charles, S. P., Bates, B. C., & Hughes, J. P. (1999). A spatiotemporal model for downscaling precipitation occurrence and amounts. Journal of Geophysical Research, 104(D24), 31,65731,669. doi:10.1029/1999JD900119
Charles, S. P., Bates, B. C., Smith, I. N., & Hughes, J. P. (2004). Statistical downscaling of daily precipitation from observed and modelled atmospheric fields. Hydrological Processes, 18(8), 1373–1394. doi:10.1002/hyp.1418
Chen, S.-T., Yu, P.-S., & Tang, Y.-H. (2010). Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. Journal of Hydrology, 385(1-4), 13–22. doi:10.1016/j.jhydrol.2010.01.021
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. doi:10.1007/BF00994018
Daly, C., Neilson, R. P., & Phillips, D. L. (1994). A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology, 33(2), 140–158. doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE Transactions Pattern Analysis and Machine Intelligence, PAMI-1(2), 224–227. doi:10.1109/TPAMI.1979.4766909
Dibike, Y. B., & Coulibaly, P. (2006). Temporal neural networks for downscaling climate variability and extremes. Neural Networks, 19(2), 135–144. doi:10.1016/j.neunet.2006.01.003
Draper, N. R., & Smith, H. (1966). Applied regression analysis (p. 407). Wiley.
Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32–57. doi:10.1080/01969727308546046
Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9, 1871–1874. Retrieved from http://dl.acm.org/citation.cfm?id=1390681.1442794
Farmer, J. D., & Sidorowich, J. J. (1987). Predicting chaotic time series. Physical Review Letters, 59(8), 845–848. doi:10.1103/PhysRevLett.59.845
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179–188. doi:10.1111/j.1469-1809.1936.tb02137.x
Fox, E., & Dunson, D. (2011). Bayesian nonparametric covariance regression. Retrieved from http://arxiv.org/abs/1101.2017v2
Fragoso, M., & Tildes Gomes, P. (2008). Classification of daily abundant rainfall patterns and associated large-scale atmospheric circulation types in Southern Portugal. International journal of climatology, 28(4), 537–544. doi:10.1002/joc.1564
Golub, G., & Kahan, W. (1965). Calculating the Singular Values and Pseudo-Inverse of a Matrix. Journal of the Society for Industrial and Applied Mathematics Series B Numerical Analysis, 2(2), 205–224.
Goossens, C. R. (1985). Principal component analysis of Mediterranean rainfall. Journal of Climatology, 5(4), 379–388. doi:10.1002/joc.3370050405
Gorman, J. W., & Toman, R. J. (1966). Selection of variables for fitting equations to data. Technometrics, 8(1), 27–51. doi:10.1080/00401706.1966.10490322
Green, J. R. (1964). A model for rainfall occurrence. Journal of the Royal Statistical Society. Series B (Methodological), 26(2), 345–353. Retrieved from http://www.jstor.org/stable/2984431
Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55–67. doi:10.1080/00401706.1970.10488634
Hoff, P. D., & Niu, X. (2011). A covariance regression model. Retrieved from http://arxiv.org/abs/1102.5721
Horn, J. . (1965). A rationale and test for the number of factors in factor-analysis. Psychometrika, 30(2), 179–185. doi:10.1007/BF02289447
Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6), 417–441. doi:10.1037/h0071325
Hughes, J. P., Guttorp, P., & Charles, S. P. (1999). A non-homogeneous hidden Markov model for precipitation occurrence. Journal of the Royal Statistical Society: Series C (Applied Statistics), 48(1), 15–30. doi:10.1111/1467-9876.00136
Hughes, James P., & Guttorp, P. (1994). A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resources Research, 30(5), 1535–1546. doi:10.1029/93WR02983
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187–200. doi:10.1007/BF02289233
Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151. doi:10.1177/001316446002000116
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., et al. (1996). The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society, 77(3), 437–470. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
Kalra, A., & Ahmad, S. (2012). Estimating annual precipitation for the Colorado River Basin using oceanic-atmospheric oscillations. Water Resources Research, 48. doi:10.1029/2011WR010667
Kulkarni, A., Kripalani, R. H., & Singh, S. V. (1992). Classification of summer monsoon rainfall patterns over India. International Journal of Climatology, 12(3), 269–280. doi:10.1002/joc.3370120304
Little, M. A., Rodda, H. J. E., & McSharry, P. E. (2008). Bayesian objective classification of extreme UK daily rainfall for flood risk applications. Hydrology and Earth System Sciences Discussions, 5(6), 3033–3060.
Lopes, H. F., Salazar, E., & Gamerman, D. (2008). Spatial dynamic factor analysis. Bayesian Analysis, 3(4), 759–792. doi:10.1214/08-BA329
Lyons, S. W. (1982). Empirical orthogonal function analysis of Hawaiian rainfall. Journal of Applied Meteorology, 21(11), 1713–1729. doi:10.1175/1520-0450(1982)021<1713:EOFAOH>2.0.CO;2
McCulloch, W., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of mathematical biology, 5(4), 115–133. doi:10.1007/BF02478259
Munoz-Diaz, D., Rodrigo, F. S., & others. (2004). Spatio-temporal patterns of seasonal rainfall in Spain (1912-2000) using cluster and principal component analysis: Comparison. Annales Geophysicae, 22(5), 1435–1448. doi:10.5194/angeo-22-1435-2004
Naoum, S., & Tsanis, I. K. (2004). Orographic precipitation modeling with multiple linear regression. Journal of Hydrologic Engineering, 9(2), 79–102. doi:10.1061/~ASCE!1084-0699~2004!9:2~79!
Ogallo, L. J. (1989). The spatial and temporal patterns of the East African seasonal rainfall derived from principal component analysis. International Journal of Climatology, 9(2), 145–167. doi:10.1002/joc.3370090204
Ojha, C. S. P., & Goyal, Manish Kumar Adeloye, A. J. (2010). Downscaling of precipitation for lake catchment in arid region in India using linear multiple regression and neural networks. The Open Hydrology Journal, 4, 122–136. doi:10.2174/1874378101004010122
Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2(11), 559–572. doi:10.1080/14786440109462720
Penarrocha, D., Estrela, M. J., & Millan, M. (2002). Classification of daily rainfall patterns in a Mediterranean area with extreme intensity levels: The Valencia region. International Journal of Climatology, 22(6), 677–695. doi:10.1002/joc.747
Rajagopalan, B., & Lall, U. (1999). A k-nearest-neighbor simulator for daily precipitation and other weather variables. Water Resources Research, 35(10), 3089–3101. doi:10.1029/1999WR900028
Roldan, J., & Woolhiser, D. A. (1982). Stochastic daily precipitation models: 1. A comparison of occurrence processes. Water Resources Research, 18(5), 1451–1459. doi:10.1029/WR018i005p01451
Romero, R., Ramis, C., & Guijarro, J. A. (1999). Daily rainfall patterns in the Spanish Mediterranean area: An objective classification. International Journal of Climatology, 19(1), 95–112. doi:10.1002/(SICI)1097-0088(199901)19:1<95::AID-JOC344>3.0.CO;2-S
Schmidt, R. W. (n.d.). Atmospheric Stability Part 2. Retrieved November 18, 2012, from http://www.geochief.org/AGS_371/Meteorology/Stability_Lab/Atmospheric Stability - Part 2.pdf
Schoof, J. T., & Pryor, S. C. (2001). Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networks. International Journal of Climatology, 21(7), 773–790. doi:10.1002/joc.655
Schafer, D., Moro, R. A., & Hardle, W. K. (2004). Rating Companies with Support Vector Machines. DIW-Diskussionspapiere.
Singh, K. K., & Singh, S. V. (1996). Space-time variation and regionalization of seasonal and monthly summer monsoon rainfall of the sub-Himalayan region and Gangetic plains of India. Climate Research, 6(3), 251–262. doi:10.3354/cr0006251
Sklar, A. (1959). Fonctions de repartition a n dimensions et leurs marges. Publications de l’Institut de Statistique de l'Universite de Paris, 8, 229–231.
Steinhaus, H. (1957). Sur la division des corps materiels en parties. Bulletin de l’Academie Polonaise des Sciences, Classe 3, 4, 801–804.
Sumner, G. (1996). Daily precipitation patterns over Wales: towards a detailed precipitation climatology. Transactions of the Institute of British Geographers, 21(1), 157–176. Retrieved from http://www.jstor.org/stable/622931
Thomas, H. A., & Fiering, M. P. (1962). Mathematical synthesis of streamflow sequences for the analysis of river basins by simulation. In A. Maass, S. Marglin, & G. Fair (Eds.), Design of water resources systems. Cambridge, Massachusetts, USA: Harvard University Press.
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1), 267–288.
Tripathi, S., Srinivas, V. V., & Nanjundiah, R. S. (2006). Downscaling of precipitation for climate change scenarios: A support vector machine approach. Journal of Hydrology, 330(3-4), 621–640. doi:10.1016/j.jhydrol.2006.04.030
Vrac, M., Stein, M., & Hayhoe, K. (2007). Statistical downscaling of precipitation through nonhomogeneous stochastic weather typing. Climate Research, 34(3), 169–184. doi:10.3354/cr00696
Wang, L. (2005). Support vector machines: theory and applications. (L. Wang, Ed.). New York: Springer.
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301), 236–244. doi:10.1080/01621459.1963.10500845
Wilby, R. L., Tomlinson, O. J., & Dawson, C. W. (2003). Multi-site simulation of precipitation by conditional resampling. Climate Research, 23(3), 183–194. doi:10.3354/cr023183
Williams, C. B. (1947). The logarithmic series and its application to biological problems. The Journal of Ecology, 34(2), 253–272. Retrieved from http://www.jstor.org/stable/10.2307/2256719
Young, K. C. (1994). A multivariate chain model for simulating climatic parameters from daily data. Journal of Applied Meteorology, 33(6), 661–671. doi:10.1175/1520-0450(1994)033<0661:AMCMFS>2.0.CO;2
Yule, G. U. (1927). On a method of investigating periodicities in disturbed series, with special reference to Wolfer’s sunspot numbers. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 226, 267–298. Retrieved from http://www.jstor.org/stable/91170
中華民國交通部中央氣象局(2012,2012/12/27)。颱風對臺灣的影響。上網日期:2013 Jan, 9。檢自:http://www.cwb.gov.tw/V7/knowledge/encyclopedia/ty041.htm
王振剛(2011)。宜蘭地面降雨之統計降尺度推估:以IPCC-SRA2情境為例(碩士論文)。
易任(1990)。主成份分析與群集分析應用於雨量空間分布之硏究。臺北市:行政院國家科學委員會。
林元弼、湯明敏、包澄瀾、陸森娥(1991)。天氣學。臺北市:明文。
林國峰、王俊明、高士傑(2004)。區域性設計雨型之建立及應用。台大工程學刊,92,1-9。
涂建翊、余嘉裕、周佳(2006)。台灣的氣候。台北縣:遠足文化。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63028-
dc.description.abstract降雨模型主要分成統計與序率兩類,統計預測模型在於追求準確地預測特定時刻之單站降雨,但是通常無法考慮降雨於測站之間甚至是不同時間的相依性;序率模型則可在模擬多個測站降雨時,保留它們彼此間相依的統計特性,然其模擬雨量值易受初始狀態的影響。本研究擬發展一套結合統計模型預測能力及序率模型共變異性概念之預測方法,以求面對未來降雨發生時,能透過此預測方法的協助,進而達到有效災害防治和最佳的水資源配置。
本研究將建置以臺灣附近之大氣環流特徵來預測宜蘭縣境內每日區域降雨型態的統計降尺度模型。此模型可以在迴歸預測的同時考量測站之間雨量分布變異。此研究方法使用集群分析來分類區域降雨型態,而經驗正交函數分析用於辨識季節內強勢的大氣環流特徵,最後藉由支持向量分類模型預測區域降雨型態。
在區域降雨型態的分類上,本研究引進空間距平的概念,使得分類的結果除了有區域降雨量級的差異外,尚能分辨出不同空間趨勢的降雨;經驗正交函數分析於選定研究範圍與季節內所得到的每日大氣環流特徵,不論是七至八月或是九至十一月,皆顯示颱風是臺灣附近最主要的天氣系統;支持向量分類的預測模型的類別上趨於兩極,區域大雨及無雨被預測到的次數相對於較多,於各站的平均雨量預測上普遍是被高估的,在預測無降雨型態上,七至八月模型具有一定的能力,本研究定義無降雨型態以外的類別統稱為有降雨型態,有降雨型態的預測上,則不論是七至八月或是九至十一月的模型的表現都相當良好。
zh_TW
dc.description.abstractRainfall prediction model can be generally classified into the statistical ones and stochastic ones. Statistical models emphasize an exact prediction of rainfall at a specific location and time while it lacks the ability of considering the dependence between locations. Stochastic models have the capability of reserving the dependence between locations when performing the rainfall simulation; however, the simulated rainfalls are mostly controlled by the initial values. In this thesis, a method combining the prediction power of statistical models and the concept of covariance in stochastic models is developed for providing some usable information when it comes to confronting the rainfall in the future, and this method is aimed to help disaster prevention and optimal allocation of water resources.
The purpose of this study is to establish a statistical downscaling model that predicts regional rainfall patterns based on the features of atmospheric circulation. This model takes the spatial variation of rainfalls between gauges into account when performing the regression prediction. The main methods include: (1). Classifying the regional rainfall patterns using cluster analysis (2). Identifying the dominant features of atmospheric circulation in different seasons with the help of empirical orthogonal function analysis (3). Predicting the regional rainfall patterns based on the features of atmospheric circulation.
After introducing the concept of spatial anomaly into the classification, the classified regional rainfall patterns not only show the differences of magnitude among every class, but separate regional rainfall with distinct spatial trend. In specified seasons and research area for atmospheric variables, the dominant features of atmospheric circulation shows that typhoon is the principal weather system around Taiwan in both Jul-Aug and Sep-Nov. The predicted regional rainfall patterns made by the prediction model of support vector classification is polarized, which means the numbers of predicted regional rainfall with heavy magnitude and no-rain conditions are rather large. The average of predicted rainfall in each gauge is basically overestimated. The prediction model of Jul-Aug has some capability of predicting no-rain pattern while both prediction models of Jul-Aug and of Sep-Nov have excellent performance of predicting raining pattern, which is defined as a pattern composed of all patterns excluding no-rain pattern.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:19:25Z (GMT). No. of bitstreams: 1
ntu-102-R99622010-1.pdf: 2772698 bytes, checksum: 2feb28e8ed339d91163464ecc66094f7 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents謝誌 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1. 前言 1
1.2. 研究動機與目的 2
1.3. 研究流程 3
第二章 文獻回顧 5
2.1. 降雨型態分析 5
2.2. 降雨預測模式 6
第三章 研究方法 9
3.1. 集群分析 9
3.2. 經驗正交函數分析 12
3.3. 支持向量機 18
第四章 研究資料 23
4.1. 研究區域概述 23
4.2. 地面降雨測站資料 25
4.3. 大氣變數資料 28
5.1. 區域降雨型態分類結果 32
5.2. 預測用大氣變數之經驗正交函數分析結果 47
5.3. 區域降雨型態預測模型的訓練與驗證 53
6.1. 結論 68
6.2. 建議 70
參考文獻 71
附錄 77
dc.language.isozh-TW
dc.subject支持向量機zh_TW
dc.subject集群分析zh_TW
dc.subject支持向量分類zh_TW
dc.subject區域降雨型態zh_TW
dc.subject主成分分析zh_TW
dc.subject經驗正交函數分析zh_TW
dc.subject降尺度zh_TW
dc.subjectempirical orthogonal function analysisen
dc.subjectcluster analysisen
dc.subjectsupport vector machineen
dc.subjectsupport vector classificationen
dc.subjectprincipal component analysisen
dc.subjectPCAen
dc.subjectregional rainfall patternen
dc.subjectEOFen
dc.subjectdownscalingen
dc.title降雨時空特徵分類與降尺度分析─以宜蘭為例zh_TW
dc.titleClassification and Downscaling Analysis of Space-Time Rainfall - A Case Study in Yi-lanen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee盧孟明(Mong-Ming Lu),童慶斌(Ching-Pin Tung),張倉榮(Tsang-Jung Chang)
dc.subject.keyword區域降雨型態,集群分析,支持向量機,支持向量分類,主成分分析,經驗正交函數分析,降尺度,zh_TW
dc.subject.keywordregional rainfall pattern,cluster analysis,support vector machine,support vector classification,principal component analysis,PCA,empirical orthogonal function analysis,EOF,downscaling,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2013-02-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
Appears in Collections:生物環境系統工程學系

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
2.71 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved