Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63025
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳俊達
dc.contributor.authorHsin-Mei Youen
dc.contributor.author尤心玫zh_TW
dc.date.accessioned2021-06-16T16:19:17Z-
dc.date.available2018-02-16
dc.date.copyright2013-02-16
dc.date.issued2013
dc.date.submitted2013-02-04
dc.identifier.citation王武彰.1978. 經濟果樹(上)楊桃. p. 125-132. 豐年社.臺北.
陳國恩. 2009. 不同後熟特性番石榴品種 ACC 合成酶 cDNA 選殖與分析. 國立臺灣大學園藝學研究所碩士論文.
陳雪姿. 1991. 楊桃採收後呼吸作用即乙烯生合成之研究. 國立臺灣大學園藝學研究所碩士論文.
游若萩、王武彰. 1989. 楊桃之品質成分與加工利用之研究. 中華農業研究. 36:196-205.
黃碧海. 1995. 楊桃栽培現況與未來展望. 農藥世界. 144:8-12.
黃維泯. 1992. 酸味種楊桃果實生長調查及其果汁去澀方法之硏究. 國立臺灣大學食品科學研究所碩士論文.
黃耀正. 1986. 香蕉在成熟及後熟過程中成分及生理化學變化之硏究, 國立臺灣大學農業化學研究所碩士論文.
楊淑惠、王武彰. 1993. 秤錘種楊桃的貯藏品質. 中華農業研究. 42: 387-395.
劉碧鵑. 2009. 秤錘楊桃果實發育之研究. 國立中興大學園藝研究所碩士論文.
劉碧鵑. 2000. 楊桃綜合管理. 栽培品種與性狀. 行政院農委會農業藥物毒物試驗所. 臺中.
劉碧娟. 2005. 楊桃. p. 149-154. 臺灣農家要覽農作篇(二).行政院農業委會出版. 臺北.
劉碧鵑、王德男、劉政道. 2003. 楊桃台農二號之育成.中華農業研究. 52:207-217.
劉碧鵑、溫宏治. 2005. 優質楊桃供果園標準作業規範手冊. 行政院農業委員會農業.
劉碧鵑, 謝慶昌、黃慶文. 2012. 主要外銷果樹採後處理專刊. 行政院農業委員會農業試驗所鳳山熱帶園藝試驗分所.臺北.
諶克終. 1962. 園藝學總論. 國立編譯館.臺北.
謝慶昌. 1985. 楊桃果實生長調查及採收後處理之研究. 國立臺灣大學園藝學研究所碩士論文.
謝慶昌. 2000. 楊桃綜合管理. 果實採收後技術. 行政院農委會農業藥物毒物試驗所. 臺中.
Abdi, N., P. Holford, P., McGlasson W.B., and Mizrahi, Y. 1997. Ripening behaviour and responses to propylene in four cultivars of Japanese type plums. Postharvest Biol. Tec. 12: 21-34.
Adams-Phillips, L., C. Barry, and J. Giovannoni. 2004. Signal transduction systems regulating fruit ripening. Plant Sci. 9: 331-338.
Adams, D.and S. Yang. 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA. 76: 170.
Adams, D.O.and S.F. Yang. 1977. Methionine Metabolism in Apple Tissue: Implication of S-Adenosylmethionine as an Intermediate in the Conversion of Methionine to Ethylene 1. Plant Physiol. 60: 892.
Ahmed, J., M.G. Lobo, and F. Ozadali. 2012. Tropical and Subtropical Fruits: Postharvest Physiology.
Ali, S.H.and M.Y. Jaafar. 1992. Effect of harvest maturity on physical and chemical characteristics of carambola (Averrhoa carambola L.). New Zealand J Crop. Hort. Sci. 20: 133-136
Alexander, L.and D. Grierson. 2002. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot. 53: 2039-2055.
Alonso, J.M., T. Hirayama, G. Roman, S. Nourizadeh, and J.R. Ecker. 1999. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science. 284: 2148-2152.
Arabidopsis, G.I. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408: 796-815.
Argueso, C.T., M. Hansen, and J.J. Kieber. 2007. Regulation of ethylene biosynthesis. J. Plant. Growth. Regul. 26: 92-105.
Barry, C.and J.J. Giovannoni. 2007. Ethylene of fruit ripening. J. Plant. Growth. Regul. 26: 143-159.
Barry, C.S., M.I. Llop-Tous, and D. Grierson. 2000. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol. 123: 979-986.
Biale, J.B. 1964. Growth, maturation, and senescence in fruits. Science. 146: 880-888.
Bleecker, A.B. 1999. Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci. 4: 269-274.
Bleecker, A.B., M.A. Estelle, C. Somerville, and H. Kende. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science. 241: 1086.
Bleecker, A.B.and H. Kende. 2000. Ethylene: a gaseous signal molecule in plants. Ann. Rev. Cell Dev. Biol .16: 1-18.
Bradford, M.M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72: 248-254.
Burg, S.P. and E.A. Burg 1962. Role of ethylene in fruit ripening. Plant Physiol. 37: 179-189.
Capitani, G., M. Tschopp, A.C. Eliot, J.F. Kirsch, and M.G. Grutter. 2005. Structure of ACC synthase inactivated by the mechanism-based inhibitor L-vinylglycine. FEBS . 579: 2458-2462
Campbell, C., D. Huber, and K. Koch. 1989. Postharvest changes in sugars, acids, and color of carambola fruit at various temperatures. HortSci.. 24: 472-475.
Campbell, C.and Koch K. 1987. Postharvest responsition of carambolas to storage at low temperatures, Proc. Fla. State. Hort. Soc. 100 :272-275.
Chang, C., S.F. Kwok, A.B. Bleecker, and E. Meyerowitz. 1993a. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 262: 539-544.
Chang, C.and J.A. Shockey. 1999. The ethylene-response pathway: signal perception to gene regulation. Current opinion in plant biology. 2: 352-358.
Chang, S., J. Puryear, and J. Cairney. 1993b. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Report. 11: 113-116.
Choudhury, S.R., S. Roy, and D.N. Sengupta. 2012. A Ser/Thr protein kinase phosphorylates MA-ACS1 (Musa acuminata 1-aminocyclopropane-1-carboxylic acid synthase 1) during banana fruit ripening. Planta: 1-21.
Diaz‐Mula, H.M., P.J. Zapata, F. Guillen, S. Castillo, D. Martinez‐Romero, D. Valero, and M. Serrano. 2008. Changes in physicochemical and nutritive parameters and bioactive compounds during development and on‐tree ripening of eight plum cultivars: a comparative study. J Sci. Food Agric. 88: 2499-2507.
Dong, J.G., W.T. Kim, W.K. Yip, G.A. Thompson, L. Li, A.B. Bennett, and S.F. Yang. 1991. Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta. 185: 38-45.
El-Sharkawy, I., W. Kim, S. Jayasankar, A. Svircev, and D. Brown. 2008. Differential regulation of four members of the ACC synthase gene family in plum. J Exp Bot. 59: 2009-2027.
El‐Sharkawy, I., B. Jones, L. Gentzbittel, J.M. LELIEVRE, J.C. Pech, and A. Latche. 2004. Differential regulation of ACC synthase genes in cold‐dependent and‐independent ripening in pear fruit. Plant, Cell Environ. 27: 1197-1210.
Ghiani, A., N. Negrini, S. Morgutti, F. Baldin, F.F. Nocito, A. Spinardi, I. Mignani, D. Bassi, and M. Cocucci. 2011. Melting of ‘Big Top’nectarine fruit: some physiological, biochemical, and molecular aspects. J. Am. Soc. Hort. Sci.. 136: 61-68.
Giovannoni, J. 2001. Molecular biology of fruit maturation and ripening. Annu. Rev. Plant Physiol. Plat Mol. Biol. 52: 725-749.
Giovannoni, J. 2004. Genetic regulation of fruit development and ripening. Plant Cell. 16 : S170-S180.
Gong, Y., X. Fan, and J.P. Mattheis. 2002. Responses ofBing'andRainier'Sweet Cherries to Ethylene and 1-Methylcyclopropene. J Amer Soc. Hort. Sci. 127: 831-835.
Gortner, W.A. 1965. Chemical and Physical Development of the pineapple fruit. J Food Sci. 28: 191-192
Gowda, I.N.D.and A.G. Huddar. 2001. Studies on ripening changes in mango (Mangifera indica L.) fruits. J Food Sci. 38: 135-137.
Haji, T., H. Yaegaki, and M. Yamaguchi. 2003. Softening of stony hard peach by ethylene and induction of endogenous ethylene by 1-aminocyclopropane-1-carboxylic acid (ACC). J Jpn Soc Hort Sci. 72: 212-217.
Hua, J., C. Chang, Q. Sun, and E.M. Meyerowitz. 1995. Ethylene Insensitivity Conferred by Arabidopsis Ers Gene. Science. 269: 1712-1714.
Hua, J., H. Sakai, S. Nourizadeh, Q.H.G. Chen, A.B. Bleecker, J.R. Ecker, and E.M. Meyerowitz. 1998. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell. 10: 1321-1332.
Inaba, A. 2007. Studies on the internal feedback regulation of ethylene biosynthesis and signal transduction during fruit ripening, and the improvement of fruit quality. J Jan Soc Hort Sci. 76: 1-12.
Joo, S., Y. Liu, A. Lueth, and S.Q. Zhang. 2008. MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J. 54: 129-140.
Kader, A.A. 2002. Postharvest technology of horticultural crops. 3rd. University of California, Agriculture and Natural Resources.533pp.
Kays, S.and R. Paull. 2004. Postharvest biology. 2nd. Exon Press, Athen, Georgia.568pp.
Kieber, J.J., M. Rothenberg, G. Roman, K.A. Feldmann, and J.R. Ecker. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell. 72: 427-441.
Klee, H.and D. Tieman. 2002. The tomato ethylene receptor gene family: form and function. Physiol Plant. 115: 336-341.
Klee, H.J. 2004. Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol. 135: 660-667.
Kamiyoshihara, Y., M. Iwata, T. Fukaya, M. Tatsuki, and H. Mori. 2010. Turnover of LeACS2, a wound‐inducible 1‐aminocyclopropane‐1‐carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant Journal. 64: 140-150.
Lam, P.and C. Wan. 1983. Climacteric Nature of the Carambola (Averrhoa carambola L.) Fruit. Pertanika. 6: 44-47.
Lelievre, J.M., A. Latche, B. Jones, M. Bouzayen, and J.C. Pech. 1997. Ethylene and fruit ripening. Physiol Plant. 101: 727-739.
Lieberman, M. 1979. Biosynthesis and action of ethylene. Annu Rev. Plant Physiol. 30: 533-591.
Lingam, S., J. Mohrbacher, T. Brumbarova, T. Potuschak, C. Fink-Straube, E. Blondet, P. Genschik, and P. Bauer. 2011. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell. 23: 1815-1829.
Liu, T.C., Y.C. Liu, K.E. Chen, C.W. Chao, and C.T. Wu. 2012. The nonclimacteric guava cultivar ‘Jen-Ju Bar’is defective in system 2 1-aminocyclopropane-1-carboxylate synthase activity. Postharvest Biol. Technol. 67 :10-18
Liu, Y.D. and S.Q. Zhang. 2004. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell. 16: 3386-3399.
Lizada, C.C.M.and S.F. Yang. 1979. A simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem. 100: 140-145.
MacLeod, G.and J.M. Ames. 1990. Volatile components of starfruit. Phytochemistry. 29: 165-172.
Manning, K., M. Tor, M. Poole, Y. Hong, A.J. Thompson, G.J. King, J.J. Giovannoni, and G.B. Seymour. 2006. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38: 948-952.
Martinez-Romero, D., E. Dupille, F. Guillen, J.M. Valverde, M. Serrano, and D. Valero. 2003. 1-Methylcyclopropene increases storability and shelf life in climacteric and nonclimacteric plums. J Agric. Food chem. 51: 4680-4686.
Martel, C., J. Vrebalov, P. Tafelmeyer, and J.J. Giovannoni. 2011. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol. 157: 1568-1579.
McKeon, T.A., N.E. Hoffman, and S.F. Yang. 1982. The effect of plant-hormone pretreatments on ethylene production and synthesis of 1-aminocyclopropane-1-carboxylic acid in water-stressed wheat leaves. Planta. 155: 437-443.
McMurchie, E.J., W.B. McGlasson, and I.L. Eaks. 1972. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature. 237: 235-236.
Mitcham, E.J.and R.E. Mcdonald. 1991. Characterization of the ripening of carambola (Averrhoa carambola L.). Fruit. p. 104-108.
Mworia, E.G., T. Yoshikawa, N. Yokotani, T. Fukuda, K. Suezawa, K. Ushijima, R. Nakano, and Y. Kubo. 2010. Characterization of ethylene biosynthesis and its regulation during fruit ripening in kiwifruit, Actinidia chinensis ‘Sanuki Gold’. Postharvest Biol. Technol. 55: 108-113.
Neljubow, D. 1901. Uber die horizontale Nutation der Stengel von Pisum sativum und einiger anderen Pflanzen. J Artic. 10: 1913.
Ouaked, F., W. Rozhon, D. Lecourieux, and H. Hirt. 2003. A MAPK pathway mediates ethylene signaling in plants. EMBO J. 22: 1282-1288.
Oslund C. and Davenport T. 1983. Ethylene and carbon dioxide in ripening fruit of Averrhoa carambola, HortSci.. 18:229-230
Paull, R.and O. Duarte. 2012. Tropical fruits, Volume 2. Wallingford, CAB International, UK.
Paull, R.and T. Goo. 1983. Relationship of guava (Psidium guajava L.) fruit detachment force to the stage of fruit development and chemical composition. HortScience. 18: 65-67.
Pech, J.C., M. Bouzayen, and A. Latche. 2008. Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. 175: 114-120.
Perin, C., M.C. Gomez-Jimenez, L. Hagen, C. Dogimont, J.C. Pech, A. Latche, M. Pitrat, and J.M. Lelievre. 2002. Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol. 129: 300-309.
Pretel, M., M. Serrano, A. Amoros, F. Riquelme, and F. Romojaro. 1995. Non-involvement of ACC and ACC oxidase activity in pepper fruit ripening. Postharvest Biol. Technol. 5: 295-302
Rodrıguez, F.I., J.J. Esch, A.E. Hall, B.M. Binder, G.E. Schaller, and A.B. Bleecker. 1999. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science. 283: 996.
Rottmann, W.H., G.F. Peter, P.W. Oeller, J.A. Keller, N.F. Shen, B.P. Nagy, L.P. Taylor, A.D. Campbell, and A. Theologis. 1991. 1-Aminocyclopropane-1-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J Mol. Biol. 222: 937-961.
Sakai, H., J. Hua, Q. Chen, C. Chang, L. Medrano, A. Bleecker, and E. Meyerowitz. 1998a. ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. P Natl. Acad. Sci. USA. 95: 5812-5817.
Sambrook, J.and D.W. Russell. 2001. Molecular cloning: a laboratory manual. 3rd. Cold Spring Harbor laboratry press, N.Y. Vol. 1,2,3.
Sato, T., P.W. Oeller, and A. Theologis. 1991. The 1-aminocyclopropane-1-carboxylate synthase of Cucurbita-Purification, properties, expression in Escherichia coli, and primary structure determination by DNA sequence analysis. J Biol Chem. 266: 3752-3759.
Sato, T.and A. Theologis. 1989. Cloning the mRNA encoding 1-aminocyclopropane-1-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc. Natl. Acad. Sci. USA. 86: 6621.
Satoh, S., H. Mori, and H. Imaseki. 1993. Monomeric and dimeric forms and the mechanism-based inactivation of 1-aminocyclopropane-1-carboxylate synthase. Plant cell physiol. 34: 753-760.
Sebastia, C.H., S.C. Hardin, S.D. Clouse, J.J. Kieber, and S.C. Huber. 2004. Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys. 428: 81-91.
Tandon, D.and S. Kalra. 1983. Changes in sugars, starch and amylase activity during development of mango fruit cv Dashehari. J Hort. Sci. 58: 449-453.
Tarun, A.S., J.S. Lee, and A. Theologis. 1998. Random mutagenesis of 1-aminocyclopropane-1-carboxylate synthase: a key enzyme in ethylene biosynthesis. Proc. Natl. Acad. Sci. USA. 95: 9796-9801.
Tatsuki, M., T. Haji, and M. Yamaguchi. 2006. The involvement of 1-aminocyclopropane-1-carboxylic acid synthase isogene, Pp-ACS1, in peach fruit softening. J Exp Bot. 57: 1281-1289.
Tatsuki, M.and H. Mori. 2001. Phosphorylation of tomato 1-aminocyclopropane-1-carboxylic acid synthase, LE-ACS2, at the C-terminal region. J Biol Chem. 276: 28051-28057.
Teixeira, G.H.A., J.F. Durigan, R.E. Alves, and T.J. O'Hare. 2008. Response of minimally processed carambola to chemical treatments and low-oxygen atmospheres. Postharvest Biol. Technol. 48: 415-421.
Tonutti, P., C. Bonghi, B. Ruperti, G.B. Tornielli, and A. Ramina. 1997. Ethylene evolution and 1-aminocyclopropane-1-carboxylate oxidase gene expression during early development and ripening of peach fruit. J Am. Soc. Hort. Sci. 122: 642-647.
Tucker, G.and D. Grierson. 1987. Fruit ripening. In : Davies D.d., ed Biochemistry of plants :a comprehesive tratise. Academic Press, London
Valero, D.and M. Serrano. 2010. Postharvest Biology and Technology for preserving fruit quality.1th . CRC Press. UK.
Vines, H.and W. Grierson. 1966. Handling and physiological studies with the carambola. Proc. Fla. Stat. Hort. Soc. 79: 350-355.
Vrebalov, J., D. Ruezinsky, V. Padmanabhan, R. White, D. Medrano, R. Drake, W. Schuch, and J. Giovannoni. 2002. A MADS-box gene necessary for fruit ripening at the tomato Ripening-inhibitor (Rin) locus. Science. 296: 343-346.
Wang, K.L.C., H. Li, and J.R. Ecker. 2002. Ethylene biosynthesis and signaling networks. Plant Cell. 14: S131-S151.
Watada, A. E., R. Herner, A. A. Kader, R. J. Romani, and G. Staby. 1984. Terminology for the description of developmental stages of horticultural crops. HortSci. 19: 20-21.
Watson, B., A. George, R. Nissen, and B. Brown. 1988. Carambola a star on the horizon. Queensland Agric. J. 114: 45-51.
Yang, S.F.and N.E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35: 155-189
Yamagami, T., A. Tsuchisaka, K. Yamada, W.F. Haddon, L.A. Harden, and A. Theologis. 2003. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem. 278: 49102-49112.
Yip, W.K., J.G. Dong, J.W. Kenny, G.A. Thompson, and S.F. Yang. 1990. Characterization and sequencing of the active site of 1-aminocyclopropane-1-carboxylate synthase. Proc. Natl. Acad. Sci. USA. 87: 7930.
Yokotani, N., R. Nakano, S. Imanishi, M. Nagata, A. Inaba, and Y. Kubo. 2009. Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated. J Exp Bot. 60: 3433-3442.
Yoo, S.D., Y.H. Cho, G. Tena, Y. Xiong, and J. Sheen. 2008. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature. 451: 789-795.
Zhang, Z.and R. Huang. 2009. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol. Biol. 73: 241-249.
Zheng, Q.L., A. Nakatsuka, and H. Itamura. 2005. Extraction and characterization of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase from wounded persimmon fruit.J Jpn. Soc. Hort. Sci. 74: 159-166.
Zhu, H., B. Zhu, D. Fu, Y. Xie, Y. Hao, and Y. Luo. 2005. Role of ethylene in the biosynthetic pathways of aroma volatiles in ripening fruit. Russian Journal of Plant Physiol. 52: 691-695.
Zhu, Z., F. An, Y. Feng, P. Li, L. Xue, Z. Jiang, J.M. Kim, T.K. To, W. Li, and X. Zhang. 2011. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc. Natl. Acad. Sci. USA. 108: 12539.
Zuzunaga, M., M. Serrano, D. Martinez-Romero, D. Valero, and F. Riquelme. 2001. Comparative study of two plum (Prunus salicina Lindl.) cultivars during growth and ripening. Food Sci. Tech. Int. 7: 123-130.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63025-
dc.description.abstract‘台農二號’與‘秤錘’楊桃(Averrhoa carambola L.)果實生長發育皆呈單S曲線形式,冬季果(10-2月採收)著果至8分熟採收成熟度(果皮約70%轉色)需90-100天。採後貯藏於20℃環境,‘台農二號’約14天完全轉色,‘秤錘’則需16天左右。兩品種轉色後熟期間,果實硬度、可滴定酸含量下降,總可溶性固型物維持穩定,呼吸率與乙烯生成速率在果實完全轉色時顯著升高,‘台農二號’最高呼吸率60.58 mg CO2•kg-1•hr-1、乙烯生成率0.27 μmole C2H4•kg-1•hr-1,高於‘秤錘’的51.06 CO2•kg-1•hr-1、0.023 μmole C2H4•kg-1•hr-1。‘台農二號’經丙烯1000 μL•L-1處理2天,後熟生理現象提前,而1-甲基環丙烯(1-methylcyclopropene, 1-MCP)1 μL•L-1處燻蒸24小時能延緩後熟發生,呈現典型更年型後熟特性。‘秤錘’貯藏期間乙烯產生量甚低(0.023 μmole•kg-1•hr-1),以1-MCP處理後2天乙烯釋放量反而增加,類似非更年型果實;但丙烯處理卻能誘導內生乙烯顯著增加(0.13 μmole•kg-1•hr-1),其後熟特性研判屬於壓抑更年型果實。以反轉錄聚合酶連鎖反應策略自楊桃果實組織選殖出一個1981 bp ACS cDNA全長選殖系(AcACS1),‘台農二號’完全轉色時AcACS1 mRNA累積達到最高(85倍),‘秤錘’完全轉色果實組織其mRNA含量僅為試驗前的7倍;丙烯可誘導兩個參試楊桃品種果實AcACS1 mRNA提前表現,尤其在‘秤錘’果實組織AcACS1 mRNA累積量達28倍高於對照組,與高濃度丙烯處理才可誘發‘秤錘’內生乙烯大量產生的結果相符,因此由分子層次也支持‘秤錘’後熟特性屬於壓抑更年型,有別於‘台農二號’的更年型後熟特徵。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-16T16:19:17Z (GMT). No. of bitstreams: 1
ntu-102-R98628202-1.pdf: 2910399 bytes, checksum: 6bc63678e8f3399d5960e07552b0b836 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
壹、前言 1
貳、前人研究 3
一、臺灣楊桃產業發展與品種 3
二、果實生長發育、後熟與品質變化 5
三、果實後熟與乙烯之關係 8
四、乙烯在高等植物之生理作用、生合成與訊息傳導 14
參、材料與方法 19
肆、結果 33
伍、討論 42
陸、結論 52
參考文獻 76
dc.language.isozh-TW
dc.title‘台農二號’與‘秤錘’楊桃果實後熟特性之比較zh_TW
dc.titleComparison of Ripening Characteristics between
‘Tainung N0. 2’ and ‘Chun Chio’Carambola (Averrhoa carambola L.) Fruit
en
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳仁治,謝慶昌
dc.subject.keyword楊桃,乙烯,更年型果實,壓抑更年型果實,ACC合成&#37238,zh_TW
dc.subject.keywordCarambola,ethylene,climacteric fruit,suppressed-climacteric fruit,ACC synthase,en
dc.relation.page88
dc.rights.note有償授權
dc.date.accepted2013-02-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved