請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63010完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳寬墩 | |
| dc.contributor.author | Yu-Chin Huang | en |
| dc.contributor.author | 黃鈺琴 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:18:39Z | - |
| dc.date.available | 2018-03-04 | |
| dc.date.copyright | 2013-03-04 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-04 | |
| dc.identifier.citation | 1. Parfrey PS ,Foley RN. The clinical epidemiology of cardiac disease in chronic renal failure. J Am Soc Nephrol 10: 1606-1615, 1999
2. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362: 801-809, 1993 3. Jourde-Chiche N, Dou L, Cerini C, Dignat-George F, Brunet P. Vascular incompetence in dialysis patients--protein-bound uremic toxins and endothelial dysfunction. Semin Dial 24: 327-337, 2011 4. Sabatier F, Camoin-Jau L, Anfosso F, Sampol J, Dignat-George F. Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence. J Cell Mol Med 13: 454-471, 2009 5. Real C, Caiado F, Dias S. Endothelial progenitors in vascular repair and angiogenesis: how many are needed and what to do? Cardiovasc Hematol Disord Drug Targets 8: 185-193, 2008 6. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964-967, 1997 7. Kong D, Melo LG, Gnecchi M, Zhang L, Mostoslavsky G, Liew CC, Pratt RE, Dzau VJ. Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation 110: 2039-2046, 2004 8. Urbich C ,Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95: 343-353, 2004 9. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89: E1-7, 2001 10. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348: 593-600, 2003 11. Guven H, Shepherd RM, Bach RG, Capoccia BJ, Link DC. The number of endothelial progenitor cell colonies in the blood is increased in patients with angiographically significant coronary artery disease. J Am Coll Cardiol 48: 1579-1587, 2006 12. Choi JH, Kim KL, Huh W, Kim B, Byun J, Suh W, Sung J, Jeon ES, Oh HY, Kim DK. Decreased number and impaired angiogenic function of endothelial progenitor cells in patients with chronic renal failure. Arterioscler Thromb Vasc Biol 24: 1246-1252, 2004 13. Westerweel PE, Hoefer IE, Blankestijn PJ, de Bree P, Groeneveld D, van Oostrom O, Braam B, Koomans HA, Verhaar MC. End-stage renal disease causes an imbalance between endothelial and smooth muscle progenitor cells. Am J Physiol Renal Physiol 292: F1132-1140, 2007 14. Krenning G, Dankers PY, Drouven JW, Waanders F, Franssen CF, van Luyn MJ, Harmsen MC, Popa ER. Endothelial progenitor cell dysfunction in patients with progressive chronic kidney disease. Am J Physiol Renal Physiol 296: F1314-1322, 2009 15. Fasoli G, Esposito C, Cornacchia F, De Mauri A, Grosjean F, Mangione F, Plati A, Villa L, Dal Canton A. Uremic serum induces proatherogenic changes in human endothelial cells. J Nephrol 19: 599-604, 2006 16. de Groot K, Bahlmann FH, Sowa J, Koenig J, Menne J, Haller H, Fliser D. Uremia causes endothelial progenitor cell deficiency. Kidney Int 66: 641-646, 2004 17. Raff AC, Meyer TW, Hostetter TH. New insights into uremic toxicity. Curr Opin Nephrol Hypertens 17: 560-565, 2008 18. Meijers BK, Van Kerckhoven S, Verbeke K, Dehaen W, Vanrenterghem Y, Hoylaerts MF, Evenepoel P. The uremic retention solute p-cresyl sulfate and markers of endothelial damage. Am J Kidney Dis 54: 891-901, 2009 19. Cooke JP. Asymmetrical dimethylarginine: the Uber marker? Circulation 109: 1813-1818, 2004 20. Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, De Deyn PP, Deppisch R, Descamps-Latscha B, Henle T, Jorres A, Lemke HD, Massy ZA, Passlick-Deetjen J, Rodriguez M, Stegmayr B, Stenvinkel P, Tetta C, Wanner C, Zidek W. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 63: 1934-1943, 2003 21. Itoh Y, Ezawa A, Kikuchi K, Tsuruta Y, Niwa T. Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ROS production. Anal Bioanal Chem 403: 1841-1850, 2012 22. Faure V, Dou L, Sabatier F, Cerini C, Sampol J, Berland Y, Brunet P, Dignat-George F. Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost 4: 566-573, 2006 23. Peng YS, Lin YT, Chen Y, Hung KY, Wang SM. Effects of indoxyl sulfate on adherens junctions of endothelial cells and the underlying signaling mechanism. J Cell Biochem 113: 1034-1043, 2012 24. Yamamoto H, Tsuruoka S, Ioka T, Ando H, Ito C, Akimoto T, Fujimura A, Asano Y, Kusano E. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. Kidney Int 69: 1780-1785, 2006 25. Lekawanvijit S, Adrahtas A, Kelly DJ, Kompa AR, Wang BH, Krum H. Does indoxyl sulfate, a uraemic toxin, have direct effects on cardiac fibroblasts and myocytes? Eur Heart J 31: 1771-1779, 2010 26. Chiu CA, Lu LF, Yu TH, Hung WC, Chung FM, Tsai IT, Yang CY, Hsu CC, Lu YC, Wang CP, Lee YJ. Increased levels of total P-Cresylsulphate and indoxyl sulphate are associated with coronary artery disease in patients with diabetic nephropathy. Rev Diabet Stud 7: 275-284, 2010 27. Barreto FC, Barreto DV, Liabeuf S, Meert N, Glorieux G, Temmar M, Choukroun G, Vanholder R, Massy ZA. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephrol 4: 1551-1558, 2009 28. Niwa T. Role of Indoxyl Sulfate in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Experimental and Clinical Effects of Oral Sorbent AST-120. Therapeutic Apheresis and Dialysis 15: 120–124, 2011 29. Owada S, Goto S, Bannai K, Hayashi H, Nishijima F, Niwa T. Indoxyl sulfate reduces superoxide scavenging activity in the kidneys of normal and uremic rats. Am J Nephrol 28: 446-454, 2008 30. Adijiang A GS, Uramoto S, Nishijima F, Niwa T. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol Dial Transplant 23: 1892-1901, 2008 31. Taki K, Tsuruta Y, Niwa T. Indoxyl sulfate and atherosclerotic risk factors in hemodialysis patients. Am J Nephrol 27: 30-35, 2007 32. Nakamura T, Kawagoe Y, Matsuda T, Ueda Y, Shimada N, Ebihara I, Koide H. Oral ADSORBENT AST-120 decreases carotid intima-media thickness and arterial stiffness in patients with chronic renal failure. Kidney Blood Press Res 27: 121-126, 2004 33. Adijiang A GS, Uramoto S, Nishijima F, Niwa T. . Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. . Nephrol Dial Transplant 23: 1892–1901., 2008 34. Niwa T. Uremic toxicity of indoxyl sulfate. Nagoya J Med Sci 72: 1-11, 2010 35. Muteliefu G EA, Jiang P, Takahashi M, Niwa T. Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. Nephrol Dial Transplant: 2051–2058, 2009 36. Dou L, Jourde-Chiche N, Faure V, Cerini C, Berland Y, Dignat-George F, Brunet P. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost 5: 1302-1308, 2007 37. Dou L BE, Cerini C, Faure V, Sampol J, Vanholder R, Berland Y, Brunet P. The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney Int, 65: 442–451, 2004 38. Ying Y, Yang K, Liu Y, Chen QJ, Shen WF, Lu L, Zhang RY. A uremic solute, P-cresol, inhibits the proliferation of endothelial progenitor cells via the p38 pathway. Circ J 75: 2252-2259, 2011 39. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221-228, 1999 40. Rehman J, Li J, Orschell CM, March KL. Peripheral blood 'endothelial progenitor cells' are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164-1169, 2003 41. Hristov M EW, Weber PC. . : . Endothelial progenitor cells: isolation and characterization. Trends Cardiovasc Med 13: 201-206., 2003 42. Rehman J LJ, Orschell CM, March KL. . Peripheral blood 'endothelial progenitor cells' are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164-1169., 2003 43. Hirschi KK ID, Yoder MC. . Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol 28: 1584-1595., 2008 44. Hill JM ZG, Halcox JP, et al. ;:. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348: 593-600, 2003 45. Yoder MC ML, Prater D, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood Purif 109: 1801–1809, 2007 46. Vasa M FS, Adler K, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 103: 2885-2890, 2001 47. Rehman J LJ, Orschell CM, March KL. . Peripheral blood endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107: 1164-1169, 2003 48. Schmeisser A GC, Zhang H, et al.. ;:. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 49: 671-680., 2001 49. Bert R. Everaert EMVC, Vicky Y. Hoymans , Steven E. Haine ,Luc Van Nassauw, Viviane M. Conraads, Jean-Pierre Timmermans , Christiaan J. Vrints Current perspective of pathophysiological and interventional effects on endothelial progenitor cell biology: Focus on Pi3K/AKT/eNOS pathway. International Journal of Cardiology 144: 350–366, 2010 50. Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N, Kluge K, Schafer B, Hossfeld DK, Fiedler W. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95: 3106-3112, 2000 51. Case J, Mead LE, Bessler WK, Prater D, White HA, Saadatzadeh MR, Bhavsar JR, Yoder MC, Haneline LS, Ingram DA. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 35: 1109-1118, 2007 52. Gunetti M, Noghero A, Molla F, Staszewsky LI, de Angelis N, Soldo A, Russo I, Errichiello E, Frasson C, Rustichelli D, Ferrero I, Gualandris A, Berger M, Geuna M, Scacciatella P, Basso G, Marra S, Bussolino F, Latini R, Fagioli F. Ex vivo-expanded bone marrow CD34(+) for acute myocardial infarction treatment: in vitro and in vivo studies. Cytotherapy 13: 1140-1152, 2011 53. Kawamoto A, Iwasaki H, Kusano K, Murayama T, Oyamada A, Silver M, Hulbert C, Gavin M, Hanley A, Ma H, Kearney M, Zak V, Asahara T, Losordo DW. CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation 114: 2163-2169, 2006 54. Schmidt-Lucke C, Fichtlscherer S, Aicher A, Tschope C, Schultheiss HP, Zeiher AM, Dimmeler S. Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol. PLoS One 5: e13790, 2010 55. Seeger FH, Rasper T, Koyanagi M, Fox H, Zeiher AM, Dimmeler S. CXCR4 expression determines functional activity of bone marrow-derived mononuclear cells for therapeutic neovascularization in acute ischemia. Arterioscler Thromb Vasc Biol 29: 1802-1809, 2009 56. Kim H, Cho HJ, Kim SW, Liu B, Choi YJ, Lee J, Sohn YD, Lee MY, Houge MA, Yoon YS. CD31+ cells represent highly angiogenic and vasculogenic cells in bone marrow: novel role of nonendothelial CD31+ cells in neovascularization and their therapeutic effects on ischemic vascular disease. Circ Res 107: 602-614, 2010 57. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10: 858-864, 2004 58. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9: 1370-1376, 2003 59. Aicher A HC, Mildner-Rihm C, et al. . Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 9: 1370-1376., 2003 60. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399: 601-605, 1999 61. Fadini GP, Losordo D, Dimmeler S. Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110: 624-637, 2012 62. Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, Rottoli D, Angioletti S, Benigni A, Perico N, Alison M, Remuzzi G. Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15: 1794-1804, 2004 63. Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G. Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 14: 1035-1041, 2004 64. Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, Coulter SC, Lin J, Ober J, Vaughn WK, Branco RV, Oliveira EM, He R, Geng YJ, Willerson JT, Perin EC. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111: 150-156, 2005 65. Altschul R ,Herman IH. Influence of oxygen inhalation on cholesterol metabolism. Arch Biochem Biophys 51: 308-309, 1954 66. Altschul R, Hoffer A, Stephen JD. Influence of nicotinic acid on serum cholesterol in man. Arch Biochem Biophys 54: 558-559, 1955 67. Tavintharan S ,Kashyap ML. The benefits of niacin in atherosclerosis. Curr Atheroscler Rep 3: 74-82, 2001 68. Lukasova M, Malaval C, Gille A, Kero J, Offermanns S. Nicotinic acid inhibits progression of atherosclerosis in mice through its receptor GPR109A expressed by immune cells. J Clin Invest 121: 1163-1173, 2011 69. Digby JE, McNeill E, Dyar OJ, Lam V, Greaves DR, Choudhury RP. Anti-inflammatory effects of nicotinic acid in adipocytes demonstrated by suppression of fractalkine, RANTES, and MCP-1 and upregulation of adiponectin. Atherosclerosis 209: 89-95, 2010 70. Wu BJ, Yan L, Charlton F, Witting P, Barter PJ, Rye KA. Evidence that niacin inhibits acute vascular inflammation and improves endothelial dysfunction independent of changes in plasma lipids. Arterioscler Thromb Vasc Biol 30: 968-975, 2010 71. Tavintharan S, Lim SC, Sum CF. Effects of niacin on cell adhesion and early atherogenesis: biochemical and functional findings in endothelial cells. Basic Clin Pharmacol Toxicol 104: 206-210, 2009 72. Brinton EA, Kashyap ML, Vo AN, Thakkar RB, Jiang P, Padley RJ. Niacin extended-release therapy in phase III clinical trials is associated with relatively low rates of drug discontinuation due to flushing and treatment-related adverse events: a pooled analysis. Am J Cardiovasc Drugs 11: 179-187, 2011 73. Alvarsson M ,Grill V. Impact of nicotinic acid treatment on insulin secretion and insulin sensitivity in low and high insulin responders. Scand J Clin Lab Invest 56: 563-570, 1996 74. Tunaru S, Kero J, Schaub A, Wufka C, Blaukat A, Pfeffer K, Offermanns S. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat Med 9: 352-355, 2003 75. Jacobson EL JM. A biomarker for the assessment of niacin nutriture as a potential preventive factor in carcinogenesis. J Intern Med 233: 59–62, 1993 76. Yan Q, Briehl M, Crowley CL, Payne CM, Bernstein H, Bernstein C. The NAD+ precursors, nicotinic acid and nicotinamide upregulate glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase mRNA in Jurkat cells. Biochem Biophys Res Commun 255: 133-136, 1999 77. Kamanna VS ,Kashyap ML. Mechanism of action of niacin. Am J Cardiol 101: 20B-26B, 2008 78. Clofibrate and niacin in coronary heart disease. JAMA 231: 360-381, 1975 79. Canner PL, Berge KG, Wenger NK, Stamler J, Friedman L, Prineas RJ, Friedewald W. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Cardiol 8: 1245-1255, 1986 80. Brown G, Albers JJ, Fisher LD, Schaefer SM, Lin JT, Kaplan C, Zhao XQ, Bisson BD, Fitzpatrick VF, Dodge HT. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 323: 1289-1298, 1990 81. LaRosa JC, Grundy SM, Waters DD, Shear C, Barter P, Fruchart JC, Gotto AM, Greten H, Kastelein JJ, Shepherd J, Wenger NK. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med 352: 1425-1435, 2005 82. Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, Jacobs DR, Jr., Bangdiwala S, Tyroler HA. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation 79: 8-15, 1989 83. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 32: S112-119, 1998 84. Fried LF, Shlipak MG, Crump C, Bleyer AJ, Gottdiener JS, Kronmal RA, Kuller LH, Newman AB. Renal insufficiency as a predictor of cardiovascular outcomes and mortality in elderly individuals. J Am Coll Cardiol 41: 1364-1372, 2003 85. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351: 1296-1305, 2004 86. Stam F, van Guldener C, Becker A, Dekker JM, Heine RJ, Bouter LM, Stehouwer CD. Endothelial dysfunction contributes to renal function-associated cardiovascular mortality in a population with mild renal insufficiency: the Hoorn study. J Am Soc Nephrol 17: 537-545, 2006 87. Tatematsu S, Wakino S, Kanda T, Homma K, Yoshioka K, Hasegawa K, Sugano N, Kimoto M, Saruta T, Hayashi K. Role of nitric oxide-producing and -degrading pathways in coronary endothelial dysfunction in chronic kidney disease. J Am Soc Nephrol 18: 741-749, 2007 88. Muller V, Tain YL, Croker B, Baylis C. Chronic nitric oxide deficiency and progression of kidney disease after renal mass reduction in the C57Bl6 mouse. Am J Nephrol 32: 575-580, 2010 89. Bahlmann FH, de Groot K, Mueller O, Hertel B, Haller H, Fliser D. Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension 45: 526-529, 2005 90. Antonio N, Fernandes R, Rodriguez-Losada N, Jimenez-Navarro MF, Paiva A, de Teresa Galvan E, Goncalves L, Ribeiro CF, Providencia LA. Stimulation of endothelial progenitor cells: a new putative effect of several cardiovascular drugs. Eur J Clin Pharmacol 66: 219-230, 2010 91. Meyers CD, Kamanna VS, Kashyap ML. Niacin therapy in atherosclerosis. Curr Opin Lipidol 15: 659-665, 2004 92. Amjad Shehadah JC, Alex Zacharek et al. Niaspan treatment induces neuroprotection after stroke. Neurobiology of Disease 40: 277–283, 2010 93. Xinchun Ye MC, Xu Cui, Alex Zacharek et al. Niaspan enhances vascular remodeling after stroke in type 1 diabetic rats. Experimental Neurology 232: 299–308, 2011 94. Amjad Shehadah JC, Yisheng Cui , Li Zhang, Cynthia Roberts et al. Combination treatment with low-dose Niaspan and tissue plasminogen activator provides neuroprotection after embolic stroke in rats. Journal of the Neurological Sciences 309 96–101, 2011 95. Jieli Chen XC, Alex Zacharek et al. Niaspan Increases Angiogenesis and Improves Functional Recovery after Stroke. Ann Neurol 62: 49–58, 2007 96. Hsueh WA, Lyon CJ, Quinones MJ. Insulin resistance and the endothelium. Am J Med 117: 109-117, 2004 97. Hayflick L ,Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585-621, 1961 98. Wang CY, Wen MS, Wang HW, Hsieh IC, Li Y, Liu PY, Lin FC, Liao JK. Increased vascular senescence and impaired endothelial progenitor cell function mediated by mutation of circadian gene Per2. Circulation 118: 2166-2173, 2008 99. Zhu JH, Chen JZ, Wang XX, Xie XD, Sun J, Zhang FR. Homocysteine accelerates senescence and reduces proliferation of endothelial progenitor cells. J Mol Cell Cardiol 40: 648-652, 2006 100. Scheubel RJ, Kahrstedt S, Weber H, Holtz J, Friedrich I, Borgermann J, Silber RE, Simm A. Depression of progenitor cell function by advanced glycation endproducts (AGEs): potential relevance for impaired angiogenesis in advanced age and diabetes. Exp Gerontol 41: 540-548, 2006 101. Jourde-Chiche N, Dou L, Sabatier F, Calaf R, Cerini C, Robert S, Camoin-Jau L, Charpiot P, Argiles A, Dignat-George F, Brunet P. Levels of circulating endothelial progenitor cells are related to uremic toxins and vascular injury in hemodialysis patients. J Thromb Haemost 7: 1576-1584, 2009 102. Masai N, Tatebe J, Yoshino G, Morita T. Indoxyl sulfate stimulates monocyte chemoattractant protein-1 expression in human umbilical vein endothelial cells by inducing oxidative stress through activation of the NADPH oxidase-nuclear factor-kappaB pathway. Circ J 74: 2216-2224, 2010 103. Adelibieke Y, Shimizu H, Muteliefu G, Bolati D, Niwa T. Indoxyl sulfate induces endothelial cell senescence by increasing reactive oxygen species production and p53 activity. J Ren Nutr 22: 86-89, 2012 104. Satoh MS ,Lindahl T. Role of poly(ADP-ribose) formation in DNA repair. Nature 356: 356-358, 1992 105. Kirkland JB. Niacin and carcinogenesis. Nutr Cancer 46: 110-118, 2003 106. Kang HT, Lee HI, Hwang ES. Nicotinamide extends replicative lifespan of human cells. Aging Cell 5: 423-436, 2006 107. Sakai Y, Jiang J, Kojima N, Kinoshita T, Miyajima A. Enhanced in vitro maturation of fetal mouse liver cells with oncostatin M, nicotinamide, and dimethyl sulfoxide. Cell Transplant 11: 435-441, 2002 108. Klaidman L, Morales M, Kem S, Yang J, Chang ML, Adams JD, Jr. Nicotinamide offers multiple protective mechanisms in stroke as a precursor for NAD+, as a PARP inhibitor and by partial restoration of mitochondrial function. Pharmacology 69: 150-157, 2003 109. Matuoka K, Chen KY, Takenawa T. Rapid reversion of aging phenotypes by nicotinamide through possible modulation of histone acetylation. Cell Mol Life Sci 58: 2108-2116, 2001 110. Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 277: 45099-45107, 2002 111. Guarente L. Diverse and dynamic functions of the Sir silencing complex. Nat Genet 23: 281-285, 1999 112. Kim MM, Yoon SO, Cho YS, Chung AS. Histone deacetylases, HDAC1 and HSIR2, act as a negative regulator of ageing through p53 in human gingival fibroblast. Mech Ageing Dev 125: 351-357, 2004 113. Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423: 181-185, 2003 114. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 6: 389-395, 2000 115. Goodwin AM. In vitro assays of angiogenesis for assessment of angiogenic and anti-angiogenic agents. Microvasc Res 74: 172-183, 2007 116. Staton CA, Reed MW, Brown NJ. A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol 90: 195-221, 2009 117. Wise A, Foord SM, Fraser NJ, Barnes AA, Elshourbagy N, Eilert M, Ignar DM, Murdock PR, Steplewski K, Green A, Brown AJ, Dowell SJ, Szekeres PG, Hassall DG, Marshall FH, Wilson S, Pike NB. Molecular identification of high and low affinity receptors for nicotinic acid. J Biol Chem 278: 9869-9874, 2003 118. Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, Simes R. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366: 1267-1278, 2005 119. Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ Res 98: 1352-1364, 2006 120. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res 95: 764-772, 2004 121. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5: 434-438, 1999 122. Gulati R, Jevremovic D, Peterson TE, Chatterjee S, Shah V, Vile RG, Simari RD. Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res 93: 1023-1025, 2003 123. Semenza GL. Therapeutic angiogenesis: another passing phase? Circ Res 98: 1115-1116, 2006 124. Rafii S ,Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9: 702-712, 2003 125. NIWA T. UREMIC TOXICITY OF INDOXYL SULFATE. Nagoya J. Med. Sci. 72: 1 ~ 11, 2010 126. Al-Mohaissen MA, Pun SC, Frohlich JJ. Niacin: from mechanisms of action to therapeutic uses. Mini Rev Med Chem 10: 204-217, 2010 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/63010 | - |
| dc.description.abstract | 【研究背景及目的】
內皮功能障礙在慢性腎衰竭早期就開始進展,不僅因為內皮細胞損害增加,具修復系統的內皮前驅細胞 (endothelial progenitor cells, EPCs) 數量也降低,且功能不良。研究發現尿毒素-吲哚酚硫酸鹽 (indoxyl sulfate ,IS)具有腎毒性及血管毒性,會抑制血管內皮細胞增殖和降低修復能力,損害內皮功能。因此降低尿毒素可以減低慢性腎臟病人心臟血管的傷害。菸鹼酸(Niacin) 是最早用來降血脂肪的藥物,並有增強細胞抗氧化能力,可能對於阻止內皮細胞的損害以及恢復修復系統有所助益。本研究針對 IS 對於 EPCs 的不良影響,探討 Niacin 是否可以拮抗 IS 的作用,回復血管修復能力以降低內皮功能障礙的發生或惡化。 【研究方法】 以體外細胞實驗,由健康成人之週邊血分離出單核細胞,種植於纖連蛋白塗佈 (Fibronectin coating )的培養皿,具貼附性單核細胞分化為EPCs,並鑑定其特徵。培養的 EPCs 加入相當於慢性腎臟病人血中 IS 的濃度,觀察細胞增埴能力及可能機制包括自我凋零 ( Apoptosis )、老化(Senescence)、自噬( Autophage ) 的變化;EPCs的功能評估則是移行能力( migration )和管形成作用( tube formation )。其後探討 Niacin 拮抗IS 對 EPCs增殖和功能毒性作用的機轉。細胞大致分為三組:控制組、IS作用組、IS合併Niacin組。 【結果】 IS 降低 EPCs 細胞活性(viability)是呈現濃度依賴 (p= 0.0012) 及時間依賴(p<0.0001) 的效果。1mM 的 IS 降低 28% ( p=0.024 ) 的 EPCs 細胞增殖能力,1mM Niacin對回復 IS 降低 EPCs 增殖作用效果最好( p=0.0495 )。IS(1mM)並不影響細胞凋亡標幟 Caspase-3 的表現量,但增加 1.8倍自噬標幟 LC3b 的表現,以及100% 的老化 EPCs 數量( p<0.05 )。1mM 的 Niacin對於自噬標幟 LC3b 的表現可以降低 70% 同時可以減少 IS 增加 EPCs 的老化 (減少54 %; p=0.03)。累計性細胞族群總數倍增程度 ( Cumulative Population Doublings Assay ) 檢測結果顯示於第一天(Day1)時增加的細胞數在 1mM IS 降低約 58% ,於第二天(Day2)時增加的細胞數降低約 61% ( p=0.0097 ) ,加入 1mM濃度 Niacin 後於 Day1 可以較 IS 組增加約 46% 的細胞數; 於 Day2 可以增加約 96% 的細胞數 ( p=0.007 )。 功能上,1mM 的 IS 抑制 EPCs 45% 的移行能力(p<0.001),和49% 管形成作用(p=0.0042),1mM Niacin 會增加 EPCs 的移行能力 40%(p=0.021),但管形成作用的恢復並無顯著差別(p=0.416)。 分析影響的蛋白質變化,IS(1mM) 可以增加原血紅素氧化酵素一型 ( Heme oxygenase-1,HO-1 ) 的表現量達 89 倍,1mM Niacin 可以減少約 50% HO-1的表現量。IS (1mM) 會增加 p-AKT 表現量 (增加3.26倍),1mM Niacin 加入後對 AKT ,p-AKT表現量無影響。IS (1mM) 減少 77% ( p<0.05 ) 內皮細胞一氧化氮合成脢( endothelial nitroide synthase,eNOS )及70 % ( p<0.05 ) 血管內皮生成因子( vascular endothelial growth factor,VEGF )的表現量,但1mM Niacin 可以提升 eNOS (增加 130% ; p=0.0016)及 VEGF的表現量(增加140% ; p=0.00030) ,並可抑制 IS (1mM) 誘發活性氧化自由基(reactive oxygen species;ROS)的生成。但 Niacin 專屬接受器 GPR109A 不存在於 EPCs 細胞上。 【結論】 吾人的研究顯示IS對EPCs的傷害包括增生降低及功能受損的情況可以因Niacin的存在而明顯改善,拮抗機制可能來自於(1)降低EPCs細胞的老化及自噬,(2)提升細胞eNOS及VEGF的整體表現量,以及(3)降低IS誘發的ROS生成量。我們設計的體外細胞實驗,無法完全模擬臨床上慢性腎衰竭病人體內尿素素的傷害影響,但對於臨床上改善慢性腎衰竭病人的內皮功能不良,提出治療的思考。以細胞初步研究結果,提供更進一步的動物試驗和臨床試驗計畫。 | zh_TW |
| dc.description.abstract | 【Background and Objective】
Substantial evidence has confirmed that endothelial dysfunction starts in the early stage of CKD,not only increasing damage to endothelial cell but affect of endothelial progenitor cells (EPCs) in the repair system.The uremic toxins−indoxyl sulfate (IS) exhibit renal and vascular toxicity, impaired endothelial cell proliferation and repair capacity. Nicotinic acid (Niacin) is the earliest lipid –lowering drug and has antioxidant capacity might helpful to prevent endothelial cell injury and restore the function of repair system. In this study, we focus on the adverse impact of IS on EPCs and to investigate if Niacin can antagonize the deleterious effect of IS to reduce the occurrence or deterioration of endothelial dysfunction. 【Material and Method】 In vitro study, mononuclear cells were isolated from peripheral blood from healthy donators and plated on culture dishes coated with fibronectin,adherent cells were differentiation to EPCs then confirmation was determined.EPCs were incubated with an additional IS to investigate the changes including apoptosis、senescence、autophage. EPCs function was tested by migration and tube formation ability.The restorative effects and mechanism of Niacin on damaged EPCs were survey. Study groups:were divided to three categories:control group, IS along group, and IS combined Niacin group. 【Result】 The effect on proliferation induced by .IS was in dose and time-dependent manner.IS at concentrations of 1mM induced a decreased proliferation in EPCs of 28% (p = 0.024) but was blunted by adding Niacin that the best effective dose is 1mM (p=0.0495).The presence of apoptosis biomarker-activated caspase-3 did not change after 1mM IS infusion but the autophagy marker LC3b expression were increased 80% and the percentage of senescence EPCs increases 100% (P<0.05).However, 1mM Niacin administration attenuated the IS-induced senescence reduced by 54% and decreased LC3b expression by 70%. Cumulative population doublings assay results showed that 1mM IS reduced the cell number about 61% (p=0.0097) but increased approximately 46%−96%. by 1mM Niacin (p =0.007).EPCs transwell migration ability decreased 45% (p <0.001) and tube formation capacity reduced by 49% (p = 0.0042) when 1mM IS was added. 1mM Niacin administration improved the transwell migration ability of 40% (p = 0.021),but tube formation capacity was not significant recovery (p = 0.416).Analysis of protein altered by IS(1mM),the HO-1 increased to 89 times attenuated approximately 50% by 1mM Niacin treatment.IS (1mM) increases the expression of p-AKT to 3.26 times, addition of 1mM Niacin had no effect on AKT, p-AKT expression. eNOS and VEGF expression were decreased by 77% (p <0.05) and 70% (p <0.05) respectively by IS (1mM) stimulation but 1mM Niacin treatment can enhance eNOS and VEGF expression with an increase of 130% ( p = 0.0016 ) and increase of 140%(p = 0.00030 ) respectively. IS (1mM) prompted ROS generation was blunted by 1 mM Niacin treatment. Niacin exclusive receptors GPR109A was not exist on EPCs. 【Conclusion】 Our study showed after Niacin treated,the impairment of EPCs proliferative capacity and function ability induced by the deleterious effect of IS is repaired. A antagonist mechanism of Niacin on damaged EPCs induced by IS may derive from the decrease of cell aging and autophagy,the elevation of the eNOs and VEGF expression, the decrease of the generation of free radicals .In the future,we hope to apply Niacin in clinical practice to improve endothelial function in patients with CKD. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:18:39Z (GMT). No. of bitstreams: 1 ntu-102-P99421015-1.pdf: 1047403 bytes, checksum: 2b64162eaa598e25322e73bdfaa55ba1 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目錄
論文口試委員會審定書…………………………………………………I 中文摘要 II 英文摘要 V 目錄 VIII 圖表參照索引 XI 第一章 緒論 1 1.1 慢性腎衰竭與心血管疾病 1 1.2 尿毒素吲哚酚硫酸鹽 (Indoxyl Sulfate, IS) 3 1.2.1 IS的特性及來源 3 1.2.2 IS的腎毒性 3 1.2.3 IS的血管毒性 4 1.3 內皮前驅幹細胞 5 1.3.1 內皮前驅幹細胞的辨識及定義 5 1.3.2 影響內皮前驅幹細胞移動的因素 8 1.3.3 內皮前驅幹細胞的臨床運用 9 1.4 菸鹼酸 (Niacin) 9 1.4.1 菸鹼酸簡介 9 1.4.2 菸鹼酸降血脂的作用機轉 11 1.4.3 非脂質相關的菸鹼酸作用-影響血管動脈粥樣硬化 12 1.4.4 菸鹼酸於臨床的運用 12 1.5 研究動機 13 第二章 實驗材料及方法 16 2.1 研究材料 16 2.1.1 內皮前驅細胞的培養 16 2.1.2 內皮前驅細胞的辨識 16 2.1.3 EPCs的數量及增殖檢驗 17 2.1.4 老化檢驗 18 2.1.5 EPCS的西方墨點法分析(Western blot analysis) 19 2.1.6 EPCs功能檢測 20 2.1.7 活性氧化自由基(ROS)的測量 21 2.1.8 定量聚合酶連鎖反應 ( Quantitative PCR,Q-PCR ) 21 2.1.9 Nicotinic acid 專屬受器 GPR109A 的分析 22 第三章 結果 24 3.1 IS對細胞活性的影響 24 3.1.1 IS對細胞活性具有劑量依存性的抑制作用 24 3.1.2 IS對細胞活性具有時間依存性的抑制作用 24 3.2 Niacin 回復IS 對EPCs 數量及功能損害影響......................... 24 3.2.1 Niacin 回復EPCs 的增生能力.................................. 24 3.2.1.1 Niacin 降低IS 對EPCs 的老化速度 (Senescence ) 老化相關的乙型半乳糖酶(Senescence-associated β-galactosidase )染色法活性檢測 ..24 3.2.1.2 累計性細胞族群總數倍增程度..................................25 3.2.2 Niacin 降低IS 對EPCs 自噬及原血紅素氧化酵素一型的表現.........25 3.2.3 Niacin 回復IS 對EPCs 受損的功能 ................................ 25 3.2.3.1 轉移盤移行測試 Transwell migration assay ...................... 25 3.2.3.2 管狀生成功能( Tube formation ) ............................... 26 3.2.4 Niacin 回復IS 降低eNOS 和VEGF 表現量 ............................ 26 3.2.5 Niacin 降低IS 誘發活性氧化自由基的傷害 .......................... 26 3.2.6 EPCs 不表現Niacin 專屬受器GPR109A............................... 26 第四章 討論 27 4.1 尿毒素IS對EPCs的影響 27 4.2 Niacin的治療效益及可能機轉 28 4.3 臨床治療策略的方向 31 4.4 實驗限制及未來展望 31 第五章 結論 33 5.1 Nicotinic acid具治療CKD患者CVD的潛能 33 參考文獻 49 | |
| dc.language.iso | zh-TW | |
| dc.subject | 內皮前驅細胞 | zh_TW |
| dc.subject | 慢性腎衰竭 | zh_TW |
| dc.subject | 吲 | zh_TW |
| dc.subject | 酚硫酸鹽 | zh_TW |
| dc.subject | 菸鹼酸 | zh_TW |
| dc.subject | 內皮功能不良 | zh_TW |
| dc.subject | Endothelial progenitor cells (EPCs) | en |
| dc.subject | Niacin Indoxyl sulfate (IS) | en |
| dc.subject | Endothelial dysfunction | en |
| dc.subject | Chronic kidney disease (CKD) | en |
| dc.title | 菸鹼酸可以回復受到吲哚酚硫酸鹽傷害的內皮前驅細胞功能 | zh_TW |
| dc.title | The Restorative Effects of Niacin on Damaged Endothelial Progenitor Cells Induced by Indoxyl Sulfate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊偉勛,林水龍 | |
| dc.subject.keyword | 慢性腎衰竭,內皮前驅細胞,吲,哚,酚硫酸鹽,菸鹼酸,內皮功能不良, | zh_TW |
| dc.subject.keyword | Chronic kidney disease (CKD),Endothelial progenitor cells (EPCs),Niacin Indoxyl sulfate (IS),Endothelial dysfunction, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-04 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
