請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62997完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林啟萬(Chii -Wann Lin) | |
| dc.contributor.author | Chien- Cheng Chen | en |
| dc.contributor.author | 陳建成 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:18:06Z | - |
| dc.date.available | 2017-02-16 | |
| dc.date.copyright | 2013-02-16 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-04 | |
| dc.identifier.citation | Akira, S., Tokeda, K., & Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nature immunology, 2(8), 675-680.
Allan, S. M., & Rothwell, N. J. (2001). Cytokines and acute neurodegeneration. Nat.Rev.Neurosci., 2(10), 734-744. Anderson, K. J., Miller, K. M., Fugaccia, I., & Scheff, S. W. (2005). Regional distribution of fluoro-jade B staining in the hippocampus following traumatic brain injury. Exp.Neurol., 193(1), 125-130. Armitage, P. A., Farrall, A. J., Carpenter, T. K., Doubal, F. N., & Wardlaw, J. M. (2011). Use of dynamic contrast-enhanced MRI to measure subtle blood-brain barrier abnormalities. Magn Reson Imaging, 29(3), 305-314. doi: 10.1016/j.mri.2010.09.002 Ator, Mark A., Mallamo, John P., & Williams, Michael. (2001). Overview of Drug Discovery and Development Current Protocols in Pharmacology: John Wiley & Sons, Inc. Baskaya, M. K., Rao, A. M., Dogan, A., Donaldson, D., & Dempsey, R. J. (1997). The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett, 226(1), 33-36. Beer, R., Franz, G., Schopf, M., Reindl, M., Zelger, B., Schmutzhard, E., . . . Kampfl, A. (2000). Expression of Fas and Fas ligand after experimental traumatic brain injury in the rat. J Cereb Blood Flow Metab, 20(4), 669-677. doi: 10.1097/00004647-200004000-00004 Belayev, L., Busto, R., Ikeda, M., Rubin, L. L., Kajiwara, A., Morgan, L., & Ginsberg, M. D. (1998). Protection against blood-brain barrier disruption in focal cerebral ischemia by the type IV phosphodiesterase inhibitor BBB022: a quantitative study. Brain Res, 787(2), 277-285. Bonekamp, D., & Macura, K. J. (2008). Dynamic contrast-enhanced magnetic resonance imaging in the evaluation of the prostate. Top Magn Reson Imaging, 19(6), 273-284. doi: 10.1097/RMR.0b013e3181aacdc2 Brown, E. B., Shear, J. B., Adams, S. R., Tsien, R. Y., & Webb, W. W. (1999). Photolysis of caged calcium in femtoliter volumes using two-photon excitation. Biophys J, 76(1 Pt 1), 489-499. doi: 10.1016/s0006-3495(99)77217-6 Brown, E. B., Wu, E. S., Zipfel, W., & Webb, W. W. (1999). Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery. Biophys J, 77(5), 2837-2849. Bustin, S. A. (2002). Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol, 29(1), 23-39. Caso, J. R., Pradillo, J. M., Hurtado, O., Lorenzo, P., Moro, M. A., & Lizasoain, I. (2007). Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation, 115(12), 1599-1608. Cernak, Ibolja. (2005). Animal Models of Head Trauma. NeuroRX, 2(3), 410-422. doi: http://dx.doi.org/10.1602/neurorx.2.3.410 Chang, C. F., Chen, S. F., Lee, T. S., Lee, H. F., Chen, S. F., & Shyue, S. K. (2011). Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage. Am.J.Pathol., 178(4), 1749-1761. Chang, Y. L., Shen, J. J., Wung, B. S., Cheng, J. J., & Wang, D. L. (2001). Chinese herbal remedy wogonin inhibits monocyte chemotactic protein-1 gene expression in human endothelial cells. Mol.Pharmacol., 60(3), 507-513. Chen, G., Shi, J., Jin, W., Wang, L., Xie, W., Sun, J., & Hang, C. (2008). Progesterone administration modulates TLRs/NF-kappaB signaling pathway in rat brain after cortical contusion. Ann.Clin.Lab Sci., 38(1), 65-74. Chen, G., Zhang, S., Shi, J., Ai, J., Qi, M., & Hang, C. (2009). Simvastatin reduces secondary brain injury caused by cortical contusion in rats: possible involvement of TLR4/NF-kappaB pathway. Exp.Neurol., 216(2), 398-406. Chen, S. F., Hsu, C. W., Huang, W. H., & Wang, J. Y. (2008). Post-injury baicalein improves histological and functional outcomes and reduces inflammatory cytokines after experimental traumatic brain injury. Br.J.Pharmacol., 155(8), 1279-1296. Chen, S. F., Hung, T. H., Chen, C. C., Lin, K. H., Huang, Y. N., Tsai, H. C., & Wang, J. Y. (2007). Lovastatin improves histological and functional outcomes and reduces inflammation after experimental traumatic brain injury. Life Sci., 81(4), 288-298. Chen, S., Pickard, J. D., & Harris, N. G. (2003a). Time course of cellular pathology after controlled cortical impact injury. Exp Neurol, 182(1), 87-102. Chen, S., Pickard, J. D., & Harris, N. G. (2003b). Time course of cellular pathology after controlled cortical impact injury. Experimental Neurology, 182(1), 87-102. doi: http://dx.doi.org/10.1016/S0014-4886(03)00002-5 Chen, S., Pickard, J. D., & Harris, N. G. (2003c). Time course of cellular pathology after controlled cortical impact injury. Exp.Neurol., 182(1), 87-102. Cherian, L., Robertson, C. S., Contant, C. F., Jr., & Bryan, R. M., Jr. (1994). Lateral cortical impact injury in rats: cerebrovascular effects of varying depth of cortical deformation and impact velocity. J Neurotrauma, 11(5), 573-585. Chi, Y. S., Lim, H., Park, H., & Kim, H. P. (2003). Effects of wogonin, a plant flavone from Scutellaria radix, on skin inflammation: in vivo regulation of inflammation-associated gene expression. Biochem.Pharmacol., 66(7), 1271-1278. Cho, J., & Lee, H. K. (2004). Wogonin inhibits ischemic brain injury in a rat model of permanent middle cerebral artery occlusion. Biol.Pharm.Bull., 27(10), 1561-1564. Chopp, M., Zhang, Z. G., & Jiang, Q. (2007). Neurogenesis, angiogenesis, and MRI indices of functional recovery from stroke. Stroke, 38(2 Suppl), 827-831. doi: 10.1161/01.STR.0000250235.80253.e9 Choulier, Laurence, Rauffer-Bruyere, Nathalie, Ben Khalifa, Myriam, Martin, Franck, Vernet, Thierry, & Altschuh, Daniele. (1999). Kinetic Analysis of the Effect on Fab Binding of Identical Substitutions in a Peptide and Its Parent Protein. Biochemistry, 38(12), 3530-3537. doi: 10.1021/bi982011z Chua, K. S., Ng, Y. S., Yap, S. G., & Bok, C. W. (2007). A brief review of traumatic brain injury rehabilitation. Ann Acad Med Singapore, 36(1), 31-42. Conti, A. C., Raghupathi, R., Trojanowski, J. Q., & McIntosh, T. K. (1998). Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period. J.Neurosci., 18(15), 5663-5672. DelPrincipe, F., Egger, M., & Niggli, E. (1999). Calcium signalling in cardiac muscle: refractoriness revealed by coherent activation. Nat Cell Biol, 1(6), 323-329. doi: 10.1038/14013 Dixon, C. E., Clifton, G. L., Lighthall, J. W., Yaghmai, A. A., & Hayes, R. L. (1991). A controlled cortical impact model of traumatic brain injury in the rat. J. Neurosci. Methods, 39, 253-262. Dong, X. Q., Yu, W. H., Hu, Y. Y., Zhang, Z. Y., & Huang, M. (2011). Oxymatrine reduces neuronal cell apoptosis by inhibiting Toll-like receptor 4/nuclear factor kappa-B-dependent inflammatory responses in traumatic rat brain injury. Inflamm.Res., 60(6), 533-539. Donkin, J. J., & Vink, R. (2010). Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr.Opin.Neurol., 23(3), 293-299. DOPPENBERG, E.M.R., & BULLOCK, R. (1997). Clinical neuro-protection trials in severe traumatic brain injury: lessons from previous studies. Journal of neurotrauma, 14(2), 71-80. Downes, C. E., & Crack, P. J. (2010). Neural injury following stroke: are Toll-like receptors the link between the immune system and the CNS? Br.J.Pharmacol., 160(8), 1872-1888. Dunn-Meynell, A. A., & Levin, B. E. (1997). Histological markers of neuronal, axonal and astrocytic changes after lateral rigid impact traumatic brain injury. Brain Res, 761(1), 25-41. Duong, T. Q., & Fisher, M. (2004). Applications of diffusion/perfusion magnetic resonance imaging in experimental and clinical aspects of stroke. Curr Atheroscler Rep, 6(4), 267-273. Durukan, A., & Tatlisumak, T. (2007). Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav, 87(1), 179-197. doi: 10.1016/j.pbb.2007.04.015 Edward Dixon, C., Clifton, G.L., Lighthall, J.W., Yaghmai, A.A., & Hayes, R.L. (1991). A controlled cortical impact model of traumatic brain injury in the rat. Journal of neuroscience methods, 39(3), 253-262. Foreman, Brandon P., Caesar, R Ruth, Parks, Jennifer, Madden, Christopher, Gentilello, Larry M., Shafi, Shahid, . . . Diaz-Arrastia, Ramon R. (2007). Usefulness of the Abbreviated Injury Score and the Injury Severity Score in Comparison to the Glasgow Coma Scale in Predicting Outcome After Traumatic Brain Injury. The Journal of Trauma and Acute Care Surgery, 62(4), 946-950 910.1097/1001.ta.0000229796.0000214717.0000229793a. Fried, M. G. (1989). Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. Electrophoresis, 10, 366-376. Gao, Z., Huang, K., Yang, X., & Xu, H. (1999). Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim.Biophys.Acta, 1472(3), 643-650. Gennarelli, T. A. (1994). Animate models of human head injury. J Neurotrauma, 11(4), 357-368. Gennarelli, T.A. (1994). Animate models of human head injury. Journal of neurotrauma, 11(4), 357-368. Greve, M. W., & Zink, B. J. (2009). Pathophysiology of traumatic brain injury. Mt Sinai J Med, 76(2), 97-104. doi: 10.1002/msj.20104 GURDJIAN, E. S., ROBERTS, V. L., & THOMAS, L. M. (1966). Tolerance Curves of Acceleration and Intracranial Pressure and Protective Index in Experimental Head Injury. The Journal of Trauma and Acute Care Surgery, 6(5), 600-604. Hawkes, S. P., Li, H., & Taniguchi, G. T. (2010). Zymography and reverse zymography for detecting MMPs and TIMPs. Methods Mol Biol, 622, 257-269. doi: 10.1007/978-1-60327-299-5_16 Hellman, L. M., & Fried, M. G. (2007). Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc, 2(8), 1849-1861. doi: 10.1038/nprot.2007.249 Helmchen, F., Svoboda, K., Denk, W., & Tank, D. W. (1999). In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci, 2(11), 989-996. doi: 10.1038/14788 Helmchen, F., & Waters, J. (2002). Ca2+ imaging in the mammalian brain in vivo. Eur J Pharmacol, 447(2-3), 119-129. Holmin, S., & Mathiesen, T. (2000). Intracerebral administration of interleukin-1beta and induction of inflammation, apoptosis, and vasogenic edema. J.Neurosurg., 92(1), 108-120. Homola, J. (2008). Surface plasmon resonance sensors for detection of chemical and biological species. Chemical reviews, 108(2), 462. Huang, G. C., Chow, J. M., Shen, S. C., Yang, L. Y., Lin, C. W., & Chen, Y. C. (2007). Wogonin but not Nor-wogonin inhibits lipopolysaccharide and lipoteichoic acid-induced iNOS gene expression and NO production in macrophages. Int.Immunopharmacol., 7(8), 1054-1063. Huang, W. H., Lee, A. R., & Yang, C. H. (2006). Antioxidative and anti-inflammatory activities of polyhydroxyflavonoids of Scutellaria baicalensis GEORGI. Biosci.Biotechnol.Biochem., 70(10), 2371-2380. Hudson, Peter J. (1999). Recombinant antibody constructs in cancer therapy. Current Opinion in Immunology, 11(5), 548-557. doi: http://dx.doi.org/10.1016/S0952-7915(99)00013-8 Kabadi, S. V., Hilton, G. D., Stoica, B. A., Zapple, D. N., & Faden, A. I. (2010). Fluid-percussion-induced traumatic brain injury model in rats. Nature Protoc., 5, 1552-1563. Karlsson, R., & Falt, A. (1997). Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. Journal of immunological methods, 200(1), 121-133. Kaste, M. (2005). Use of animal models has not contributed to development of acute stroke therapies: pro. Stroke, 36(10), 2323-2324. doi: 10.1161/01.str.0000179037.82647.48 Katayama, Y., Becker, D.P., Tamura, T., & Hovda, D.A. (1990). Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. Journal of neurosurgery, 73(6), 889-900. Katsamba, P.S., Park, S., & Laird-Offringa, I.A. (2002). Kinetic studies of RNA–protein interactions using surface plasmon resonance. Methods, 26(2), 95-104. Khan, M., Im, Y. B., Shunmugavel, A., Gilg, A. G., Dhindsa, R. K., Singh, A. K., & Singh, I. (2009). Administration of S-nitrosoglutathione after traumatic brain injury protects the neurovascular unit and reduces secondary injury in a rat model of controlled cortical impact. J.Neuroinflammation., 6, 32. Kim, H., Kim, Y. S., Kim, S. Y., & Suk, K. (2001). The plant flavonoid wogonin suppresses death of activated C6 rat glial cells by inhibiting nitric oxide production. Neurosci.Lett., 309(1), 67-71. Kimura, Yoshiyuki, & Sumiyoshi, Maho. (2011). Effects of baicalein and wogonin isolated from Scutellaria baicalensis roots on skin damage in acute UVB-irradiated hairless mice. European Journal of Pharmacology, 661(1–3), 124-132. doi: http://dx.doi.org/10.1016/j.ejphar.2011.04.033 Ko, S. B., Choi, H. A., Parikh, G., Schmidt, J. M., Lee, K., Badjatia, N., . . . Mayer, S. A. (2012). Real time estimation of brain water content in comatose patients. Ann Neurol, 72(3), 344-350. doi: 10.1002/ana.23619 Kraus, Marilyn F., Susmaras, Teresa, Caughlin, Benjamin P., Walker, Corey J., Sweeney, John A., & Little, Deborah M. (2007). White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain, 130(10), 2508-2519. doi: 10.1093/brain/awm216 Lantz, M. S., & Ciborowski, P. (1994). Zymographic techniques for detection and characterization of microbial proteases. Methods Enzymol, 235, 563-594. Laurer, H.L., & McIntosh, T.K. (1999). Experimental models of brain trauma. Current opinion in neurology, 12(6), 715. Leber, T. M., & Balkwill, F. R. (1997). Zymography: a single-step staining method for quantitation of proteolytic activity on substrate gels. Anal Biochem, 249(1), 24-28. doi: 10.1006/abio.1997.2170 Lee, H., Kim, Y. O., Kim, H., Kim, S. Y., Noh, H. S., Kang, S. S., . . . Suk, K. (2003). Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia. FASEB J., 17(13), 1943-1944. Lee, S. O., Jeong, Y. J., Yu, M. H., Lee, J. W., Hwangbo, M. H., Kim, C. H., & Lee, I. S. (2006). Wogonin suppresses TNF-alpha-induced MMP-9 expression by blocking the NF-kappaB activation via MAPK signaling pathways in human aortic smooth muscle cells. Biochem.Biophys.Res.Commun., 351(1), 118-125. Lees, K. R. (2006). NXY-059 for acute ischemic stroke. N. Engl. J. Med., 354, 588-600. Liang, Y. H., Chang, C. C., Chen, C. C., Chu-Su, Y., & Lin, C. W. (2012). Development of an Au/ZnO thin film surface plasmon resonance-based biosensor immunoassay for the detection of carbohydrate antigen 15-3 in human saliva. Clin Biochem, 45(18), 1689-1693. doi: 10.1016/j.clinbiochem.2012.09.001 Lichtman, J. W., & Fraser, S. E. (2001). The neuronal naturalist: watching neurons in their native habitat. Nat Neurosci, 4 Suppl, 1215-1220. doi: 10.1038/nn754 Lifshitz, J., Kelley, J. B., & Povlishock, J. T. (2007). Perisomatic thalamic axotomy after diffuse traumatic brain injury is associated with atrophy rather than cell death. J. Neuropathol. Exp. Neurol., 66, 218-229. Lighthall, J. W. (1988). Controlled cortical impact: a new experimental brain injury model. J Neurotrauma, 5(1), 1-15. Lighthall, J. W., Dixon, C. E., & Anderson, T. E. (1989). Experimental models of brain injury. J Neurotrauma, 6(2), 83-97. Lin, C.W., Song, Z.H., & Lee, C.K. (2004). A novel biochip detection system based on lateral SPR wave propagation theory. Paper presented at the Sensors, 2004. Proceedings of IEEE. Liu, X. F., Liu, M. L., Iyanagi, T., Legesse, K., Lee, T. D., & Chen, S. A. (1990). Inhibition of rat liver NAD(P)H:quinone acceptor oxidoreductase (DT-diaphorase) by flavonoids isolated from the Chinese herb scutellariae radix (Huang Qin). Mol.Pharmacol., 37(6), 911-915. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25(4), 402-408. doi: 10.1006/meth.2001.1262 Lloyd, E., Somera-Molina, K., Van Eldik, L. J., Watterson, D. M., & Wainwright, M. S. (2008). Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury. J.Neuroinflammation., 5, 28. Lucas, S. M., Rothwell, N. J., & Gibson, R. M. (2006). The role of inflammation in CNS injury and disease. Br.J.Pharmacol., 147 Suppl 1, S232-S240. Mackay, Ian M. (2007). Real-time PCR in microbiology : from diagnosis to characterisation. Norfolk, UK: Caister Academic. Marmarou, A., Foda, M.A.A.E., Brink, W., Campbell, J., Kita, H., & Demetriadou, K. (1994). A new model of diffuse brain injury in rats. Journal of neurosurgery, 80(2), 291-300. McIntosh, T.K., Juhler, M., & Wieloch, T. (1998). Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. Journal of neurotrauma, 15(10), 731-769. Medzhitov, R., Preston-Hurlburt, P., & Janeway, C. A., Jr. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature, 388(6640), 394-397. Morales, DM, Marklund, N., Lebold, D., Thompson, HJ, Pitkanen, A., Maxwell, WL, . . . Neugebauer, E. (2005). Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neuroscience, 136(4), 971-989. Morganti-Kossmann, M. C., Rancan, M., Stahel, P. F., & Kossmann, T. (2002). Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr.Opin.Crit Care, 8(2), 101-105. Myszka, David G., & Rich, Rebecca L. (2000). Implementing surface plasmon resonance biosensors in drug discovery. Pharmaceutical Science & Technology Today, 3(9), 310-317. doi: http://dx.doi.org/10.1016/S1461-5347(00)00288-1 Narayanaswamy, R., & Wolfbeis, O.S. (2004). Optical sensors: industrial, environmental and diagnostic applications (Vol. 1): Springer. O'Connor, William T., Smyth, Aoife, & Gilchrist, Michael D. (2011). Animal models of traumatic brain injury: A critical evaluation. Pharmacology & Therapeutics, 130(2), 106-113. doi: http://dx.doi.org/10.1016/j.pharmthera.2011.01.001 Oyama, M., Ikeda, T., Lim, T., Ikebukuro, K., Masuda, Y., & Karube, I. (2001). Detection of toxic chemicals with high sensitivity by measuring the quantity of induced P450 mRNAs based on surface plasmon resonance. Biotechnology and bioengineering, 71(3), 217-222. Padhani, A. R. (2002). Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J Magn Reson Imaging, 16(4), 407-422. doi: 10.1002/jmri.10176 Panayotou, George. (1998). Surface Plasmon Resonance. In J. D. Editor-in-Chief: Peter (Ed.), Encyclopedia of Immunology (Second Edition) (pp. 2247-2250). Oxford: Elsevier. Peng, J., Qi, Q., You, Q., Hu, R., Liu, W., Feng, F., . . . Guo, Q. (2009). Subchronic toxicity and plasma pharmacokinetic studies on wogonin, a natural flavonoid, in Beagle dogs. J.Ethnopharmacol., 124(2), 257-262. Pfenninger, E. G., Reith, A., Breitig, D., Grunert, A., & Ahnefeld, F. W. (1989). Early changes of intracranial pressure, perfusion pressure, and blood flow after acute head injury. Part 1: An experimental study of the underlying pathophysiology. J Neurosurg, 70(5), 774-779. doi: 10.3171/jns.1989.70.5.0774 Piao, H. Z., Choi, I. Y., Park, J. S., Kim, H. S., Cheong, J. H., Son, K. H., . . . Kim, W. K. (2008). Wogonin inhibits microglial cell migration via suppression of nuclear factor-kappa B activity. Int.Immunopharmacol., 8(12), 1658-1662. Piao, H. Z., Jin, S. A., Chun, H. S., Lee, J. C., & Kim, W. K. (2004). Neuroprotective effect of wogonin: potential roles of inflammatory cytokines. Arch.Pharm.Res., 27(9), 930-936. Povlishock, J. T., Hayes, R. L., Michel, M. E., & McIntosh, T. K. (1994). Workshop on animal models of traumatic brain injury. J Neurotrauma, 11(6), 723-732. Qi, Q., Peng, J., Liu, W., You, Q., Yang, Y., Lu, N., . . . Guo, Q. (2009). Toxicological studies of wogonin in experimental animals. Phytother.Res., 23(3), 417-422. Racke, M. K., & Drew, P. D. (2009). Toll-like receptors in multiple sclerosis. Curr.Top.Microbiol.Immunol., 336, 155-168. Radonic, A., Thulke, S., Mackay, I. M., Landt, O., Siegert, W., & Nitsche, A. (2004). Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun, 313(4), 856-862. Ransohoff, R. M., & Tani, M. (1998). Do chemokines mediate leukocyte recruitment in post-traumatic CNS inflammation? Trends Neurosci., 21(4), 154-159. Rubart, M. (2004). Two-photon microscopy of cells and tissue. Circ Res, 95(12), 1154-1166. doi: 10.1161/01.res.0000150593.30324.42 Ruiz, A., Buzanska, L., Gilliland, D., Rauscher, H., Sirghi, L., Sobanski, T., . . . Coecke, S. (2008). Micro-stamped surfaces for the patterned growth of neural stem cells. Biomaterials, 29(36), 4766-4774. Salamon, Zdzislaw, & Tollin, Gordon. (1999). Surface Plasmon Resonance, Applications. In C. L. Editor-in-Chief: John (Ed.), Encyclopedia of Spectroscopy and Spectrometry (pp. 2294-2302). Oxford: Elsevier. Schmued, L. C., Albertson, C., & Slikker, W., Jr. (1997). Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res, 751(1), 37-46. Schmued, L. C., & Hopkins, K. J. (2000a). Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res, 874(2), 123-130. Schmued, L. C., & Hopkins, K. J. (2000b). Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res., 874(2), 123-130. Schwarcz, A., Berente, Z., Osz, E., & Doczi, T. (2001). In vivo water quantification in mouse brain at 9.4 Tesla in a vasogenic edema model. Magn Reson Med, 46(6), 1246-1249. Shlosberg, D., Benifla, M., Kaufer, D., & Friedman, A. (2010). Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat.Rev.Neurol., 6(7), 393-403. Smith, D. H., Soares, H. D., Pierce, J. S., Perlman, K. G., Saatman, K. E., Meaney, D. F., . . . McIntosh, T. K. (1995). A model of parasagittal controlled cortical impact in the mouse: cognitive and histopathologic effects. J Neurotrauma, 12(2), 169-178. So, P. T., Dong, C. Y., Masters, B. R., & Berland, K. M. (2000). Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng, 2, 399-429. doi: 10.1146/annurev.bioeng.2.1.399 Soeller, C., & Cannell, M. B. (2002). Estimation of the sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks. Biophys J, 82(5), 2396-2414. doi: 10.1016/s0006-3495(02)75584-7 Strauss, K. I. (2008). Antiinflammatory and neuroprotective actions of COX2 inhibitors in the injured brain. Brain Behav.Immun., 22(3), 285-298. Su, E. J., Fredriksson, L., Geyer, M., Folestad, E., Cale, J., Andrae, J., . . . Lawrence, D. A. (2008). Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med, 14(7), 731-737. doi: 10.1038/nm1787 Svoboda, K., & Yasuda, R. (2006). Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron, 50(6), 823. Svoboda, Karel, Tank, David W., & Denk, Winfried. (1996). Direct Measurement of Coupling Between Dendritic Spines and Shafts. Science, 272(5262), 716-719. doi: 10.1126/science.272.5262.716 Taheri, Saeid, Gasparovic, Charles, Shah, Nadim Jon, & Rosenberg, Gary A. (2011). Quantitative measurement of blood-brain barrier permeability in human using dynamic contrast-enhanced MRI with fast T1 mapping. Magnetic Resonance in Medicine, 65(4), 1036-1042. doi: 10.1002/mrm.22686 Tai, M. C., Tsang, S. Y., Chang, L. Y., & Xue, H. (2005). Therapeutic potential of wogonin: a naturally occurring flavonoid. CNS.Drug Rev., 11(2), 141-150. Tang, S. C., Arumugam, T. V., Xu, X., Cheng, A., Mughal, M. R., Jo, D. G., . . . Mattson, M. P. (2007). Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc.Natl.Acad.Sci.U.S.A, 104(34), 13798-13803. Teasdale, G. M., Maas, A., Iannotti, F., Ohman, J., & Unterberg, A. (1999). Challenges in translating the efficacy of neuroprotective agents in experimental models into knowledge of clinical benefits in head injured patients. Acta Neurochir Suppl, 73, 111-116. Thornton, C., Rousset, C.I., Kichev, A., Miyakuni, Y., Vontell, R., Baburamani, A.A., . . . Hagberg, H. (2012). Molecular mechanisms of neonatal brain injury. Neurology Research International, 2012. Tofts, P.S., & Kermode, A.G. (2005). Measurement of the blood‐brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magnetic Resonance in Medicine, 17(2), 357-367. Towbin, H., Staehelin, T., & Gordon, J. (1992). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979. Biotechnology, 24, 145-149. Unterberg, A. W., Stover, J., Kress, B., & Kiening, K. L. (2004). Edema and brain trauma. Neuroscience, 129(4), 1021-1029. Vajtr, D., Benada, O., Kukacka, J., Prusa, R., Houstava, L., Toupalik, P., & Kizek, R. (2009). Correlation of ultrastructural changes of endothelial cells and astrocytes occurring during blood brain barrier damage after traumatic brain injury with biochemical markers of BBB leakage and inflammatory response. Physiol Res., 58(2), 263-268. van der Worp, H. B., Howells, D. W., Sena, E. S., Porritt, M. J., Rewell, S., O'Collins, V., & Macleod, M. R. (2010). Can animal models of disease reliably inform human studies? PLoS Med, 7(3), e1000245. doi: 10.1371/journal.pmed.1000245 Viano, DavidC, Hamberger, Anders, Bolouri, Hayde, & Saljo, Annette. (2012). Evaluation of Three Animal Models for Concussion and Serious Brain Injury. Annals of Biomedical Engineering, 40(1), 213-226. doi: 10.1007/s10439-011-0386-2 Virtualmedicalcentre.com. 2007). Enzyme-Linked Immunosorbent Assay (ELISA) - Summary. Retrieved 10 Jan 2013, from http://www.virtualmedicalcentre.com/health-investigation/enzyme-linked-immunosorbent-assay-elisa/57 Wakabayashi, I., & Yasui, K. (2000). Wogonin inhibits inducible prostaglandin E(2) production in macrophages. Eur.J.Pharmacol., 406(3), 477-481. Wang, K.K.W., Larner, S.F., Robinson, G., & Hayes, R.L. (2006). Neuroprotection targets after traumatic brain injury. Current opinion in neurology, 19(6), 514-519. Wang, X., Jung, J., Asahi, M., Chwang, W., Russo, L., Moskowitz, M. A., . . . Lo, E. H. (2000). Effects of matrix metalloproteinase-9 gene knock-out on morphological and motor outcomes after traumatic brain injury. J.Neurosci., 20(18), 7037-7042. Xiong, Y., Mahmood, A., & Chopp, M. (2013). Animal models of traumatic brain injury. Nat Rev Neurosci, 14(2), 128-142. doi: 10.1038/nrn3407 Zhao, W., Belayev, L., & Ginsberg, M.D. (1997). Transient middle cerebral artery occlusion by intraluminal suture: II. Neurological deficits, and pixel-based correlation of histopathology with local blood flow and glucose utilization. Journal of Cerebral Blood Flow & Metabolism, 17(12), 1281-1290. Zweckberger, K., Eros, C., Zimmermann, R., Kim, S. W., Engel, D., & Plesnila, N. (2006). Effect of early and delayed decompressive craniectomy on secondary brain damage after controlled cortical impact in mice. J.Neurotrauma, 23(7), 1083-1093. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62997 | - |
| dc.description.abstract | 背景:對於創傷性腦損傷(TBI)患者的神經系統後遺症的治療處理及復健一直是很困難而緩慢的, 並且也是醫療團隊的一大挑戰。儘管現在科技進步,我們仍無法擁有令人滿意的治療結果. 許多在基礎實驗模型中證明有療效的藥物常無法在臨床上有效治療TBI患者,許多的評論對於動物模型中顯示有療效的藥物能否在臨床上應用開始持疑。在這方面, 對於能更細部規劃和準確控制的TBI動物模型,合併多領域及多重機轉研究的方法學, 並為以後的療效評估建立明確的處理標準, 成為前臨床研究中基礎研究的重要課題之一, 頭部外傷後主要的病理機轉包括自由基釋放造成氧化壓力,興奮性毒素的作用及發炎反應等,這些機制交互作用會對神經細胞造成後續的二度傷害。而若想要達到神經保護功效,可使用多重機制阻斷的合併治療方式。本研究選用了黃芩素(Wogonin), 探討其於實驗性腦創傷神經保護的功效及保護機制。Wogonin是萃取自中草藥黃芩的主要類黃酮素,在實驗中顯示具有抗氧化及抗發炎雙重機制,我們將研究Wogonin對TBI小鼠的影響, 包含抗發炎分子的量測,功能和組織學, 腦水腫的影響,以及TLR4/ NF-kappa B相關的信號傳導路徑的探討。
方法/結果:將接受腦皮質撞擊傷(CCI)的小鼠於10分鐘後進行功能及組織學,血腦屏障(BBB)的通透性和腦水含量進行測量,評估。 TLR4/ NF-kappa B相關的炎症分子也一併量測。Wogonin治療組顯著提高功能恢復和減少挫傷體積。Wogonin也顯著減少神經元死亡,血腦屏障通透性和腦水腫。這些變化包含顯著減少的白血球細胞浸潤,小膠質細胞活化,TLR4的表現,NF-kappa B結合活性,基質金屬蛋白酶9的活性和表達的炎症介質,包括白細胞介素1,白細胞介素-6,巨噬細胞炎性蛋白-2,和COX-2。 討論:我們的研究結果顯示,在TBI小鼠傷後使用Wogonin治療能改善長期功能和組織學的結果,降低腦水腫,減弱了TLR4/ NF-kappa B -介導的炎症反應。漢黃芩素的神經保護作用可能與TLR4/ NF-kappa B信號傳導路徑的調節有關。另一方面,我們展示了這一個基於腦損傷皮質撞擊損傷模型(CCI)的療效評估和機轉探索系統.。我們使用了三個不同方向的評估測試,包括:(1)功能評測(2)解剖學和組織學評估(3)生物分子量測, 並整合至我們的平台, 並將此CCI損傷模型以綜合性,多機制的流程,進行了wogonin的實驗, 以說明此平台的可行性和實用性。進一步的, 我們希望以CCI腦損傷模式來擴大我們的研究, 例如不同藥物及不同機轉的神經保護作用,甚至神經再生領域,例如細胞療法等; 另外也希望整合內文中提到的新技術和新設備,因為具有即時採集,非破性量測或最少的樣品要求,在活細胞或組織的操作和節省時間,低耗材的實際需求等特性, 可望能在未來神經科學的研究中提供新的進展及應用。 | zh_TW |
| dc.description.abstract | Background: Treating and managing neurological sequelae of traumatic brain injury (TBI) patients are difficult and keep challenging medical stuff despite of the advancement of technology. Many drugs that proved efficacy in experimental models failed to show the benefits in the treatment of TBI population, so as many reviews did not support that those efficacy treatment in animal models effected. There is strong need of well-designed and controlled animal models with an integrative, multi-mechanism approach for drug discovery and study in order to establish definitive treatment standards for this patient population;
For that a proper understanding of animal trials requires that diverse aspects and mechanisms of the injury be taken into account, and it is well studied that TBI initiates a neuroinflammatory cascade that contributes to neuronal damage and behavioral impairment, this study was undertaken to investigate the effects of wogonin, a flavonoid with potent anti-inflammatory properties, on functional and histological outcomes, brain edema, and toll-like receptor 4 (TLR4)- and nuclear factor kappa B (NF-kappa B)-related signaling pathways in mice following TBI. Methodology/Principal Findings: Mice subjected to controlled cortical impact injury were injected with wogonin 20, 40, or 50 mg•kg-1) or vehicle 10 min after injury. Behavioral studies, histology analysis, and measurement of blood-brain barrier (BBB) permeability and brain water content were carried out to assess the effects of wogonin. Levels of TLR4/NF-kappa B-related inflammatory mediators were also examined. Treatment with 40 mg•kg-1 wogonin significantly improved functional recovery and reduced contusion volumes up to post-injury day 28. Wogonin also significantly reduced neuronal death, BBB permeability, and brain edema beginning at day 1. These changes were associated with a marked reduction in leukocyte infiltration, microglial activation, TLR4 expression, NF-kappa B binding activity, matrix metalloproteinase-9 activity, and expression of inflammatory mediators, including interleukin-1beta, interleukin-6, macrophage inflammatory protein-2, and cyclooxygenase-2. Conclusions/Significance: Our results show that post-injury wogonin treatment improved long-term functional and histological outcomes, reduced brain edema, and attenuated the TLR4/NF-kappa B-mediated inflammatory response in mouse TBI. The neuroprotective effects of wogonin may be related to modulation of the TLR4/NF-kappa B signaling pathway. On the other hand, we have set up an efficacy evaluation system and mechanism exploration system of therapeutic agents for TBI by experimental animal brain injury model- controlled cortical impaction (CCI) injury model. Three major groups of evaluation tests including: (1) functional evaluation (2) anatomical and histological evaluation (3) Biomolecular evaluation are introduced and integrated into our platform. And we also have demonstrated the feasibility and practicability of our CCI injury model with an integrative, multi-mechanism approach through the experiment of wogonin. Prospectively, with this practable CCI model we are capable to expand our research to different fields of neuroprotection, or neuroregeneration like cell therapies; also the integration of the new technology and equipment mentioned in contents, which are well characterized with real-time acquisition, non-sample destruction or minimal sample requirement, operation in living cell or tissue; and the practical benefits of time-saving, less consumables requirement, would make great progression of research in neuroscience . | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:18:06Z (GMT). No. of bitstreams: 1 ntu-102-D92548013-1.pdf: 2391426 bytes, checksum: 7946b50920e3439e8e6ba6536852e3ff (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | CATALOG
口試委員會審定書 I ACKNOWLEDGEMENTS III 中文摘要 V ABSTRACT VII FIGURES XVII TABLES XIX CHAPTER 1 INTRODUCTION 1 1.1 Traumatic Brain Injury (TBI) 1 1.2 Injury Pathophysiology 3 1.2.1 Review of Primary Injury in Cellular Level 5 1.2.2 Review of Secondary Injury in Cellular Level 6 1.3 Pharmacotherapy in preventing secondary injury 8 1.4 Mechanism exploration 10 1.5 Introduction of Wogonin 12 CHAPTER 2 REVIEW OF ANIMAL MODELS 17 2.1 Summary of in vivo Experimental Models 19 2.2 Weight-Drop Injury (WDI) Model 21 2.3 Fluid Percussion Model 24 2.4 Impact Acceleration Model 26 2.5 Controlled Cortical Impact (CCI) Model 27 2.5.1 History and Basic Introduction 27 2.5.2 Physiological Exploration in CCI Model 31 2.5.3 Hardware Setup 32 2.6 Summary of TBI animal models 35 CHAPTER 3 MATERIALS AND METHODS 37 3.1 Surgical Procedures 37 3.2 Experimental Protocol and Dose Selection 39 3.2.1 Neurological Functional Evaluation 40 3.2.2 Evaluation of Metabolic Characteristics 42 3.2.3 Tissue Processing and Histology 43 3.2.4 Contusion Volume and hemispheric Enlargement Analysis 43 3.2.5 Evaluation of Blood-Brain Barrier Permeability 44 3.2.6 Brain Water Content 45 3.2.7 FJB Histochemistry 45 3.2.8 TUNEL Staining 46 3.2.9 Immunohistochemistry 46 3.2.10 Quantification of FJB, TUNEL, MPO, and Iba-1 Staining 48 3.2.11 Western Blot Analysis 49 3.2.12 Enzyme-Linked Immunosorbent Assay 50 3.2.13 Gelatin Zymography 51 3.2.14 Real-time Quantitative RT-PCR 51 3.2.15 Electrophoretic Mobility Shift Assay 52 3.2.16 Statistical Analyses 54 CHAPER 4 RESULTS 55 4.1 Metabolic Characteristics 55 4.2 Post-Injury Wogonin Administration Improves Neurobehavioral Recovery 55 4.2.1 Rotarod Test 55 4.2.1 Modified Neurological Severity Score 56 4.2.3 Beam Walk Test 57 4.3 Post-Injury Wogonin Administration Reduces Cortical Contusion Volume, Blood-Brain Barrier Permeability, and Brain Edema 60 4.4 Post-Injury Wogonin Administration Reduces Neuronal and Apoptotic Cell Death 64 4.5 Post-Injury Wogonin Administration Reduces Neutrophil Infiltration and Microglial Activation 67 4.6 Post-injury Wogonin Administration Reduces IL-1β, IL-6, MIP-2, and COX-2 Expression, but has no Effect on MCP-1 Expression 70 4.7 Post-Injury Wogonin Administration Reduces MMP-9 Enzymatic Activity 73 4.8 Post-Injury Wogonin Administration Reduces NF- kappa B Binding Activity 73 4.9 Post-Injury Wogonin Administration Reduces TLR-4 Protein Expression 73 CHAPTER 5 DISCUSSION AND CONCLUSION 79 CHAPTER 6 PROSPECTIVE IN METHODOLOGY 87 6.1 Animal Models in Preclinical Evaluation of Neuroprotective Drugs 87 6.2 Evaluation Methods in Preclinical Evaluation of Neuroprotective Drugs 90 6.2.1 Morphology 92 6.2.2 Histology 95 6.2.3 Extractant Molecular Analysis 96 6.3 Prospective of Technic and Equipment in Wogonin Study 100 6.3.1 Introduction of MRI / DCE-MRI 100 6.3.2 Two photon Laser Excitation Microscopy (TPEM) 102 6.3.3 Surface Plasma Resonance (SPR) biosensor 105 6.4 Conclusion 110 Appendix I FDA Protocol for Drug Development 129 | |
| dc.language.iso | en | |
| dc.subject | 炎症 | zh_TW |
| dc.subject | 漢黃芩素 | zh_TW |
| dc.subject | 創創傷性腦損傷 | zh_TW |
| dc.subject | 皮質撞擊損傷 | zh_TW |
| dc.subject | 神經保護 | zh_TW |
| dc.subject | controlled cortical impaction injury | en |
| dc.subject | wogonin | en |
| dc.subject | Inflammation | en |
| dc.subject | neuroprotection | en |
| dc.subject | Traumatic brain injury | en |
| dc.title | 以動物腦傷模式探討漢黃芩素之神經保護療效及機轉
-整合多領域及多重機轉檢測方法在模式中之應用 | zh_TW |
| dc.title | Investigating Neuroprotective Effects and Mechanism of Wogonin
– A Preclinical Study Using Traumatic Brain Injury Animal Model with Integrative, Multi-Mechanism Approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 趙福杉(Fu-Shan Jaw),林頌然(Sung-Jan Lin),陳思甫(Szu-Fu Chen),李光申(Oscar Kuang-Sheng Lee) | |
| dc.subject.keyword | 創創傷性腦損傷,神經保護,皮質撞擊損傷,炎症,漢黃芩素, | zh_TW |
| dc.subject.keyword | Traumatic brain injury,neuroprotection,controlled cortical impaction injury,Inflammation,wogonin, | en |
| dc.relation.page | 133 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
