請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62996
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃敏銓 | |
dc.contributor.author | Jian-Jr Lee | en |
dc.contributor.author | 李建智 | zh_TW |
dc.date.accessioned | 2021-06-16T16:18:03Z | - |
dc.date.available | 2013-03-11 | |
dc.date.copyright | 2013-03-11 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-02-04 | |
dc.identifier.citation | 1. Kilcline C, Frieden IJ (2008) Infantile hemangiomas: how common are they? A systematic review of the medical literature. Pediatric dermatology 25: 168-173.
2. Drolet BA, Esterly NB, Frieden IJ (1999) Hemangiomas in children. The New England journal of medicine 341: 173-181. 3. (2011) Histopathology of vascular anomalies. 38: 31-44. 4. Robinson CJ, Stringer SE (2001) The splice variants of vascular endothelial growth factor (VEGF) and their receptors. Journal of cell science 114: 853-865. 5. Jinnin M, Medici D, Park L, Limaye N, Liu Y, et al. (2008) Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma. Nature medicine 14: 1236-1246. 6. Tarp MA, Clausen H (2008) Mucin-type O-glycosylation and its potential use in drug and vaccine development. Biochim Biophys Acta 1780: 546-563. 7. Astronomo RD, Burton DR (2010) Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat Rev Drug Discov 9: 308-324. 8. Tian E, Ten Hagen KG (2009) Recent insights into the biological roles of mucin-type O-glycosylation. Glycoconj J 26: 325-334. 9. Ju T, Brewer K, D'Souza A, Cummings RD, Canfield WM (2002) Cloning and expression of human core 1 beta1,3-galactosyltransferase. J Biol Chem 277: 178-186. 10. Ju T, Otto VI, Cummings RD (2011) The Tn antigen-structural simplicity and biological complexity. Angewandte Chemie (International ed in English) 50: 1770-1791. 11. Xia L, McEver RP (2006) Targeted disruption of the gene encoding core 1 beta1-3-galactosyltransferase (T-synthase) causes embryonic lethality and defective angiogenesis in mice. Methods Enzymol 416: 314-331. 12. Wang Y, Ju T, Ding X, Xia B, Wang W, et al. (2010) Cosmc is an essential chaperone for correct protein O-glycosylation. Proceedings of the National Academy of Sciences of the United States of America 107: 9228-9233. 13. Fu J, Gerhardt H, McDaniel JM, Xia B, Liu X, et al. (2008) Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. The Journal of clinical investigation 118: 3725-3737. 14. Wu YM, Liu CH, Hu RH, Huang MJ, Lee JJ, et al. (2011) Mucin glycosylating enzyme GALNT2 regulates the malignant character of hepatocellular carcinoma by modifying the EGF receptor. Cancer Res 71: 7270-7279. 15. Ju T, Aryal RP, Stowell CJ, Cummings RD (2008) Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc. J Cell Biol 182: 531-542. 16. Yu LG (2007) The oncofetal Thomsen-Friedenreich carbohydrate antigen in cancer progression. Glycoconj J 24: 411-420. 17. Heimburg-Molinaro J, Lum M, Vijay G, Jain M, Almogren A, et al. (2011) Cancer vaccines and carbohydrate epitopes. Vaccine 29: 8802-8826. 18. Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5: 526-542. 19. Holmes K, Roberts OL, Thomas AM, Cross MJ (2007) Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cell Signal 19: 2003-2012. 20. Yu Y, Varughese J, Brown LF, Mulliken JB, Bischoff J (2001) Increased Tie2 expression, enhanced response to angiopoietin-1, and dysregulated angiopoietin-2 expression in hemangioma-derived endothelial cells. The American journal of pathology 159: 2271-2280. 21. Berard M, Sordello S, Ortega N, Carrier JL, Peyri N, et al. (1997) Vascular endothelial growth factor confers a growth advantage in vitro and in vivo to stromal cells cultured from neonatal hemangiomas. The American journal of pathology 150: 1315-1326. 22. Walter JW, North PE, Waner M, Mizeracki A, Blei F, et al. (2002) Somatic mutation of vascular endothelial growth factor receptors in juvenile hemangioma. Genes, chromosomes & cancer 33: 295-303. 23. M.T. Chen, E.K. Yeong, S.Y Horng, Intralesional corticosteroid therapy in proliferating head and neck hemangiomas: A review of 155 cases (2000). Journal of Pediatric Surgery 35, 420-423. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62996 | - |
dc.description.abstract | Cosmc醣類轉換酵素伴隨蛋白在嬰兒血管瘤的角色
嬰兒血管瘤(Infantile Hemangioma)又稱草莓型血管瘤(Strawberry Hemangioma),是兒童常見的良性血管瘤。 血管瘤的特點是嬰兒在1~2個月大時先長成一個小紅點,以後快速的增大到1~1½歲時即停止再長大,而慢慢開始自然消退。故前階段稱增生期,1歲半以後稱消退期。 血管瘤是局部血管內皮細胞的異常增生,文獻上指出異常VEGFR2、TEM8、β1-integrin的聚合物鍵結異常,進一步與VEGFR1競爭生長激素而導致細胞過度增生。 Cosmc 是醣類轉換酵素C1GALT1 特有的chaperone,C1GALT1 可以催化Gal-GalNAc 雙醣的形成(core 1 structure),進一步催化O-glycan醣化蛋白的形成。Cosmc在血管生成過程中扮演重要角色,在腫瘤生程中也有重要影響,但在血管瘤中的角色不明。 本實驗室的初步結果已發現,相較於退化後血管瘤和其它血管內皮細胞,Cosmc在嬰兒血管瘤的血管內皮細胞有高度過量表現;而上下游的產物(T antigen)也有相對應的改變。另外,造成Cosmc過度表現的血管內皮細胞(HUVEC),它的表現型也有過度增生的現象;這現象的路徑主要來自於磷酸化的Akt和Erk。反過來說,以siRNA降低Cosmc表現的血管內皮細胞的生長是被抑制的。 本實驗進一步研究發現,血管內皮細胞內的第二型血管生成因子接受器(VEGFR2)能夠被Cosmc所修飾,而進一步影響細胞增生;這原因可能來自於Cosmc過度表現的VEGFR2、降解明顯比原來的慢。相反的,以SiRNA降低Cosmc表現的血管內皮細胞,VEGFR2降解是比較快的。這個關於VEGFR2被Cosmc調控的發現,是前所未見的,而且可以解釋Cosmc在血管瘤的角色。 | zh_TW |
dc.description.abstract | Infantile hemangiomas are localized lesions comprised primarily of aberrant endothelial cells. COSMC plays a crucial role in blood vessel formation and is characterized as a molecular chaperone of T-synthase which catalyzes the synthesis of T antigen (Galβ1,3GalNAc). T antigen expression is associated with tumor malignancy in many cancers. However, roles of COSMC in infantile hemangioma are still unclear. In this study, immunohistochemistry showed that COSMC was upregulated in proliferating hemangiomas compared with involuted hemangiomas. Higher levels of T antigen expression were also observed in the proliferating hemangioma. Overexpression of COSMC significantly enhanced cell growth and phosphorylation of AKT and ERK in human umbilical vein endothelial cells (HUVECs). Conversely, knockdown of COSMC with siRNA inhibited endothelial cell growth. Mechanistic investigation showed that O-glycans were present on VEGFR2 and these structures were modulated by COSMC. Furthermore, VEGFR2 degradation was delayed by COSMC overexpression and facilitated by COSMC knockdown. We also showed that COSMC was able to regulate VEGF-triggered phosphorylation of VEGFR2. Our results suggest that COSMC is a novel regulator for VEGFR2 signaling in endothelial cells and dysregulation of COSMC expression may contribute to the pathogenesis of hemangioma. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:18:03Z (GMT). No. of bitstreams: 1 ntu-102-D98446003-1.pdf: 12999943 bytes, checksum: dae1daabbba124b2348cf6855f1aaab7 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | Signatures of Committees ………….…………………………………………………..ii
誌謝………………………………………………………………………………………iii Abstract (Chinese) …….………………………………………………………………...iv Abstract (English) …………………….…………………………………………………vi 研究計畫之背景及目的………………………………………………………………….1 The background and the purpose of the research project …………………………... 11 初步數據 …………………………….…………………………………………………..19 Preliminary data ………………………………………………………………………... 22 實驗假設 …………………………….………………………………………………….25 Our hypothesis …………………………………………………………………………...26 具體實驗步驟 …………………….……………………………………………………..27 Experimental procedures ……………………………………………………………….. 28 實驗目的 ………………………….…………………………………………………….29 Purpose of the experiment ……………………………………………………………… 30 研究方法與材料……………….………………………………………………………...31 Materials and Methods …………...……………………………………………………...37 實驗結果……….………………………………………………………………………...44 Results …………………………………………………………………………………..61 討論………….…………………………………………………………………………...67 Discussion ……………………………………………………………………………..69 結論………………………………………………………………………………….....72 Conclusions……………………………………………………………………………73 References ……………………………………………………………………….…….75 Main Figures ..………………………....………………………………………………79 圖目錄 Figure 1. 嬰兒血管瘤生長及退化曲線與臨床表現 ……………………….Page 2 Figure 2. 嬰兒血管瘤生長及退化曲線與病理表現 ……………………….Page 3 Figure 3. 大面積嬰兒血管瘤造成外觀及功能障礙; 頭皮血管瘤併潰瘍出血Page 4 Figure 4. Female to male ratio of hemangiomas…………………………….Page 5 Figure 5. Location of infantile hemangioma ………………………………..Page 6 Figure 6. Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression. Molecular Oncology Volume 4, Issue 2 2010 98 - 118 ………………………………………………………………Page 9 Figure 7. Scheme for O-Glycan biosynthesis - Homo sapiens (human), the red circle indicate mucin-type O-glycan biosynthesis. From KEGG PATHWAY Database ………………………………………………………………………Page 10 Figure 8. IHC of Cosmc: Left, infantile hemangioma; right, normal vessels ..Page 19 Figure 9. IHC of Cosmc: Left, infantile hemangioma; right, vascular malformation 20 Figure 10. IHC of Cosmc: Left, proliferating infantile hemangioma; right, involuting hemangioma …………………………………………………………………Page 20 Figure 11. 以Real time PCR,血管瘤、血管內皮細胞、纖維母細胞篩檢O-glycogen ……………………………………………………………………..Page 45 Figure 12. Proliferating stage hemangioma的Cosmc染色,內皮細胞皆有明顯染色 …………………………………………………………………………….Page 46 Figure 13. 以COSMC染色,左placenta、右liver,兩者內皮細胞皆無染色 ……………………………………………………………………………..Page 47 Figure 14. Cosmc染色,左placenta、右liver,兩者內皮細胞皆無染色 …Page 47 Figure 15. 以Cosmc, VVA±sialidase, SNA±sialidase, PNA±sialidase針對血管瘤、肝臟與胎盤的染色結果 ……………………………………………………..Page 48 Figure 16. COSMC is overexpressed in proliferating hemangiomas……….....Page 79 Figure 17. Expression of COMSC in HUVECs and EA.hy926 cells…………Page 81 Figure 18. COSMC overexpression enhances cell growth in HUVECs……….Page 83 Figure 19. Roles of AKT and ERK signaling pathways in COSMC-enhanced cell proliferation…………………………………………………………………...Page 84 Figure 20. COSMC overexpression modulates O-glycans on VEGFR2….…...Page 85 Figure 21. COSMC modulates protein degradation of VEGFR2……………...Page 87 Figure 22. Immunohistochemistry of COSMC in normal blood vessels………Page 88 Figure 23. Immunohistochemistry of VVA in proliferating hemangioma and liver…………………………………………………………………………...Page 89 Figure 24. Effects of COSMC on cell proliferation……………………………Page 90 | |
dc.language.iso | zh-TW | |
dc.title | Cosmc醣類轉換酵素伴隨蛋白在嬰兒血管瘤的角色 | zh_TW |
dc.title | The role of Cosmc in infantile hemangioma | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 陳明庭 | |
dc.contributor.oralexamcommittee | 李明學,徐明洸,廖玟潔,賴逸儒 | |
dc.subject.keyword | 血管瘤,伴隨蛋白,醣基因,血管新生,HUVEC, | zh_TW |
dc.subject.keyword | Hemangioma,O-glycosyltransferase,T synthase,HUVEC,PNA,chaperone,VEGFR2, | en |
dc.relation.page | 91 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-02-05 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
顯示於系所單位: | 解剖學暨細胞生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 12.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。