請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62992完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙福杉(Fu-Shan Jaw) | |
| dc.contributor.author | Pen-Li Lu | en |
| dc.contributor.author | 魯本立 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:17:53Z | - |
| dc.date.available | 2014-02-21 | |
| dc.date.copyright | 2013-02-21 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-04 | |
| dc.identifier.citation | Aertsen, A.M., Gerstein, G.L., 1985. Evaluation of neuronal connectivity: sensitivity of cross-correlation. Brain Res. 340, 341-54.
Al-Saadi, M.H., Nadeau, V., Dickinson, M.R., 2006. A novel modelling and experimental technique to predict and measure tissue temperature during CO2 laser stimuli for human pain studies. Lasers Med Sci. 21, 95-100. Alkire, M.T., McReynolds, J.R., Hahn, E.L., Trivedi, A.N., 2007. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology. 107, 264-72. Alkire, M.T., Asher, C.D., Franciscus, A.M., Hahn, E.L., 2009. Thalamic microinfusion of antibody to a voltage-gated potassium channel restores consciousness during anesthesia. Anesthesiology. 110, 766-73. Andersen, E., Dafny, N., 1983a. An ascending serotonergic pain modulation pathway from the dorsal raphe nucleus to the parafascicularis nucleus of the thalamus. Brain Res. 269, 57-67. Andersen, E., Dafny, N., 1983b. Dorsal raphe stimulation reduces responses of parafascicular neurons to noxious stimulation. Pain. 15, 323-31. Baron, R., 2000. Peripheral neuropathic pain: from mechanisms to symptoms. Clin J Pain. 16, S12-20. Berkley, K.J., Benoist, J.M., Gautron, M., Guilbaud, G., 1995. Responses of neurons in the caudal intralaminar thalamic complex of the rat to stimulation of the uterus, vagina, cervix, colon and skin. Brain Res. 695, 92-5. Bogen, J.E., 1995a. On the neurophysiology of consciousness: Part II. Constraining the semantic problem. Conscious Cogn. 4, 137-58. Bogen, J.E., 1995b. On the neurophysiology of consciousness: I. An overview. Conscious Cogn. 4, 52-62. Bromm, B., Neitzel, H., Tecklenburg, A., Treede, R.D., 1983. Evoked cerebral potential correlates of C-fibre activity in man. Neurosci Lett. 43, 109-14. Bromm, B., Treede, R.D., 1983. CO2 laser radiant heat pulses activate C nociceptors in man. Pflugers Arch. 399, 155-6. Brown, E.N., Lydic, R., Schiff, N.D., 2010. General anesthesia, sleep, and coma. N Engl J Med. 363, 2638-50. Brugmans, M.J., Kemper, J., Gijsbers, G.H., van der Meulen, F.W., van Gemert, M.J., 1991. Temperature response of biological materials to pulsed non-ablative CO2 laser irradiation. Lasers Surg Med. 11, 587-94. Buchel, C., Bornhovd, K., Quante, M., Glauche, V., Bromm, B., Weiller, C., 2002. Dissociable neural responses related to pain intensity, stimulus intensity, and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci. 22, 970-6. Bushnell, M.C., Duncan, G.H., 1989. Sensory and affective aspects of pain perception: is medial thalamus restricted to emotional issues? Exp Brain Res. 78, 415-8. Cano, M., Bezdudnaya, T., Swadlow, H.A., Alonso, J.M., 2006. Brain state and contrast sensitivity in the awake visual thalamus. Nat Neurosci. 9, 1240-2. Carrive, P., Churyukanov, M., Le Bars, D., 2011. A reassessment of stress-induced 'analgesia' in the rat using an unbiased method. Pain. 152, 676-86. Casey, K.L., Minoshima, S., Berger, K.L., Koeppe, R.A., Morrow, T.J., Frey, K.A., 1994. Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. J Neurophysiol. 71, 802-7. Castaigne, P., Lhermitte, F., Buge, A., Escourolle, R., Hauw, J.J., Lyon-Caen, O., 1981. Paramedian thalamic and midbrain infarct: clinical and neuropathological study. Ann Neurol. 10, 127-48. Chang, C., Shyu, B.C., 2001. A fMRI study of brain activations during non-noxious and noxious electrical stimulation of the sciatic nerve of rats. Brain Res. 897, 71-81. Chiang, C.Y., Zhang, S., Park, S.J., Hu, J.W., Dostrovsky, J.O., Sessle, B.J., 2005. Mechanoreceptive field and response properties of nociceptive neurons in ventral posteromedial thalamic nucleus of the rat. Thalamus & Related Sysems. 3, 41-51. Choi, B., Pearce, J.A., Welch, A.J., 2000. Modelling infrared temperature measurements: implications for laser irradiation and cryogen cooling studies. Phys Med Biol. 45, 541-57. Chudler, E.H., 1998. Response properties of neurons in the caudate-putamen and globus pallidus to noxious and non-noxious thermal stimulation in anesthetized rats. Brain Res. 812, 283-8. Churchill, L., Zahm, D.S., Kalivas, P.W., 1996. The mediodorsal nucleus of the thalamus in rats--I. forebrain gabaergic innervation. Neuroscience. 70, 93-102. Coghill, R.C., Talbot, J.D., Evans, A.C., Meyer, E., Gjedde, A., Bushnell, M.C., Duncan, G.H., 1994. Distributed processing of pain and vibration by the human brain. J Neurosci. 14, 4095-108. Cohen, M.L., 1977. Measurement of the thermal properties of human skin. A review. J Invest Dermatol. 69, 333-8. Conde, F., Audinat, E., Maire-Lepoivre, E., Crepel, F., 1990. Afferent connections of the medial frontal cortex of the rat. A study using retrograde transport of fluorescent dyes. I. Thalamic afferents. Brain Res Bull. 24, 341-54. Cornwall, J., Phillipson, O.T., 1988. Afferent projections to the dorsal thalamus of the rat as shown by retrograde lectin transport--I. The mediodorsal nucleus. Neuroscience. 24, 1035-49. Curcio, J.A., Petty, C.C., 1951. The near Infrared Absorption Spectrum of Liquid Water. Journal of the Optical Society of America. 41, 302-304. de Dear, R.J., Arens, E., Hui, Z., Oguro, M., 1997. Convective and radiative heat transfer coefficients for individual human body segments. Int J Biometeorol. 40, 141-56. Dempsey, E.W., Morison, R.S., 1941. The production of rhythmically recurrent cortical potentials after localized thalamic stimulation. Am. J. Physiol. 135, 293-300. Devor, M., Carmon, A., Frostig, R., 1982. Primary afferent and spinal sensory neurons that respond to brief pulses of intense infrared laser radiation: a preliminary survey in rats. Exp Neurol. 76, 483-94. Dong, W.K., Ryu, H., Wagman, I.H., 1978. Nociceptive responses of neurons in medial thalamus and their relationship to spinothalamic pathways. J Neurophysiol. 41, 1592-1613. Dostrovsky, J.O., Guilbaud, G., 1990. Nociceptive responses in medial thalamus of the normal and arthritic rat. Pain. 40, 93-104. Echlin, F.A., Arnett, V., Zoll, J., 1952. Paroxysmal high voltage discharges from isolated and partially isolated human and animal cerebral cortex. Electroencephalogr Clin Neurophysiol. 4, 147-64. Fan, R.J., Kung, J.C., Olausson, B.A., Shyu, B.C., 2009. Nocifensive behaviors components evoked by brief laser pulses are mediated by C fibers. Physiol Behav. 98, 108-17. Finney, D.J., Stevens, W.L., 1948. A table for the calculation of working probits and weights in probit analysis. Biometrika. 35, 191-201. Frahm, K.S., Andersen, O.K., Arendt-Nielsen, L., Morch, C.D., 2010. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation. Biomed Eng Online. 9, 69. Fuller, P.M., Sherman, D., Pedersen, N.P., Saper, C.B., Lu, J., 2011. Reassessment of the structural basis of the ascending arousal system. J Comp Neurol. 519, 933-56. Gauriau, C., Bernard, J.F., 2004. A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J Comp Neurol. 468, 24-56. Giesler, G.J., Jr., Menetrey, D., Basbaum, A.I., 1979. Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat. J Comp Neurol. 184, 107-26. Glenn, L.L., Steriade, M., 1982. Discharge rate and excitability of cortically projecting intralaminar thalamic neurons during waking and sleep states. J Neurosci. 2, 1387-404. Goldman-Rakic, P.S., 2011. Circuitry of Primate Prefrontal Cortex and Regulation of Behavior by Representational Memory, Vol. Gowrishankar, T.R., Stewart, D.A., Martin, G.T., Weaver, J.C., 2004. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion. Biomed Eng Online. 3, 42. Groenewegen, H.J., 1988. Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience. 24, 379-431. Haimi-Cohen, R., Cohen, A., Carmon, A., 1983. A model for the temperature distribution in skin noxiously stimulated by a brief pulse of CO2 laser radiation. J Neurosci Methods. 8, 127-37. Henry, C.E., Scoville, W.B., 1952. Suppression-burst activity from isolated cerebral cortex in man. Electroencephalogr Clin Neurophysiol. 4, 1-22. Holmes, K.R., Adams, T., 1975. Epidermal thermal conductivity and stratum corneum hydration in cat footpad. Am J Physiol. 228, 1903-8. Horecker, B.L., 1943. The absorption spectra of hemoglobin and its derivatives in the visible and near infra-red regions. Journal of Biological Chemistry. 148, 173-183. Hughes, J.R., 1986. Extreme stereotypy in the burst suppression pattern. Clin Electroencephalogr. 17, 162-8. Jansen, E.D., van Leeuwen, T.G., Motamedi, M., Borst, C., Welch, A.J., 1994. Temperature dependence of the absorption coefficient of water for midinfrared laser radiation. Lasers Surg Med. 14, 258-68. Jasmin, L., Rabkin, S.D., Granato, A., Boudah, A., Ohara, P.T., 2003. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature. 424, 316-20. Jasmin, L., Burkey, A.R., Granato, A., Ohara, P.T., 2004. Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol. 468, 425-40. Jiang, S.C., Ma, N., Li, H.J., Zhang, X.X., 2002. Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns. 28, 713-7. Jones, E.G., 2007. The Thalamus, Vol., Cambridge University Press. Kakigi, R., Shibasaki, H., Ikeda, A., 1989. Pain-related somatosensory evoked potentials following CO2 laser stimulation in man. Electroencephalogr Clin Neurophysiol. 74, 139-46. Kakigi, R., Koyama, S., Hoshiyama, M., Kitamura, Y., Shimojo, M., Watanabe, S., 1995. Pain-related magnetic fields following painful CO2 laser stimulation in man. Neurosci Lett. 192, 45-8. Kinomura, S., Larsson, J., Gulyas, B., Roland, P.E., 1996. Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science. 271, 512-5. Kojundzic, S.L., Dujmovic, I., Grkovic, I., Sapunar, D., 2008. Regional differences in epidermal thickness and behavioral response following partial denervation of the rat paw. Int J Neurosci. 118, 1748-62. Kramer, J.L., Haefeli, J., Jutzeler, C.R., 2012. An objective measure of stimulus-evoked pain. J Neurosci. 32, 12981-2. Krettek, J.E., Price, J.L., 1977. The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol. 171, 157-91. Krout, K.E., Belzer, R.E., Loewy, A.D., 2002. Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol. 448, 53-101. Kuo, C.C., Yen, C.T., 2005. Comparison of anterior cingulate and primary somatosensory neuronal responses to noxious laser-heat stimuli in conscious, behaving rats. J Neurophysiol. 94, 1825-36. Lamour, Y., Dutar, P., Rascol, O., Jobert, A., 1986. Basal forebrain neurons projecting to the rat frontoparietal cortex: electrophysiological and pharmacological properties. Brain Res. 362, 122-31. Lavigne, G.J., Okura, K., Smith, M.T., 2009. Pain Perception-Nociception during sleep. In: Science of pain. Vol., A.I. Basbaum, M.C. Bushnell, ed.^eds. Elsevier, pp. 783-794. Leem, J.W., Willis, W.D., Chung, J.M., 1993. Cutaneous sensory receptors in the rat foot. J Neurophysiol. 69, 1684-99. Lu, C.C., Lin, T.C., Yu, M.H., Chen, T.L., Lin, C.Y., Chiang, J.S., Ho, S.T., 2009. Effects of changes in alveolar ventilation on isoflurane arterial blood concentration and its uptake into the human body. Pharmacology. 83, 150-6. Lukatch, H.S., Kiddoo, C.E., Maciver, M.B., 2005. Anesthetic-induced burst suppression EEG activity requires glutamate-mediated excitatory synaptic transmission. Cereb Cortex. 15, 1322-31. Lund, R.D., Webster, K.E., 1967. Thalamic afferents from the spinal cord and trigeminal nuclei. An experimental anatomical study in the rat. J Comp Neurol. 130, 313-28. Luo, Z., Yu, M., Smith, S.D., Kritzer, M., Du, C., Ma, Y., Volkow, N.D., Glass, P.S., Benveniste, H., 2009. The effect of intravenous lidocaine on brain activation during non-noxious and acute noxious stimulation of the forepaw: a functional magnetic resonance imaging study in the rat. Anesth Analg. 108, 334-44. Martin, W.J., Hohmann, A.G., Walker, J.M., 1996. Suppression of noxious stimulus-evoked activity in the ventral posterolateral nucleus of the thalamus by a cannabinoid agonist: correlation between electrophysiological and antinociceptive effects. J Neurosci. 16, 6601-11. McMullan, S., Simpson, D.A., Lumb, B.M., 2004. A reliable method for the preferential activation of C- or A-fibre heat nociceptors. J Neurosci Methods. 138, 133-9. Mense, S., 2009. Anatomy of Nociceptors. In: Science of Pain. Vol. 1, A.I. Basbaum, M.C. Bushnell, ed.^eds. Elsevier, pp. 11-38. Miller, J.W., Ferrendelli, J.A., 1990. Characterization of GABAergic seizure regulation in the midline thalamus. Neuropharmacology. 29, 649-55. Mogenson, G.J., Ciriello, J., Garland, J., Wu, M., 1987. Ventral pallidum projections to mediodorsal nucleus of the thalamus: an anatomical and electrophysiological investigation in the rat. Brain Res. 404, 221-30. Mor, J., Carmon, A., 1975. Laser emitted radiant heat for pain research. Pain. 1, 233-7. Newman, E.L., Gupta, K., Climer, J.R., Monaghan, C.K., Hasselmo, M.E., 2012. Cholinergic modulation of cognitive processing: insights drawn from computational models. Front Behav Neurosci. 6, 24. Ngawhirunpat, T., Hatanaka, T., Katayama, K., Yoshikawa, H., Kawakami, J., Adachi, I., 2002. Changes in electrophysiological properties of rat skin with age. Biol Pharm Bull. 25, 1192-6. Nikolajsen, L., Staehelin Jensen, T., 2000. Phantom limb pain. Curr Rev Pain. 4, 166-70. Okifuji, A., Hare, B.D., 2011. Do sleep disorders contribute to pain sensitivity? Curr Rheumatol Rep. 13, 528-34. Paxinos, G., Watson, C., 1998. The Rat Brain, Vol., Academic Press, San Diego. Pennes, H.H., 1998. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 85, 5-34. Peschanski, M., Guilbaud, G., Gautron, M., Besson, J.M., 1980. Encoding of noxious heat messages in neurons of the ventrobasal thalamic complex of the rat. Brain Res. 197, 401-13. Peschanski, M., Guilbaud, G., Gautron, M., 1981. Posterior intralaminar region in rat: neuronal responses to noxious and nonnoxious cutaneous stimuli. Exp Neurol. 72, 226-38. Peyron, R., Garcia-Larrea, L., Gregoire, M.C., Costes, N., Convers, P., Lavenne, F., Mauguiere, F., Michel, D., Laurent, B., 1999. Haemodynamic brain responses to acute pain in humans: sensory and attentional networks. Brain. 122 ( Pt 9), 1765-80. Peyron, R., Laurent, B., Garcia-Larrea, L., 2000. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin. 30, 263-88. Pope, R.M., Fry, E.S., 1997. Absorption spectrum (380-700 nm) of pure water .2. Integrating cavity measurements. Applied Optics. 36, 8710-8723. Prieto-Gomez, B., Dafny, N., Reyes-Vazquez, C., 1989. Dorsal raphe stimulation, 5-HT and morphine microiontophoresis effects on noxious and nonnoxious identified neurons in the medial thalamus of the rat. Brain Res Bull. 22, 937-43. Rainville, P., Duncan, G.H., Price, D.D., Carrier, B., Bushnell, M.C., 1997. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science. 277, 968-71. Rampil, I.J., 1998. A primer for EEG signal processing in anesthesia. Anesthesiology. 89, 980-1002. Ray, J.P., Price, J.L., 1992. The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography. J Comp Neurol. 323, 167-97. Ray, J.P., Price, J.L., 1993. The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol. 337, 1-31. Reep, R.L., Corwin, J.V., King, V., 1996. Neuronal connections of orbital cortex in rats: topography of cortical and thalamic afferents. Exp Brain Res. 111, 215-32. Ren, Y., Zhang, L., Lu, Y., Yang, H., Westlund, K.N., 2009. Central lateral thalamic neurons receive noxious visceral mechanical and chemical input in rats. J Neurophysiol. 102, 244-58. Saade, N.E., Al Amin, H., Abdel Baki, S., Chalouhi, S., Jabbur, S.J., Atweh, S.F., 2007. Reversible attenuation of neuropathic-like manifestations in rats by lesions or local blocks of the intralaminar or the medial thalamic nuclei. Exp Neurol. 204, 205-19. Schiff, N.D., Giacino, J.T., Kalmar, K., Victor, J.D., Baker, K., Gerber, M., Fritz, B., Eisenberg, B., Biondi, T., O'Connor, J., Kobylarz, E.J., Farris, S., Machado, A., McCagg, C., Plum, F., Fins, J.J., Rezai, A.R., 2007. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature. 448, 600-3. Schiff, N.D., 2008. Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann N Y Acad Sci. 1129, 105-18. Schmahmann, J.D., 2003. Vascular syndromes of the thalamus. Stroke. 34, 2264-78. Shyu, B.C., Han, Y.S., Yen, J.T., 1995. Spinal pathways of nociceptive information evoked by short CO2 laser pulse in rats. Chin J Physiol. 38, 27-33. Sikes, R.W., Vogt, B.A., 1992. Nociceptive neurons in area 24 of rabbit cingulate cortex. J Neurophysiol. 68, 1720-32. Silva, A., Cardoso-Cruz, H., Silva, F., Galhardo, V., Antunes, L., 2010. Comparison of anesthetic depth indexes based on thalamocortical local field potentials in rats. Anesthesiology. 112, 355-63. Simone, D.A., Hanson, M.E., Bernau, N.A., Pubols, B.H., Jr., 1993. Nociceptive neurons of the raccoon lateral thalamus. J Neurophysiol. 69, 318-28. Steriade, M., Glenn, L.L., 1982. Neocortical and caudate projections of intralaminar thalamic neurons and their synaptic excitation from midbrain reticular core. J Neurophysiol. 48, 352-71. Steriade, M., Datta, S., Pare, D., Oakson, G., Curro Dossi, R.C., 1990. Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci. 10, 2541-59. Steriade, M., Amzica, F., Contreras, D., 1994. Cortical and thalamic cellular correlates of electroencephalographic burst-suppression. Electroencephalogr Clin Neurophysiol. 90, 1-16. Stoelzel, C.R., Bereshpolova, Y., Swadlow, H.A., 2009. Stability of thalamocortical synaptic transmission across awake brain states. J Neurosci. 29, 6851-9. Timmermann, L., Ploner, M., Haucke, K., Schmitz, F., Baltissen, R., Schnitzler, A., 2001. Differential coding of pain intensity in the human primary and secondary somatosensory cortex. J Neurophysiol. 86, 1499-503. Treede, R.D., Lorenz, J., Baumgartner, U., 2003. Clinical usefulness of laser-evoked potentials. Neurophysiol Clin. 33, 303-14. Tsai, M.L., Kuo, C.C., Sun, W.Z., Yen, C.T., 2004. Differential morphine effects on short- and long-latency laser-evoked cortical responses in the rat. Pain. 110, 665-74. Tseng, W.T., Yen, C.T., Tsai, M.L., 2011. A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats. J Neurosci Methods. 201, 368-76. Van de Sompel, D., Kong, T.Y., Ventikos, Y., 2009. Modelling of experimentally created partial-thickness human skin burns and subsequent therapeutic cooling: a new measure for cooling effectiveness. Med Eng Phys. 31, 624-31. Van der Werf, Y.D., Witter, M.P., Groenewegen, H.J., 2002. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev. 39, 107-40. Vanderwolf, C.H., Stewart, D.J., 1988. Thalamic control of neocortical activation: a critical re-evaluation. Brain Res Bull. 20, 529-38. Vives, F., Mogenson, G.J., 1985. Electrophysiological evidence that the mediodorsal nucleus of the thalamus is a relay between the ventral pallidum and the medial prefrontal cortex in the rat. Brain Res. 344, 329-37. Walsh, J.T., Jr., Deutsch, T.F., 1989. Er:YAG laser ablation of tissue: measurement of ablation rates. Lasers Surg Med. 9, 327-37. Wang, C.C., Shyu, B.C., 2004. Differential projections from the mediodorsal and centrolateral thalamic nuclei to the frontal cortex in rats. Brain Res. 995, 226-35. Wang, H.C., Chai, S.C., Wu, Y.S., Wang, C.C., 2007. Does the medial thalamus play a role in the negative affective component of visceral pain in rats? Neurosci Lett. 420, 80-4. Wilson, H.D., Uhelski, M.L., Fuchs, P.N., 2008. Examining the role of the medial thalamus in modulating the affective dimension of pain. Brain Res. 1229, 90-9. Wilson, S.B., Spence, V.A., 1988. A tissue heat transfer model for relating dynamic skin temperature changes to physiological parameters. Phys Med Biol. 33, 895-912. Yamamoto, T., Katayama, Y., Kobayashi, K., Oshima, H., Fukaya, C., Tsubokawa, T., 2010. Deep brain stimulation for the treatment of vegetative state. Eur J Neurosci. 32, 1145-51. Yang, P.F., Chen, D.Y., Hu, J.W., Chen, J.H., Yen, C.T., 2011. Functional tracing of medial nociceptive pathways using activity-dependent manganese-enhanced MRI. Pain. 152, 194-203. Yang, S.W., Follett, K.A., Piper, J.G., Ness, T.J., 1998. The effect of morphine on responses of mediodorsal thalamic nuclei and nucleus submedius neurons to colorectal distension in the rat. Brain Res. 779, 41-52. Yen, C.T., Fu, T.C., Chen, R.C., 1989. Distribution of thalamic nociceptive neurons activated from the tail of the rat. Brain Res. 498, 118-22. Yen, C.T., Huang, C.H., Fu, S.E., 1994. Surface temperature change, cortical evoked potential and pain behavior elicited by CO2 lasers. Chin J Physiol. 37, 193-9. Yen, C.T., Shaw, F.Z., 2003. Reticular thalamic responses to nociceptive inputs in anesthetized rats. Brain Res. 968, 179-91. Yeomans, D.C., Proudfit, H.K., 1994. Characterization of the foot withdrawal response to noxious radiant heat in the rat. Pain. 59, 85-94. Yeomans, D.C., Proudfit, H.K., 1996. Nociceptive responses to high and low rates of noxious cutaneous heating are mediated by different nociceptors in the rat: electrophysiological evidence. Pain. 68, 141-50. Zhang, Y., Wang, N., Wang, J.Y., Chang, J.Y., Woodward, D.J., Luo, F., 2011. Ensemble encoding of nociceptive stimulus intensity in the rat medial and lateral pain systems. Mol Pain. 7, 64. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62992 | - |
| dc.description.abstract | 內背側核(mediodorsal nucleus, MD) 及板內側核(intralaminar nuclei, IL)是內側視丘處理傷害性痛覺的核區之一。此外,臨床上腦傷病人失去意識的症狀凸顯出此腦區對於清醒功能的重要性。我們假設內側視丘較適於警覺功能並採用疼痛刺激-反應關係、不同大腦狀態下的疼痛刺激-反應關係、麻醉轉清醒、以及昏昏欲睡轉清醒四個實驗來探討內側視丘參與傷害性痛覺及覺醒的功能。由於適當的傷害性刺激對清醒動物的疼痛研究有關鍵性的影響,本論文第一個實驗主旨為定量分析雷射熱痛刺激。採用高速拍攝的紅外線熱像儀表現出短脈衝雷射在大鼠後腳掌表皮上造成的熱分佈,並利用熱傳導模型預測能興奮皮下傷害性感受器的雷射強度。第二個實驗利用埋設電極的大鼠探討在麻醉、清醒、及昏昏欲睡時雷射熱引起的刺激-反應關係。我們發現,當痛刺激給予在昏昏欲睡時,內側視丘的強度識別能力優於當刺激給予在清醒時。麻醉時則不具強度識別能力。昏昏欲睡時增強的強度識別能力可能由於內側視丘的警醒功能。第三個實驗利用麻醉動物探討其機械性痛刺激與熱痛刺激-反應關係。80%內側視丘神經元反應曲線呈現階梯形或鐘形,顯示內側視丘操作模式適於分辨傷害性刺激的發生與否,而不適於識別強度。第四個實驗利用埋設電極的大鼠探討神經活性與覺醒時間順序。我們發現最早的板內側核會領先內背側核及外側視丘核放電,且大部分的板內側核會領先覺醒的腦波。結果支持板內側核能引起覺醒。綜合以上結果,我們推論內背側核及板內側核具有覺醒的功能並參與痛覺警醒處理過程。 | zh_TW |
| dc.description.abstract | Mediodorsal (MD) and intralaminar (IL) thalamic nuclei are critical relays of nociception and pain in the medial thalamus (MT). Clinical cases implicate the importance of this area related to consciousness. The purpose of the present thesis is to test how MT neurons participate in nociception and arousal function. Four series of experiments were performed. Stimulus-response function (SRF) of MT neurons to noxious stimuli was done to test the hypothesis that MT neurons are better suited as an alarm system. To prepare an adequate noxious stimulus to free-moving animals, we used short-pulse CO2 laser. In Experiment 1, we first examined quantitatively this methodology. Ultra-fast infrared camera was used to capture the temporal and spatial distribution of heat over the skin surface induced by short-pulse CO2 laser. We also used mathematical modeling to predict the temporal and spatial pattern of activation of nociceptors in the epidermis. In Experiment 2, we used microelectrode-implanted rats to evaluate laser-heat evoked SRF of MD and IL neuronal activities under anesthetized, awake, and drowsy conditions. We found the coding ability of medial thalamic SRF was better when laser applied in drowsy state. Coding ability was flat in anesthetized state. These data suggest a function of noxious arousal. This property was absent in lateral thalamus. In Experiment 3, we used acute preparation of anesthetized rats to evaluate mechanical and thermal SRF of MD and IL neuronal activities. We found 80% MT units had a step-like or bell shaped SRF, suggesting their operational principle was better in distinguishing innocuous versus noxious stimuli rather than in coding intensity. In Experiment 4, we used microelectrode-implanted rats to evaluate sequence of arousal and neuronal firing in MD and IL. We found that neurons in IL led those in MD and lateral thalamus. Most thalamic activities led EEG arousal. The result suggested IL could participate in the induction of arousal. The series of studies jointly provide the functional evidence for medial thalamus involved in the arousal induction of nociception. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:17:53Z (GMT). No. of bitstreams: 1 ntu-102-F94548023-1.pdf: 3908098 bytes, checksum: bfc8732afb0662ea1f33e4283224ff76 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II CONTENTS III LIST OF TABLES AND FIGURES VII 中文摘要及關鍵字 X ABSTRACT AND KEYWORDS XII CHAPTER 1. INTRODUCTION 1 1.1. ANATOMICAL AND FUNCTIONAL EVIDENCE FOR MD AND IL PARTICIPATING IN NOCICEPTION PROCESSING 1 1.2. INVOLVEMENT OF INTRALAMINAR AND MEDIODORSAL THALAMIC NUCLEUS IN NOXIOUS AROUSAL AND CONSCIOUSNESS 4 1.3. STIMULUS-RESPONSE STRATEGY 5 1.4. SHORT PULSE LASER-HEAT AS QUANTITATIVE NOXIOUS STIMULATION 6 1.5. HYPOTHESIS AND SPECIFIC AIMS 7 CHAPTER 2. TEMPORAL AND SPATIAL TEMPERATURE DISTRIBUTION IN THE HIND PAW SKIN OF RATS INDUCED BY SHORT-PULSE CO2 LASER 8 2.1. INTRODUCTION 8 2.2. MATERIALS & METHODS 10 Measurement of surface temperature 10 Experimental protocols 12 Estimation of sub-surface temperature by finite element model (FEM) 13 Paw lifting ratio measurement 14 Data analysis 14 2.3. RESULTS 15 Measurement of surface temperature 15 Mathematical reconstruction of surface temperature 16 Mathematical prediction of sub-surface temperature 17 2.4. DISCUSSION 19 TABLE 23 FIGURES 24 CHAPTER 3. LASER-HEAT STIMULUS-RESPONSE FUNCTION OF MEDIAL AND LATERAL THALAMUS UNDER DIFFERENT BRAIN STATES 32 3.1. INTRODUCTION 32 3.2. MATERIALS AND METHODS 33 Implant surgery 33 Experimental protocol 34 Data analysis and statistics 34 3.3. RESULTS 35 Components of thalamic responses evoked by laser-heat under isoflurane anesthesia 35 Stimulus-response function of thalamic responses evoked by noxious laser-heat under isoflurane anesthesia 36 Components of thalamic responses evoked by laser-heat during wakefulness 36 Enhanced stimulus-response function of medial thalamic responses evoked by noxious laser-heat during conscious but drowsy state 37 3.4. DISCUSSION 38 Comparison of Laser-heat evoked responses in medial and lateral thalamus 38 Functional interpretation of different state-dependent laser-heat evoked responses in medial and lateral thalamus 39 TABLE 41 FIGURES 42 CHAPTER 4. MECHANICAL AND THERMAL STIMULUS-RESPONSE FUNCTION OF MEDIAL THALAMUS UNDER ANESTHESIA 67 4.1. INTRODUCTION 67 4.2. MATERIALS AND METHODS 68 Anesthesia concentration during recording 69 Electrophysiological recording 69 Experimental protocol 70 Data Analysis and statistics 71 4.3. RESULTS 73 Differential distribution of noxious-excitatory and noxious-inhibitory units 74 Stimulus-response functions of noxious-excitatory and noxious-inhibitory neurons 74 Correlation changes of medial thalamic neurons during noxious stimulation 77 4.4. DISCUSSION 78 Step-function like stimulus-response function of medial thalamus 78 Distribution of nociceptive-excitatory and -inhibitory neurons in medial thalamus 80 TABLES 83 FIGURES 86 CHAPTER 5. RELATIONSHIP OF MEDIAL THALAMIC ACTIVITY TO EEG DESYNCHRONIZATION 97 5.1. INTRODUCTION 97 5.2. MATERIALS AND METHODS 99 Experimental protocol 99 Data analysis and statistics 99 5.3. RESULTS 100 Transition from anesthesia to wakefulness 101 Transition from drowsiness to wakefulness 101 5.4. DISCUSSION 103 Relationship of medial thalamic activities and EEG spikes 103 Medial thalamic activities contribute to arousal 104 FIGURES 106 CHAPTER 6. GENERAL DISCUSSION AND CONCLUSION 118 APPENDIX: ABBREVIATION LIST 121 REFERENCES 123 | |
| dc.language.iso | zh-TW | |
| dc.subject | 內側視丘 | zh_TW |
| dc.subject | 疼痛 | zh_TW |
| dc.subject | 傷害覺 | zh_TW |
| dc.subject | 警醒 | zh_TW |
| dc.subject | 大鼠 | zh_TW |
| dc.subject | alarm | en |
| dc.subject | pain | en |
| dc.subject | medial thalamus | en |
| dc.subject | rat | en |
| dc.subject | nociception | en |
| dc.title | 大鼠內側視丘核警醒功能的電生理研究 | zh_TW |
| dc.title | Electrophysiological study of alarm function of
medial thalamic nuclei of rats | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 嚴震東(Chen-Tung Yen) | |
| dc.contributor.oralexamcommittee | 黃基礎(Ji-Chuu Hwang),蕭富仁(Fu-Zen Shaw),閔明源(Ming-Yuan Min),蔡孟利(Meng-Li Tsai),徐百川(Bai-Chuang Shyu) | |
| dc.subject.keyword | 內側視丘,疼痛,傷害覺,警醒,大鼠, | zh_TW |
| dc.subject.keyword | medial thalamus,pain,nociception,alarm,rat, | en |
| dc.relation.page | 136 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-05 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
