請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62974完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 簡淑華 | |
| dc.contributor.author | Kuan-Hung Lin | en |
| dc.contributor.author | 林冠宏 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:17:06Z | - |
| dc.date.available | 2018-02-21 | |
| dc.date.copyright | 2013-02-21 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-05 | |
| dc.identifier.citation | 1.左峻德 (民90) 。燃料電池之特性與運用。行政院國家科學委員會科學技術資料中心。
2.工業研究院材料化學試驗所 (民97)。工業材料雜誌,第250期。 3.http://www.energyland.emsd.gov.hk/tc/energy/renewable/biomass.html. 4.Peńa, M. A., & Fierro, J. L. G. (2001). Chemical Structure and Performance of Pervoskite Oxides. Chem. Rev., 101, pp.1981–2017. 5.Jin, S., Gasteiger, H. A., Yabuuchi, N., Haruyuki, N., Goodenough, J. B., & Yang, S. H. (2011). Design principle for oxygen-reduction activity on perovskite oxide catalysts for fuel cell and metal-air batteries. Nat. Chem., 3, pp.546–550. 6.Li, Y., Yao, S., Wen, W., Xue, L., & Yan, Y. (2010). Sol–gel combustion synthesis and visible-light-driven photocatalytic property of perovskite LaNiO3. J. Alloy Compd., (491), pp.560–564. 7.Rivas, M. E., Fierro, J. L. G., Goldwasser, M. R., Pietri, E., Perez-Zurita M. J., Griboval-Constant, A., & Leclercq, G. (2008). Structural features and performance of LaNi1−xRhxO3 system for the dry reforming of methane. Appl. Catal. A: Gen., (344), pp.10-19. 8.Lima, S. M., Silva, A. M., Costa, L. O. O., Assaf, J. M., Jacobs, G., Davis, B. H., Mattos, L. V., & Noronha, F. B. (2010). Evaluation of the performance of Ni/La2O3 catalyst prepared from LaNiO3 perovskite-type oxides for the production of hydrogen through steam reforming and oxidative steam reforming of ethanol. Appl. Catal. A: Gen., (377), pp.181–190. 9.Wang, X., Wang, M., Song, H., & Ding, B. (2006). A simple sol–gel technique for preparing lanthanum oxide nanopowders. Mater. Lett., (60), pp2261–2265. 10.Bilecka, I., & Niederberger, M. (2010). Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale, (2), pp.1358-1374. 11.Mattos, L. V., Jacobs, G., Davis, B. H., & Noronha, F. B. (2012). Production of hydrogen from ethano: Rreview of reaction mechanism and catalyst deactivation. Chem. Rev., (112), pp.4094–4123. 12.Karine, S., Jean, A., Cedric, L. N., & Christophe B. (2012). Production of pure hydrogen from bio ethanol in a full integrated compact unit. 19th World Hydrogen Energy Conference (pp.A12). Toronto, Canada. 13.Vaidya, P. D., & Rodrigues, A. E. (2006). Insight into steam reforming of ethanol to produce hydrogen for fuel cell. Cheml. Eng. J., (117), pp.39-49. 14.Torres, J. A., Llorca, J., Casanovas, A., Domínguez, M., Salvadó, J., & Montané, D. (2007). Steam reforming of ethanol at moderate temperature: Multifactorial design analysis of Ni/La2O3-Al2O3, and Fe- and Mn- promoted Co/ZnO catalysts. J. Power Source, (169), pp.158-166. 15.Frusteri, F., Freni, S., Spadaro, L., Chiodo, V., Bonura, G., Donato, S., & Cavallaro, S. (2004). H2 Production for MC fuel cell by steam reforming of ethanol over MgO Ssupported Pd, Rh, Ni and at moderate temperature: Multifactorial design analysis of Ni/La2O3-Al2O3, and Co catalysts. Catal. Commun. (5), pp.611-615. 16.Llorca, J., Homs, N., Sales, J., & Piscina, P. R. (2002). Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming. J. Catal., (209), pp.306 –317. 17.Llorca, L., Homs, N., Sales, J., Fierro, J. L. G., & Piscina, P. R. (2004). Effect of sodium addition on the performance of Co–ZnO-based catalysts for hydrogen production from bioethanol. J. Catal., (222), pp.470–480. 18.Frusteri, F., Freni, S., Chiodo, V., Spadaro, L., Blasi, O. D., Bonura, G., & Cavallaro S. (2004). Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell. Appl. Catal. A: Gen., (270) pp.1–7. 19.Sun, J., Qiu X. P., Wu, F., & Zhu, W. T. (2005). H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application. Int. J. Hydrogen Energ, (30), pp.437–445. 20.Biswas, P., & Kunzru, D. (2007). Steam reforming of ethanol for production of hydrogen over Ni/CeO2–ZrO2 catalyst: effect of support and metal loading. Int. J. Hydrogen Energ, (32), pp.969–980. 21.Wang, C. B., Lee, C. C., Bi, J. L., Siang, J. Y.i, Liu, J. Y., & Yeh C. T. (2009). Study on the steam reforming of ethanol over cobalt oxides. Catal. Today, (146), pp.76–81. 22.Liu, J. Y., Lee, C. C., Wang, C. H., Yeh C. T., & Wang, C. B. (2010). Application of nickel–lanthanum composite oxide on the steam reforming of ethanol to produce hydrogen. Int. J. Hydrogen Energ, (35), pp.4069–4075. 23.Liu, S. W., Liu, J. Y., Liu, Y. H., Huang, Y. H., Yeh, C. T., & Wang, C. B. (2011). Ultrasonic-assisted fabrication of LaNiOx composite oxide nanotubes and application to the steam reforming of ethanol. Catal Today, (164), pp.246-250. 24.Ni, M., Leung, D. Y. C., & Leung, M. K.H. (2007). A review on reforming bio-ethanol for hydrogen production. Int. J. Hydrogen Energ, (32), pp.3238–3247. 25.Navarro, R. M., Peńa, M. A., & Fierro, J. L. G. (2007). Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuel and Biomass. Chem. Rev., (107), pp.3952–3991. 26.Sun, J., Qiu, X., Wu, F., Zhu, W., Wang, W., & Hao, S. (2004). Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel cell application. Int. J. Hydrogen Energ, (29), pp.1075–1081. 27.Fierro, V., Klouz, V., Akdim, O., & Mirodatos, C. (2002). Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications. Catal. Today, (75), pp.141–144. 28.Pompeo, F., Nichio, N. N., Ferretti, O. A., & Resasco, D. (2005). Study of Ni catalysts on different supports to obtain synthesis gas. Int. J. Hydrogen Energ, (30) pp.1399–1405. 29.Fatsikostas, A. N., Kondarides, D. I., & Verykios, X. E. (2002). Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catal Today, (75), pp.145–155. 30.Fatsikostas, A. N., & Verykios, X. E. (2004). Reaction network of steam reforming of ethanol over Ni-based catalysts. J. Catal., (225), pp.439–452. 31.Sun, J., Qiu, X. P., Wu, F., & Zhu, W. T. (2005). H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application. Int. J. Hydrogen Energ, (30), pp.437–445. 32.Pompeo, F., Nichio, N. N., Ferretti, O. A., & Resasco, D. (2005). Study of Ni catalysts on different supports to obtain synthesis gas. Int. J. Hydrogen Energ, (30) pp.1399– 1405. 33.Sing, K. S. W., Everett, D.H., Haul, R. A. W., Moscu, L., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with specific reference to the determination of surface area and porosity. Pure Appl. Chem., (57), pp.603-619. 34.Neumann, A., & Walter, D. (2006). The thermal transformation from lanthanum hydroxide to lanthanum hydroxide oxide. Thermochim. Acta., (445), pp.200–204. 35.Mazloumi, M., Shahcheraghi, N., Kajbafvala, A., Zanganeha, S., Lak, A., Matin Mohajerani, S., & Sadrnezhaad, S.K. (2010) 3D bundles of self-assembled lanthanum hydroxide nanorods via a rapid microwave-assisted route. J. Alloy Compd., (473), pp.283-287. 36.Gallego, G. S., Mondragón, F., Tatibouät, J. M., Barrault, J., & Batiot-Dupeyrat, C. (2008). Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor–characterization of carbon deposition. Catal. Today, (133/135), pp.200–209. 37.Ruckenstein, E., & Hu, Y. H. (1996). Interactions between Ni and La2O3 in Ni/La2O3 Catalysts Prepared Using Different Ni Precursors. J. Catal., (161) pp.55–61. 38.Choudhary, V. R., Uphade, B. S., & Belhekar, A. A. (1996) Oxidative conversion of methane to syngas over LaNiO3 perovskite with or without simultaneous steam and CO2 reforming reactions: influence of partial substitution of La and Ni. J. Catal., (163), pp.312–318. 39.Guo, J., Lou, H., Zhu, Y., & Zheng, X. (2003). La-based perovskite precursors preparation and its catalytic activity for CO2 reforming of CH4. Mater. Lett., (57) pp.4450–4455. 40.Batiot-Dupeyrat, C., Valderrama, G., Meneses, A., Martinez, F., Barrault, J., & Tatibouët, J. M. (2003) Pulse study of CO2 reforming of methane over LaNiO3. Appl Catal A: Gen., (248), pp.143–151. 41.Wang, X., Wang, M., Song, H., & Ding, B. (2006). A simple sol–gel technique for preparing lanthanum oxide nanopowders. Mater. Lett., (60), pp.2261–2265. 42.Wang, W., Su, C., Ran, R., Park, H. J., Kwak, C., & Shao, Z. (2011). Physically mixed LiLaNi-Al2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation. Int. J. Hydrogen Energ, (36), pp.5632- 5643. 43.Bakiz, B., Guinneton, F., Arab, M., Benlhachemi, A., Villain, S., Satre, P., & Gavarri, J. R. (2010). Carbonatation and decarbonatation kinetics in the La2O3-La2O2CO3 system under CO2 gas flows. Adv. Mater. Sci. Eng., (4), pp.1–6. 44.Liberatori, J. W. C., Ribeiro, R. U., Zanchet, D., Noronha, F. B., & Bueno, J. M. C. (2007). Steam reforming of ethanol on supported nickel catalysts. Appl. Catal. A: Gen., (327), pp.197–204. 45.Vizcaíno, A.J., Carrero, A., & Calles, J. A. (2007) Hydrogen production by ethanol steam reforming over Cu–Ni supported catalysts. Int. J. Hydrogen Energ (32), pp.1450–1461. 46.Chen, S.Q., & Liu, Y. (2009). LaFeyNi1−yO3 supported nickel catalysts used for steam reforming of ethanol. Int. J. Hydrogen Energ, (34), pp.4735-4746. 47.Gallego, G. S., Batiot-Dupeyrat, C., Barrault, J., & Mondragón, F. (2008). Active-site mechanism for dry methane reforming over Ni/La2O3 produced from LaNiO3 perovskite. Ind. Eng. Chem. Res., (47), pp.9272–9278. 48.Takenaka, S., Shigeta, Y., Tanabe, E., & Otsuka, K. (2004). Methane decomposition into hydrogen and carbon nanofibers over supported Pd−Ni catalysts: Characterization of the catalysts during the reaction. J. Phys. Chem. B, (108), pp.7656–7664. 49.Chen, S. Q., Wang, H., & Liu, Y. (2009). Perovskite La–St–Fe–O (St = Ca, Sr) supported nickel catalysts for steam reforming of ethanol: The effect of the A site substitution. Int. J. Hydrogen Energ, (34), pp.7995-8005. 50.Pompeo, F., Nichio, N. N., Ferretti, O. A., & Resasco, D. (2005). Study of Ni catalysts on different supports to obtain synthesis gas. Int. J. Hydrogen Energ, (30) pp.1399–1405. 51.Zhang, L., Li, W., Liu, J., Guo, C., Wang, Y., & Zhang, J. (2009). Ethanol steam reforming reactions over Al2O3•SiO2-supported Ni–La catalysts. Fuel, (88) pp.511–518. 52.Chen, S. Q., Li, Y. D., Liu, Y., & Bai, X. (2011). Regenerable and durable catalyst for hydrogen production from ethanol steam reforming. Int. J. Hydrogen Energ, (36), pp.5849–5856. 53.Sinnott, S.B., Andrews, R., Qian, D., Rao, A. M., Mao, Z., Dickey, E. C., & Derbyshire, F. (1999). Model of carbon nanotube growth through chemical vapor deposition. Chem. Phys. Lett., (315), pp.25–30. 54.Jeong, N., & Lee, J. (2008). Growth of filamentous carbon by decomposition of ethanol on nickel foam: Influence of synthesis conditions and catalytic nanoparticles on growth yield and mechanism. J. Catal., (260), pp.217–226. 55.Gallego, G. S., Batiot-Dupeyrat, C., Barrault, J., Florez, E., & Mondragón, F. (2008). Dry reforming of methane over LaNi1-yByO3±δ(B = Mg, Co) perovskites used as precursor. Appl. Catal. A: Gen., (334), pp.251–258. 56.Chen, H., Yu, H., Peng, F., Yang G., Wang, H., Yang J., & Tang, Y. (2010). Autothermal reforming of ethanol for hydrogen production over perovskite LaNiO3. Chem. Eng. J., (160), pp.333–339. 57.Maluf, S. S., Tanabe, E. Y., Nascente, A. P. N., & Assaf, E.M. (2011). Study of water- gas-shift reaction over La(1-y)SryNixCo(1-x)O3 pervoskite as precursers. Top Catal, (54), pp.210–218. 58.Chen, L., Choong, C. K. S., Zhong, Z., Huang, L., Wang, Z., & Lin J. (2012). Support and alloy effects on activity and product selectivity for ethanol steam reforming over supported nickel cobalt catalysts. Int. J. Hydrogen Energ, (37), pp. 16321–16332. 59.Kępiński, L., Stasińska, B., & Borowiecki, T. (2000). Carbon deposition on Ni/Al2O3 catalysts doped with small amounts of molybdenum. Carbon, (38), pp.1845–1856. 60.Maneerung, T., Hidajat, K., & Kawi, S. (2011). LaNiO3 perovskite catalyst precursor for rapid decomposition of methane: Influence of temperature and presence of H2 in feed stream. Catal Today, (171), pp.24– 35. 61.Bae, J. W., Kim, S. M., Park, S. J., Prasad, P. S. S., Lee, Y. J., & Jun, K. W. (2009). Deactivation by filamentous carbon formation on Co/Aluminum phosphate during Fischer-Tropsch synthesis. Ind. Eng. Chem. Res., (48), pp.3228–3233. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62974 | - |
| dc.description.abstract | 在本研究中我們利用共沉澱氧化 (co-precipitation-oxidation) 法,並以具有節能、高效率的微波水熱法(microwave hydrothermal method)合成觸媒前驅物,再經空氣流600 °C 2小時煅燒得到觸媒,合成的觸媒分別以粉晶繞射(XRD)、傅立葉轉換紅外光譜(FT-IR)、紫外可見光譜(UV-Vis)、熱重分析(TGA)、穿透式電子顯微術(TEM)、氮氣等溫吸脫附(N2 isotherm adsorption)和層溫還原(TPR)等檢測。乙醇蒸氣重組(Stream Reforming of Ethanol; SRE)實驗是以流式固定床反應系統,在模擬生質乙醇的水醇比13(16 wt %)、進料速度0.6 mL/min、空間流速(WHSV)為22000 h-1的條件下進行反應,探討在反應溫度(200-400 °C)的反應活性及產物分布,並推論其反應機制。反應後的觸媒積碳(Coking)現象,分別以TEM、層溫氧化(TPO)及元素分析(EA)等分析。
以共沉澱氧化微波水熱法合成的初成品經XRD及TEM檢測為棒狀的La(OH)3,六方體狀的Ni(OH)2散布其間,煅燒後的觸媒經XRD檢測為Pervoskit結構的LaNiO3。在不同溫度的原位(in-situ)還原前處理下,分別比較觸媒活性差異,結果顯示400 °C還原前處理的觸媒活性最好,活性大小順序為:400 °C > 500 °C > 600 °C > 300 °C;由TPR及TEM的特性分析顯示,經400 °C還原前處理的觸媒表面形成均勻分布的Ni金屬,應為其良好活性的主因,隨著還原溫度提高,Ni金屬顆粒增大,活性逐漸下降。 為比較不同合成方法觸媒對SRE反應的影響,另以傳統水熱法(hydrothermal method)製備LaNiO3觸媒,比較兩種水熱法經400 °C原位還原前處理溫度下的SRE活性表現,結果顯示兩種合成法的觸媒在反應溫度300 °C左右均有100 % 的乙醇轉化活性(XEtOH),產物分布差異也相似,顯示前處理溫度對觸媒的活性影響遠大於合成法的不同。比較產物中氫氣選擇性(SH2),傳統水熱合成法的觸媒之氫氣選擇性最高為75 %,而微波水熱法合成觸媒最高為73 %,兩種觸媒的氫氣選擇性在300 °C後均超過70 %。在積碳的研究中,經由XRD、TPO及EA的分析比較,水熱合成法製備的觸媒,由於具有少量La2O2CO3結構,其積碳量小於微波合成的觸媒。我們選擇傳統水熱合成法LaNiO3觸媒,作350 °C、80 小時的耐久實驗中,顯示乙醇轉化率維持100 %且氫氣的選擇性仍維持70 %,觸媒未因積碳而失活(Deactivation),由XRD檢測顯示主要結構為La2O2CO3,具有消除積碳的的作用,能降低積碳生成,使觸媒不易失活,其積碳速率由TPO及EA實驗中計算得知為0.11 mgcarbon/gcatalyst•h。 為了降低LaNiO3觸媒在SRE反應中14 % 的甲烷選擇性,提升氫氣產量,嘗試在原有觸媒中添加入不同比例的Co,合成LaNi1-xCoxOx ( x = 0.25、0.5、0.75及1 ) 觸媒,由XRD檢測顯示煅燒後的觸媒均具Pervoskit結構。SRE的活性結果顯示乙醇完全轉換溫度隨著Co的添加量增加而升高,分別是350、400、400、425 oC;甲烷的選擇性隨著Co的添加量增加而降低,依序為4.5%、2.5 %、1.8 % 和1.4 %,氫氣的選擇性明顯提高,分別是77.1、76.7、76.9及71.9 %;Ni及Co的雙金屬觸媒,其氫氣的選擇性比原有純鎳或鈷觸媒為高;Co的引入確實能降低甲烷的量,但其乙醇完全轉換溫度卻逐漸由300 °C提高至425 °C。顯示Ni具有斷碳碳鍵及降低乙醇完全轉化溫度的功能,而引入Co對甲烷脫氫的能力,可由甲烷的減少與氫氣的提升得到證實,其中以LaNi0.75Co0.25Ox觸媒表現最佳。由本研究中得知適度的調配Co及Ni比例,製備LaNi1-xCoxO3觸媒應用於乙醇蒸氣重組產氫,可得到高的氫氣產量和二氧化碳及少量的甲烷和CO (低於0.1 %),而La2O3消除積碳的能力,可使LaNi1-xCoxO3觸媒維持長效不易失活,具有成為未來重要產氫觸媒的雄厚潛力。 | zh_TW |
| dc.description.abstract | A LaNiO3 perovskite catalyst was prepared using coprecipitation-oxidation process using microwave-assisted hydrothermal method, followed by calcination in air flow at 600 °C for 2 h. The as-prepared sample was composed of La(OH)3 in nanorod structures and was covered with Ni(OH)2. The mixed metal hydroxides were converted into cubic LaNiO3 perovskite after calcination at 600 °C. A catalytic steam reforming of ethanol (SRE) reaction for hydrogen production was performed in a fixed-bed reactor. The gas hourly space velocity was maintained at 22,000 h-1. The activity evaluation was carried out stepwise as the temperature increased at a rate of 5 °C min-1 from 225 °C to 400 °C. The SRE reaction was performed using a water/ethanol molar ratio of 13 to mimic bioethanol obtained from biomass fermentation. Catalyst was in-situ activated in hydrogen flow at various temperatures (300, 400, 500 and 600 °C) prior to the reaction. Catalysts, before and after the SRE reaction, were examined by XRD, TGA, TEM, TPR and EA. Nearly 100 % ethanol conversion with 72 % H2 selectivity was achieved at 300 °C over the 400 °C in-situ reduced catalyst. The highly catalytic activity of the 400 °C reduced catalyst was due to the well-dispersion of Ni particles on the surface of active catalyst was formed in the in situ reduced catalyst. Based on TGA analysis, the amount of coke was 0.08 % after the SRE reaction.
Another LaNiO3 perovskite oxide was prepared using the coprecipitation- oxidation hydrothermal (POH) method for comparing the activity of SRE reaction with microwave hydrothermal (POM) methods. The as-prepared sample was composed of La(OH)3 in nanorod structures but a few nanotubes and was covered with poorly crystalline Ni(OH)2. The XRD patterns showed a LaNiO3 perovskite structure for calcined catalyst. The catalyst was reduced in situ in hydrogen at 400 °C prior to the reaction. The ethanol conversion reached 100% at 300 °C with 70% hydrogen selectivity. The catalytic performance was sustained for the 80 h time-on-stream test at 350 °C with 100% ethanol conversion and 70% H2 selectivity. After an 80 h time-on-stream test at 350 °C, the used catalyst presented a La2O2CO3 component that was formed owing to the reaction of the CO2 product with La2O3. La2O2CO3 acted as a carbon reservoir to eliminate the deposited carbon and further stabilized the Ni particles on the La2O3 surface, which resulted in the highly catalytic activity during the entire reaction period. Based on TPO及EA analysis, the carbon deposition rate was 0.11 mgcarbon/gcatalyst•h after the 80 h test. LaNi1-xCoxO3 ( x = 0.25、0.5、0.75及1 ) perovskite oxides were prepared using coprecipitation-oxidation microwave hydrothermal (POM) methods. The replacement of Ni with Co was considering the capability of C-H rupture of Co for decreasing the 14% CH4 selectivity and increasing the 70% H2 selectivity over LaNiO3-POM catalyst on the SRE reaction. After calcination at 600 °C for 2 h, all the LaNi1-xCoxO3 catalysts showed perovskite structures. Based on the evaluation of SRE reaction, the temperature of ethanol complete conversion was increased as increasing the Co content. Moreover, the selectivity of H2 was increased to 77% and that of CH4 was decreased to 1.8%, as increasing the Co content. The LaNi0.75Co0.25O3 catalyst showed the best performance, 100 % ethanol conversion with 77 % H2 selectivity was achieved at 350 °C, on the SRE reaction. These results show that the moderate Co/Ni ratio of LaNi1-xCoxO3-POM catalyst can present the excellent performance, high H2 and low CH4 selectivities and a negligible amount CO (less than 0.1%), on SRE reaction. The LaNi1-xCoxO3 catalysts have good potential in commercialized catalysts for hydrogen production on SRE reaction in the near future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:17:06Z (GMT). No. of bitstreams: 1 ntu-102-D97223123-1.pdf: 9110372 bytes, checksum: 0f9a4d7a2222f29e671c3acf166412a4 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書 Ⅰ
誌謝 Ⅱ 中文摘要 Ⅲ 英文摘要 Ⅴ 目錄 Ⅶ 圖目錄 Ⅸ 表目錄 ⅩⅡ 第一章 緒論 1 1.1 前言 1 1.2 燃料電池簡介 1 1.3 生質乙醇 7 1.4 鈣鈦礦簡介 12 1.5 鈣鈦礦觸媒的合成方法 13 1.6 乙醇催化製氫的途徑 14 1.7 文獻回顧 15 1.8 研究動機 17 第二章 實驗方法 18 2.1 藥品及實驗裝置 18 2.2 觸媒之製備 20 2.2.1 沉澱氧化微波法(POM) 20 2.2.2 沉澱氧化水熱法(POH) 25 2.3 材料特性分析 25 2.3.1 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy) 25 2.3.2 能量分散式X光光譜儀 (Energy Dispersive X-ray Spectrometers) 25 2.3.3 穿透式電子顯微鏡及高解析穿透式電子顯微鏡 (Transmission Electron Microscopy and High Resolution Transmission Electron Microscopy) 25 2.3.4 X-射線繞射光譜 (X-ray Diffraction Spectroscopy) 26 2.3.5 熱重分析儀 (Thermogravimetric Analyzer) 27 2.3.6 元素分析儀 (Elemental Analyer) 27 2.3.7 熱分析質譜儀 (TA-Mass) 28 2.3.8 氮氣等溫吸附與脫附 (N2 Sorption) 28 2.3.9 程溫還原反應(TPR) 30 2.4 乙醇蒸氣重組活性測試 32 第三章 結果與討論 37 3.1 LaNiO3-POM觸媒 37 3.1.1 LaNiO3-POM觸媒特性分析 37 3.1.2 LaNiO3-POM觸媒SRE反應活性 44 3.1.3 LaNiO3-POM觸媒SRE反應積碳研究 51 3.2 LaNiO3-POH觸媒 59 3.2.1 LaNiO3-POH觸媒特性分析 59 3.2.2 LaNiO3-POH觸媒SRE反應活性 66 3.2.3 LaNiO3-POH觸媒SRE反應積碳研究 70 3.2.4 LaNiO3-POH觸媒穩定性測試 75 3.2.5 LaNiO3-POH觸媒穩定性測試後的積碳研究 76 3.2.6 LaNiO3-POH 觸媒積碳生長機制 86 3.3 LaNi1-xCoxO3-POM觸媒 88 3.3.1 LaNi1-xCoxO3-POM觸媒特性分析 88 3.3.2 LaNi1-xCoxO3-POM觸媒SRE反應活性 97 3.3.3 LaNi1-xCoxO3-POM觸媒SRE反應積碳研究 102 第四章 結論 106 參考文獻 108 附錄A LaNiO3-PM觸媒 116 附錄B LaCoO3觸媒的水分解產氫 118 | |
| dc.language.iso | zh-TW | |
| dc.subject | 乙醇蒸氣重組 | zh_TW |
| dc.subject | 產氫 | zh_TW |
| dc.subject | LaNiO3 | zh_TW |
| dc.subject | Pervoskite | zh_TW |
| dc.subject | 積碳 | zh_TW |
| dc.subject | LaNiO3 | en |
| dc.subject | Perovskite | en |
| dc.subject | Steam reforming of ethanol | en |
| dc.subject | Hydrogen production | en |
| dc.subject | Coke | en |
| dc.title | 鎳鈷鑭鈣鈦礦觸媒對低溫乙醇蒸氣重組產氫之研究 | zh_TW |
| dc.title | Hydrogen Production from Steam Reforming of Ethanol at Low Temperature over Ni-Co-La Perovskite Catalysts | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄭淑芬,蘇昭瑾,汪成斌,陳郁文 | |
| dc.subject.keyword | 乙醇蒸氣重組,產氫,LaNiO3,Pervoskite,積碳, | zh_TW |
| dc.subject.keyword | LaNiO3,Perovskite,Steam reforming of ethanol,Hydrogen production,Coke, | en |
| dc.relation.page | 119 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-05 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 8.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
