Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62971
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李枝宏
dc.contributor.authorWen-Chen Loen
dc.contributor.author駱文城zh_TW
dc.date.accessioned2021-06-16T16:16:58Z-
dc.date.available2015-02-21
dc.date.copyright2013-02-21
dc.date.issued2013
dc.date.submitted2013-02-05
dc.identifier.citation[1]B. D. Van Veen and K.M. Buckley, “Beamforming: A versatile approach to spatial filtering,” IEEE ASSP Magazine, pp. 4-24, April 1988.
[2]L. C. Godara, “Application of antenna arrays to mobile communications, partII: beamforming and direction-of-arrival considerations,”Proceedings of the IEEE,vol. 85, pp.1195-1245, Aug. 1997.
[3]P. W. Howells, “Explorations in Fixed and adaptive Resolution at GE and SURC,” IEEE Trans. Antennas Propagat., vol. AP-24, pp. 575-584, Sep. 1976.
[4]S. P. Applebaum and D. J. Chapman, “Adaptive Arrays,” IEEE Trans. Antenna Propagat., vol. AP-24, no. 5, pp. 650-662, Sep. 1976
[5]B. Windrow and S. D. Strearns, ADAPTIVE SIGNAL PROCESSING, Prentice Hall, Englewood Gliffs, NEW YORK, 1988
[6]R. T. Comptom, Jr., ADAPTIVE ANTENNA, CONCEPT AND PERFORMANCE, Englewood Gliffs, NEW YORK, 1988.
[7]R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays. New York: Wiley, 1980.
[8]B. G. Agee, S. V. Schell, and W. A. Gardner, “Spectral self-coherence restoral: a new approach to blind adaptive signal extraction using antenna arrays,” Proceedings of the IEEE, vol. 78, pp. 753-767, Apr. 1990.
[9]Q. Wu and K. M. Wong, “Blind adaptive beamforming for cyclostationary signals,” IEEE Tranc. on Signal Processing, vol. 44, pp. 2757-2767, Nov. 1996.
[10]C. C. Gaudes, I. Santamaria, J. Via, et al., ”Robust array beamforming with sidelobe control using support vector machines,” IEEE Trans. Signal Processing, vol. 55, no. 2, pp. 574-584, Feb. 2007.
[11]黃家成, ”Techniques for Adaptive Array Beamforming Under Scenario Mismatch,” 國立臺灣大學電信工程學研究所博士論文, July 2012.
[12]J. Capon, “High-resolution frequency-wavenumber spectrum analysis,”
Proceeding of the IEEE, vol.57, No. 8, pp.1408-1418, Aug. 1969.
[13]O. L. Frost III, “An algorithm for linearly constrained adaptive array processing,” Proceedings of the IEEE, vol. 60, no. 8, pp. 926-935, Aug. 1972.
[14]J.-H. Lee, C.-C. Wang, “adaptive array beamforming with robust capabilities
under random sensor position errors,” IEEE Proceedings –Radar Sonar and Navig., vol. 152, no. 6, Dec. 2005.
[15]J. Ringelstein, A. B. Gershman, and J. F. Bohme, “Direction finding in random inhomogeneous media in the presence of multiplicative noise,” IEEE Signal Processing Lett., vol. 7, pp. 269-272. Oct. 2000.
[16]B. D. Carlson, “Covariance matrix estimation errors and diagonal loading in
adaptive arrays,” IEEE Trans. Aerosp. Electron. Syst., vol. 24, pp. 397-401, July
1988.
[17]S. A. Vorobyov, A. B. Gershman, and Z.-Q. Luo, “Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem,” IEEE Trans. Signal Processing, vol.51, pp. 313-324, Feb. 2003.
[18]J. Li, P. Stoica, and Z. Wang, “On robust Capon beamforming and diagonal loading,” IEEE Trans. Signal Processing, vol.51, pp. 1702-1715, Jul. 2003.
[19]J. Li, L. Du, and P. Stoica, “Fully automatic computation of diagonal loading
levels for robust adaptive beamforming,” IEEE Trans. Aerosp. Electron. Syst., vol. 46, no. 1, pp. 449-458, Jan. 2010.
[20]K. M. Buckley, and L. J. Griffiths, “An adaptive generalized sidelobe canceller with derivative constraints,” IEEE Trans. Antennas Propagat., vol. 34, pp. 311-319, Mar. 1986.
[21]D .D. Feldman and L. J. Griffiths, “A projection approach to robust adaptive
beamforming ,” IEEE Trans. Signal Processing, vol. 42, pp. 867-876, Apr. 1994.
[22]L. Chang and C. C. Yeh, “Performance of DMI and eigenspace-based
beamformers,” IEEE Trans. Antennas Propag., vol.40, pp. 1336-1347, Nov. 1992.
[23]J.-H. Lee, C.-C. Wang, K.-P. Cheng, “Robust adaptive array beamforming under steering angle mismatch,” Signal Processing, vol. 86, issue 2, pp. 296-309, Feb. 2006.
[24]J.-H. Lee, K.-P. Cheng, “Adaptive Array beamforming with Robust Capabilities Under Random Phase Perturbations,” IEEE Trans. Signal Processing, vol. 53, no. 1, pp. 365-371, Jan. 2005.
[25]W.A. Gardner, W.A. Brown, III, and C.-K. Chen, “Spectral correlation of modulated signals: Part II-Digital modulation,” IEEE Transaction on communication, vol. COMM-35, pp. 595-601, June 1987.
[26]Gardner, W.A 1991, “Exploitation of spectral redundancy in cyclostationary signals,” Signal Processing Magazine, IEEE. vol. 8, pp. 14-36, Apr. 1991.
[27]Peng. J., Ye Z. and Xu X.,”A novel robust cyclostationary beamformer based on conjugate gradient algorithm,” communications, circuits and systems proceedings, vol. 2, pp. 777-780, June 2006.
[28]V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[29]I. Santamaria, C. Pantaleon, L. Vielva, and J. Ibanez, “Blind equalization of constant modulus signals using support vector machines,” IEEE Trans. Signal Process., vol. 52, no. 6, pp. 1773-1782, Jun. 2004.
[30]M. Martinez-Ramon, N. Xu, and C. Christodoulou, “Beamforming using support vector machines,” IEEE Antennas and Wireless Propagation Letters, vol. 4, pp. 439-442, Dec. 2005.
[31]M. Martinez-Ramon, J. Rojo-Alvarez, G. Camps-Valls and C. Christodoulou, “Kernel antenna array processing,” IEEE Trans. Antennas Propagat. vol. 55, no. 3, pp. 642-650, Mar. 2007.
[32]K. L. Bell, H. L. Van Trees and L. J. Griffiths, “adaptive beampattern control using quadratic constraints for circular array STAP,” in proc. 8th Annual Workshop on Adaptive Sensor Array Processing, Lexington, MA, Mar. 2000, pp. 43-48.
[33]D. T. Hughes and J. G. McWhirter, “Sidelobe control in adaptive beamforming
using a penalty function,” in Proc. ISSPA, Gold Coast, Australia, 1996.
[34]S. Boyd and L. Vandenberghe, Convex optimization. Cambridge, U.K.:Cambridge Univ. Press, 2004
[35]F. Perez-Cruz, A. Navia-Vazquez, P. Alarcon-Diana, and A. Artes-Rodrquiez, “An IRWLS procedure for SVR,” in Proc. Eusipco 2000, Tampere, Finland, vol. 2, pp. 833-839., Sep. 2000.
[36]F. Perez-Cruz, C. Bousono-Calzon, and A. Artes-Rodriquez, “convergence of the IRWLS procedure to the support vector machine solution,” Neural Comput., vol. 17, pp.7-18, Jan. 2005.
[37]M. Wax and T. Kailath, “Detection of signals by information theoretic criteria,”
IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 33, no. 2, pp. 387-392, Apr. 1985.
[38]鄭光鵬, “在非理想環境下的強健式可適性多重波束成型技術,” 國立臺灣大 學電信工程學研究所碩士論文, June 2003.
[39]I. S. Reed, J. D. Mallett, and L.E. Brennan, “Rapid convergence rate in adaptive
arrays,” IEEE Trans. Aerop. Electron. Syst., vol. AES-10, pp. 853-863, Nov. 1974.
[40]Choi. Y.-H., “Performance improvement of adaptive arrays with signal blocking,” IEICE Trans. Comm., Vol. E86-B, No. 8, 2553–2557, Aug. 2003.
[41]P.-C. Mu, D. Li, and Q.-Y. Yin, “A robust MVDR beamforming based on covariance matrix reconstruction,” in ICSIP, Changsha, Dec. 2010.
[42]J.-H. Lee, Y.-T. Lee, and W.-H. Shih, “Efficient robust adaptive beamforming for cyclostationary signals,” IEEE Transactions on Signal Processing, vol. 48, no. 7, pp. 1893-1900, Jul. 2000.
[43]J.-H. Lee and C.-C Huang, “Blind adaptive beamforming for cyclostationary signals: a subspace projection approach,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 1406-1409, Dec. 2009.
[44]J.-H. Lee, Y.-T. Lee, “Robust adaptive array beamforming for cyclostaitonary signals under cycle frequency error,” IEEE Transactions on Antennas and Propagation, vol. 47, no. 2, pp. 233-241, Feb. 1999.
[45]J. Zhang, G.Liaoa, and J. Wang, “Robust direction finding for cyclostationary
signals with cycle frequency error,” Signal Processing, vol. 85, issue 12, pp.2386-2393, Dec. 2005.
[46]C.-C. Huang and J.-H. Lee, “Robust cyclic adaptive beamforming using a compensation method,” Signal Processing, vol. 92, no. 4, pp. 954-962, April 2012.
[47]G. Xu and T. Kailath, “Fast subspace decomposition,” IEEE Trans. Signal Process., vol. 42, no. 3, pp. 539-551, Mar. 1994.
[48]W. A. Gardner, Cyclostationarity in Communications and Signal Processing, New York: IEEE Press, 1994.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62971-
dc.description.abstract可適性陣列波束成型技術能透過調整各個天線陣列上的權重係數,可以接收特定方向的信號並且消除其他方向的干擾以及雜訊,在諸多領域已有許多重要應用,傳統的波束成型技術所需要的已知資訊為欲接收信號的入射角方向,此種技術稱為指引式波束成型器,例如LCMV,然而近二十年來發展出了另一種類型的可適性陣列波束成型技術,不需要知道欲接收信號的入射角方向,其運用信號的某些特徵例如週期恆定性或是恆模特性來達到波束成型,此種技術稱做盲目式波束成型器,而本論文即針對「指引式波束成型器」以及「利用信號週期恆定性的盲目式波束成型器」發展出多種強健式技術,以對抗非理想效應的影響。
在論文的第一部分我們嘗試將一種在機器學習領域相當熱門的技術-支持向量機與傳統的強健式波束成型器做結合,並提出一種方法來使得傳統的強健式波束成型器可以符合支持向量機的運算結構,期望能改善傳統指引式波束成型器的收斂速度以及在指引向量誤差下能有更好的強健性;此外我們利用支持向量機並基於傳統的盲目式波束成型演算法:LS-SCORE和CAB,發展出兩種新穎的盲目式波束成型器,同樣期望能提升LS-SCORE和CAB的收斂速度以及效能,由於盲目式波束成型技術所須的已知資訊只有欲接收信號的週期頻率,因此我們所提的演算法在週期頻率誤差下同樣會產生嚴重問題,我們亦針對此部分提出可行的方法來解決,模擬顯示,相較於以往的強健式方法,我們所提出的方法具有許多優點。
在論文的第二部分我們不涉及支持向量機,首先我們利用「自相關矩陣重建法」來改進兩種傳統的強健式波束成型技術:RCB和Cheng’s method,我們將欲接收信號從接收信號當中除去,以期能減輕能量反置的效果並增快收斂速度;此外我們也將此想法應用在一種利用週期恆定特性為限制條件的盲目式波束成型器(Origin CC method)來增快其收斂速度,並與前人的做法相比較具有顯著的優勢;此外我們也分析Origin CC method在週期頻率誤差下的效能衰落並提出兩種新穎的方法來解決週期頻率誤差下的問題,模擬結果顯示我們所提出的方法優於以往的強健式方法且相當接近理想情況下的最優效能。
zh_TW
dc.description.abstractAdaptive array beamforming which can extract signals of interest from specific angles while suppress interferences and noise by adjusting weights on the array elements has been applied to many areas recently. For conventional beamforming, the a priori information is the direction of the desired signal, and this kind of technique is called steered-beam beamformer, for example LCMV. Over the past two decades, another kind of adaptive array beamforming without the knowledge of the direction of the desired signal has been widely presented. It utilizes some characteristic of the signals to achieve beamforming, for example, signal cyclostationarity or constant modulus and thus it is called “blind” beamformer. The purposed of this thesis is mainly to develop several robust techniques for both steered-beam beamformer and blind beamformer using signal cyclostationarity in order to tackle the performance degradation under non-ideal environments.
In the first part of this thesis, we attempt to apply support vector machine (SVM) (which is a popular technique in the area of machine learning) to the robust array beamformers and also present a method to cope with the combination of both techinques. In this way, we expect that the robustness against steering vector errors and convergence rate of conventional steered-beam beamformer can be improved. Besides, we also present two novel blind beamformers utilizing SVM and traditional blind beamforming algorithm-LS-SCORE and CAB and also expect to achieve better convergence rate and performance. Since the a priori information required by performing blind beamforming is only the cycle frequency of the desired signal, the presence of cycle frequency error (CFE) may lead to severe performance degradation. We present an effective method to solve this problem, and the simulation result shows that the proposed method is better than the past robust method.
In the second part of this thesis, we won’t use support vector machine. Instead, we use “the reconstruction of the autocorrelation matrix” to improve the performance of two kinds of conventional robust beamforming-RCB and Cheng’s method by removing the desired signal from the receive signal. In this way, we can expect the alleviation of the effect of “power inversion” and the improvement of the convergence rate. On the other hand, we apply this idea to a kind of blind beamformer using a constraint related to signal cyclostationarity (Origin CC method) to improve the convergence rate and we will show that the proposed method is better than the existed method. In the end, we also analyze the performance degradation of Origin CC method due to CFE and present two novel method to cope with this problem. The simulation result shows that the performance of our proposed methods are better than those existed robust method and nearly reach the optimal performance under ideal case.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:16:58Z (GMT). No. of bitstreams: 1
ntu-102-R99942073-1.pdf: 1937828 bytes, checksum: 8ef96f04acc52b9b6d9a7644a74eb114 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝...................I
摘要..................II
Abstract.............IV
目錄..................VI
圖目錄................IX
表目錄...............XIV
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文貢獻 4
1.4 論文架構 5
第二章 天線陣列信號處理之數學基礎與基本概念 7
2.1 天線陣列基本架構及數學模型 7
2.2 自相關矩陣特性 9
2.2.1 自相關矩陣的數學定義 9
2.2.2 自相關矩陣的特徵分解 11
2.3 傳統可適性陣列波束成型技術 13
2.4 強健式可適性波束成型技術 15
2.4.1 簡介 15
2.4.2 對角載入方法Diagonal loading method 17
2.5 週期恆定信號特性 17
2.5.1 信號週期恆定特性 17
2.5.2 週期自相關函數 18
第三章 基於支持向量機之強健式波束成型技術 22
3.1 支持向量機之背景介紹 22
3.2 運用支持向量機之波束成型技術討論 23
3.2.1 SVM regression (SVR) 23
3.2.2 運用支持向量機之強健式波束成型器 24
3.2.3 Iterative reweighted least-squares Procedure 28
3.3 模擬分析 33
3.4 結論 42
第四章 解決指引向量誤差且運用支持向量機之新的強健式波束成型技術 43
4.1 簡介 43
4.2 已開發之強健式波束成型技術介紹以及改進 43
4.2.1 基於特徵空間的強健式波束成型技術 43
4.2.2 Robust Capon Beamforming (RCB) 44
4.2.3 雜訊子空間投影法(Cheng’s method) 45
4.2.4 傳統強健式方法之改進 47
4.2.5 改進方法之模擬分析 50
4.3 運用支持向量機之新的強健式波束成型技術架構介紹 62
4.3.1 新的強健式波束成型技術Type I 62
4.3.2 新的強健式波束成型技術Type II 65
4.3.3 計算複雜度分析 66
4.4 模擬分析 67
4.5 結論 91
第五章 利用信號週期恆定特性以及支持向量機之盲目式波束成型技術 92
5.1 簡介 92
5.2 利用信號週期恆定特性之傳統盲目式波束成型技術 93
5.2.1 LS-SCORE Algorithm 94
5.2.2 Cross-SCORE Algorithm 95
5.2.3 CAB Algorithm 96
5.3 結合支持向量機之新的盲目式波束成型技術 97
5.4 在有限資料點以及週期頻率誤差情況下之解決方法 99
5.5 模擬分析 103
5.6 結論 135
第六章 利用關於信號週期恆定特性的限制條件之盲目式波束成型技術 136
6.1 簡介 136
6.2 週期頻率誤差下之效能分析 138
6.3 在有週期頻率誤差情況下之解決辦法 141
6.4 有限資料點情況下之解決辦法 144
6.4.1 利用信號子空間投影法 144
6.4.2 利用自相關矩陣重建法 145
6.4.3 計算複雜度分析 146
6.5 模擬分析 147
6.6 結論 180
第七章 總結與未來研究方向 181
參考文獻 183
dc.language.isozh-TW
dc.title在非理想環境下使用支持向量機之強健式陣列波束成型技術zh_TW
dc.titleRobust Array Beamforming Using Support Vector Machines Under Non-ideal Environmentsen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉玉蓀,方文賢
dc.subject.keyword陣列信號處理,強健式陣列波束成型技術,支持向量機,指引向量誤差,週期頻率誤差,有限資料點,zh_TW
dc.subject.keywordArray Signal Processing,Robust Array Beamforming,Support Vector Machines,Steering Vector Mismatch,Cycle frequency Errors,Finite Sample Size,en
dc.relation.page187
dc.rights.note有償授權
dc.date.accepted2013-02-05
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
1.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved