Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62965
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor錢宗良
dc.contributor.authorShiu-Jau Chenen
dc.contributor.author陳旭照zh_TW
dc.date.accessioned2021-06-16T16:16:45Z-
dc.date.available2013-03-04
dc.date.copyright2013-03-04
dc.date.issued2013
dc.date.submitted2013-02-05
dc.identifier.citation1. Garbuzova-Davis S, Willing AE, Saporta S, Bickford PC, Gemma C, Chen N, et al. Novel cell therapy approaches for brain repair. Prog Brain Res. 2006;157:207-22. Epub 2006/10/19.
2. Tureyen K, Vemuganti R, Bowen KK, Sailor KA, Dempsey RJ. EGF and FGF-2 infusion increases post-ischemic neural progenitor cell proliferation in the adult rat brain. Neurosurgery. 2005;57(6):1254-63; discussion -63. Epub 2005/12/07.
3. Lee HJ, Kim KS, Kim EJ, Choi HB, Lee KH, Park IH, et al. Brain transplantation of immortalized human neural stem cells promotes functional recovery in mouse intracerebral hemorrhage stroke model. Stem Cells. 2007;25(5):1204-12. Epub 2007/01/16.
4. Buhnemann C, Scholz A, Bernreuther C, Malik CY, Braun H, Schachner M, et al. Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain. 2006;129(Pt 12):3238-48. Epub 2006/10/05.
5. Brederlau A, Correia AS, Anisimov SV, Elmi M, Paul G, Roybon L, et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson's disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells. 2006;24(6):1433-40. Epub 2006/03/25.
6. Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke. 2001;32(11):2682-8. Epub 2001/11/03.
7. Nikkhah G, Bentlage C, Cunningham MG, Bjorklund A. Intranigral fetal dopamine grafts induce behavioral compensation in the rat Parkinson model. J Neurosci. 1994;14(6):3449-61. Epub 1994/06/01.
8. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S, et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther. 2004;9(2):189-97. Epub 2004/02/05.
9. Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005;111(2):150-6. Epub 2005/01/12.
10. Okano H, Sakaguchi M, Ohki K, Suzuki N, Sawamoto K. Regeneration of the central nervous system using endogenous repair mechanisms. Journal of neurochemistry. 2007;102(5):1459-65. Epub 2007/08/19.
11. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron. 2002;36(6):1021-34. Epub 2002/12/24.
12. Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci. 1997;17(15):5820-9. Epub 1997/08/01.
13. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003;111(12):1843-51. Epub 2003/06/19.
14. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci. 2001;21(17):6706-17. Epub 2001/08/23.
15. Dempsey RJ, Sailor KA, Bowen KK, Tureyen K, Vemuganti R. Stroke-induced progenitor cell proliferation in adult spontaneously hypertensive rat brain: effect of exogenous IGF-1 and GDNF. Journal of neurochemistry. 2003;87(3):586-97. Epub 2003/10/11.
16. Zhang R, Zhang L, Zhang Z, Wang Y, Lu M, Lapointe M, et al. A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats. Ann Neurol. 2001;50(5):602-11. Epub 2001/11/15.
17. Sasaki T, Kitagawa K, Sugiura S, Omura-Matsuoka E, Tanaka S, Yagita Y, et al. Implication of cyclooxygenase-2 on enhanced proliferation of neural progenitor cells in the adult mouse hippocampus after ischemia. J Neurosci Res. 2003;72(4):461-71. Epub 2003/04/22.
18. Romanko MJ, Rola R, Fike JR, Szele FG, Dizon ML, Felling RJ, et al. Roles of the mammalian subventricular zone in cell replacement after brain injury. Prog Neurobiol. 2004;74(2):77-99. Epub 2004/11/03.
19. Lu D, Mahmood A, Qu C, Goussev A, Schallert T, Chopp M. Erythropoietin enhances neurogenesis and restores spatial memory in rats after traumatic brain injury. J Neurotrauma. 2005;22(9):1011-7. Epub 2005/09/15.
20. Hoehn BD, Palmer TD, Steinberg GK. Neurogenesis in rats after focal cerebral ischemia is enhanced by indomethacin. Stroke. 2005;36(12):2718-24. Epub 2005/11/12.
21. Solaroglu I, Cahill J, Jadhav V, Zhang JH. A novel neuroprotectant granulocyte-colony stimulating factor. Stroke. 2006;37(4):1123-8. Epub 2006/03/04.
22. Mendelow AD, Gregson BA, Fernandes HM, Murray GD, Teasdale GM, Hope DT, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral haematomas in the International Surgical Trial in Intracerebral Haemorrhage (STICH): a randomised trial. Lancet. 2005;365(9457):387-97. Epub 2005/02/01.
23. Goldman SA. Adult neurogenesis: from canaries to the clinic. J Neurobiol. 1998;36(2):267-86. Epub 1998/08/26.
24. Sailor KA, Dhodda VK, Rao VL, Dempsey RJ. Osteopontin infusion into normal adult rat brain fails to increase cell proliferation in dentate gyrus and subventricular zone. Acta Neurochir Suppl. 2003;86:181-5. Epub 2004/02/03.
25. Yoo SW, Kim SS, Lee SY, Lee HS, Kim HS, Lee YD, et al. Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp Mol Med. 2008;40(4):387-97. Epub 2008/09/10.
26. Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, et al. Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A. 2006;103(35):13198-202. Epub 2006/08/23.
27. Hou SW, Wang YQ, Xu M, Shen DH, Wang JJ, Huang F, et al. Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke. 2008;39(10):2837-44. Epub 2008/07/19.
28. Im SH, Yu JH, Park ES, Lee JE, Kim HO, Park KI, et al. Induction of striatal neurogenesis enhances functional recovery in an adult animal model of neonatal hypoxic-ischemic brain injury. Neuroscience. 2010;169(1):259-68. Epub 2010/07/09.
29. Zigova T, Pencea V, Wiegand SJ, Luskin MB. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol Cell Neurosci. 1998;11(4):234-45. Epub 1998/07/24.
30. Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA. Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci. 2001;21(17):6718-31. Epub 2001/08/23.
31. Keiner S, Witte OW, Redecker C. Immunocytochemical detection of newly generated neurons in the perilesional area of cortical infarcts after intraventricular application of brain-derived neurotrophic factor. J Neuropathol Exp Neurol. 2009;68(1):83-93. Epub 2008/12/24.
32. Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience. 2005;136(1):161-9. Epub 2005/10/19.
33. Lee HJ, Lim IJ, Lee MC, Kim SU. Human neural stem cells genetically modified to overexpress brain-derived neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model. J Neurosci Res. 2010;88(15):3282-94. Epub 2010/09/08.
34. Hory-Lee F, Russell M, Lindsay RM, Frank E. Neurotrophin 3 supports the survival of developing muscle sensory neurons in culture. Proc Natl Acad Sci U S A. 1993;90(7):2613-7. Epub 1993/04/01.
35. Grider MH, Mamounas LA, Le W, Shine HD. In situ expression of brain-derived neurotrophic factor or neurotrophin-3 promotes sprouting of cortical serotonergic axons following a neurotoxic lesion. J Neurosci Res. 2005;82(3):404-12. Epub 2005/10/06.
36. Zimmerman RD, Maldjian JA, Brun NC, Horvath B, Skolnick BE. Radiologic estimation of hematoma volume in intracerebral hemorrhage trial by CT scan. AJNR Am J Neuroradiol. 2006;27(3):666-70. Epub 2006/03/23.
37. Gebel JM, Sila CA, Sloan MA, Granger CB, Weisenberger JP, Green CL, et al. Comparison of the ABC/2 estimation technique to computer-assisted volumetric analysis of intraparenchymal and subdural hematomas complicating the GUSTO-1 trial. Stroke. 1998;29(9):1799-801. Epub 1998/09/10.
38. West MJ. Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci. 1999;22(2):51-61. Epub 1999/03/26.
39. Hua R, Doucette R, Walz W. Doublecortin-expressing cells in the ischemic penumbra of a small-vessel stroke. J Neurosci Res. 2008;86(4):883-93. Epub 2007/10/27.
40. Stahel PF, Shohami E, Younis FM, Kariya K, Otto VI, Lenzlinger PM, et al. Experimental closed head injury: analysis of neurological outcome, blood-brain barrier dysfunction, intracranial neutrophil infiltration, and neuronal cell death in mice deficient in genes for pro-inflammatory cytokines. J Cereb Blood Flow Metab. 2000;20(2):369-80. Epub 2000/03/04.
41. Larsson LC, Czech KA, Widner H, Korsgren O. Discordant neural tissue xenografts survive longer in immunoglobulin deficient mice. Transplantation. 1999;68(8):1153-60. Epub 1999/11/07.
42. Westlund KN, Lu Y, Kadekaro M, Harmann P, Terrell ML, Pizzo DP, et al. NGF-producing transfected 3T3 cells: behavioral and histological assessment of transplants in nigral lesioned rats. J Neurosci Res. 1995;41(3):367-73. Epub 1995/06/15.
43. Rossner S, Yu J, Pizzo D, Werrbach-Perez K, Schliebs R, Bigl V, et al. Effects of intraventricular transplantation of NGF-secreting cells on cholinergic basal forebrain neurons after partial immunolesion. J Neurosci Res. 1996;45(1):40-56. Epub 1996/07/01.
44. Jin Y, Fischer I, Tessler A, Houle JD. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol. 2002;177(1):265-75. Epub 2002/11/14.
45. Liu Y, Himes BT, Murray M, Tessler A, Fischer I. Grafts of BDNF-producing fibroblasts rescue axotomized rubrospinal neurons and prevent their atrophy. Exp Neurol. 2002;178(2):150-64. Epub 2002/12/31.
46. Gage FH, Kawaja MD, Fisher LJ. Genetically modified cells: applications for intracerebral grafting. Trends Neurosci. 1991;14(8):328-33. Epub 1991/08/01.
47. Gage FH. Cell therapy. Nature. 1998;392(6679 Suppl):18-24. Epub 1998/05/14.
48. Horellou P, Brundin P, Kalen P, Mallet J, Bjorklund A. In vivo release of dopa and dopamine from genetically engineered cells grafted to the denervated rat striatum. Neuron. 1990;5(4):393-402. Epub 1990/10/01.
49. Jainchill JL, Aaronson SA, Todaro GJ. Murine sarcoma and leukemia viruses: assay using clonal lines of contact-inhibited mouse cells. J Virol. 1969;4(5):549-53. Epub 1969/11/01.
50. Jeon JY, An JH, Kim SU, Park HG, Lee MA. Migration of human neural stem cells toward an intracranial glioma. Exp Mol Med. 2008;40(1):84-91. Epub 2008/02/29.
51. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M, et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther. 2005;11(1):96-104. Epub 2004/12/09.
52. Grandoso L, Ponce S, Manuel I, Arrue A, Ruiz-Ortega JA, Ulibarri I, et al. Long-term survival of encapsulated GDNF secreting cells implanted within the striatum of parkinsonized rats. Int J Pharm. 2007;343(1-2):69-78. Epub 2007/06/23.
53. Schabitz WR, Sommer C, Zoder W, Kiessling M, Schwaninger M, Schwab S. Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke. 2000;31(9):2212-7. Epub 2000/09/08.
54. Yamashita K, Wiessner C, Lindholm D, Thoenen H, Hossmann KA. Post-occlusion treatment with BDNF reduces infarct size in a model of permanent occlusion of the middle cerebral artery in rat. Metab Brain Dis. 1997;12(4):271-80. Epub 1998/02/25.
55. Zhang Y, Pardridge WM. Conjugation of brain-derived neurotrophic factor to a blood-brain barrier drug targeting system enables neuroprotection in regional brain ischemia following intravenous injection of the neurotrophin. Brain Res. 2001;889(1-2):49-56. Epub 2001/02/13.
56. Ohab JJ, Fleming S, Blesch A, Carmichael ST. A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006;26(50):13007-16. Epub 2006/12/15.
57. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97(6):703-16. Epub 1999/06/25.
58. Galvao RP, Garcia-Verdugo JM, Alvarez-Buylla A. Brain-derived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats. J Neurosci. 2008;28(50):13368-83. Epub 2008/12/17.
59. Sundholm-Peters NL, Yang HK, Goings GE, Walker AS, Szele FG. Subventricular zone neuroblasts emigrate toward cortical lesions. J Neuropathol Exp Neurol. 2005;64(12):1089-100. Epub 2005/12/02.
60. Yan YP, Lang BT, Vemuganti R, Dempsey RJ. Persistent migration of neuroblasts from the subventricular zone to the injured striatum mediated by osteopontin following intracerebral hemorrhage. J Neurochem. 2009;109(6):1624-35. Epub 2009/05/22.
61. Han QQ, Jin W, Xiao ZF, Huang JC, Ni HB, Kong J, et al. The promotion of neurological recovery in an intracerebral hemorrhage model using fibrin-binding brain derived neurotrophic factor. Biomaterials. 2011;32(12):3244-52. Epub 2011/02/11.
62. Dunnett SB, Bjorklund A. Mechanisms of function of neural grafts in the adult mammalian brain. The Journal of experimental biology. 1987;132:265-89. Epub 1987/09/01.
63. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M. Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci. 2001;189(1-2):49-57. Epub 2001/09/06.
64. Dudas J, Bitsche M, Schartinger V, Falkeis C, Sprinzl GM, Riechelmann H. Fibroblasts produce brain-derived neurotrophic factor and induce mesenchymal transition of oral tumor cells. Oral Oncol. 2011;47(2):98-103. Epub 2010/12/15.
65. Jerregard H, Akerud P, Arenas E, Hildebrand C. Fibroblast-like cells from rat plantar skin and neurotrophin-transfected 3T3 fibroblasts influence neurite growth from rat sensory neurons in vitro. J Neurocytol. 2000;29(9):653-63. Epub 2001/05/16.
66. Birdwell CR, Gospodarowicz D, Nicholson GL. Factors from 3T3 cells stimulate proliferation of cultured vascular endothelial cells. Nature. 1977;268(5620):528-31. Epub 1977/08/11.
67. Saito M, Hamasaki M, Shibuya M. Induction of tube formation by angiopoietin-1 in endothelial cell/fibroblast co-culture is dependent on endogenous VEGF. Cancer Sci. 2003;94(9):782-90. Epub 2003/09/12.
68. Young M, Oger J, Blanchard MH, Asdourian H, Amos H, Arnason BG. Secretion of a nerve growth factor by primary chick fibroblast cultures. Science. 1975;187(4174):361-2. Epub 1975/01/31.
69. Jelkmann W. Erythropoietin after a century of research: younger than ever. European journal of haematology. 2007;78(3):183-205. Epub 2007/01/27.
70. Tabira T, Konishi Y, Gallyas F, Jr. Neurotrophic effect of hematopoietic cytokines on cholinergic and other neurons in vitro. International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience. 1995;13(3-4):241-52. Epub 1995/06/01.
71. Marti HH, Bernaudin M, Petit E, Bauer C. Neuroprotection and Angiogenesis: Dual Role of Erythropoietin in Brain Ischemia. News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society. 2000;15:225-9. Epub 2001/06/08.
72. Dame C, Bartmann P, Wolber E, Fahnenstich H, Hofmann D, Fandrey J. Erythropoietin gene expression in different areas of the developing human central nervous system. Brain research Developmental brain research. 2000;125(1-2):69-74. Epub 2001/01/13.
73. Tsai PT, Ohab JJ, Kertesz N, Groszer M, Matter C, Gao J, et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci. 2006;26(4):1269-74. Epub 2006/01/27.
74. Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke. 2004;35(7):1732-7. Epub 2004/06/05.
75. Hannoush EJ, Sifri ZC, Elhassan IO, Mohr AM, Alzate WD, Offin M, et al. Impact of enhanced mobilization of bone marrow derived cells to site of injury. The Journal of trauma. 2011;71(2):283-9; discussion 9-91. Epub 2011/08/10.
76. Abe K, Yamashita T, Takizawa S, Kuroda S, Kinouchi H, Kawahara N. Stem cell therapy for cerebral ischemia: from basic science to clinical applications. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2012;32(7):1317-31. Epub 2012/01/19.
77. Chen PS, Peng GS, Li G, Yang S, Wu X, Wang CC, et al. Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Molecular psychiatry. 2006;11(12):1116-25. Epub 2006/09/14.
78. Laeng P, Pitts RL, Lemire AL, Drabik CE, Weiner A, Tang H, et al. The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. Journal of neurochemistry. 2004;91(1):238-51. Epub 2004/09/24.
79. Schneider T, Przewlocki R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2005;30(1):80-9. Epub 2004/07/09.
80. Noguchi KK, Lau K, Smith DJ, Swiney BS, Farber NB. Glucocorticoid receptor stimulation and the regulation of neonatal cerebellar neural progenitor cell apoptosis. Neurobiology of disease. 2011;43(2):356-63. Epub 2011/05/03.
81. Kim JB, Ju JY, Kim JH, Kim TY, Yang BH, Lee YS, et al. Dexamethasone inhibits proliferation of adult hippocampal neurogenesis in vivo and in vitro. Brain research. 2004;1027(1-2):1-10. Epub 2004/10/21.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62965-
dc.description.abstract在台灣,腦溢血約佔中風患者的四分之一,一個月內死亡率約百分之三十,較腦梗塞高出許多。幸存者亦常存在各式的神經障礙。過去對於中樞神經疾病的治療,我們致力於尋找保護神經的藥物,療效依然難以令人滿意,而腦溢血的治療更是少有進展。手術移除血塊和保守治療對照組間,效果並無統計上差異。強調神經再生的治療模式,成為研究的重點之一。由老鼠的實驗得知,腦室旁及海馬回附近仍存在許多神經幹細胞,於腦部受到損害時有細胞新生的能力。藉由生長因子的給予,可提升內源性神經幹細胞的新生與分化,此種內源性神經細胞新生在許多疾病被認為有治療上的意義。但在腦溢血方面仍然研究仍然缺乏。本實驗的目的即是為了解腦衍生神經滋養因子(BDNF)對於神經細胞新生的助益及腦溢血的治療效果。首先建立綠色螢光蛋白(EGFP)基因轉殖,以及BDNF-EGFP基因轉殖的兩種纖維母細胞穩定細胞株(3T3-EGFP細胞及 3T3-BDNF-EGFP細胞),經由免疫染色、western blot及ELISA的測定,我們確認3T3-BDNF-EGFP細胞有顯著的BDNF表現。在MTT assay檢測下,確認分泌的BDNF具有生物活性,能幫助神經發育並減少死亡。動物實驗方面,我們將膠原蛋白脢注射入小鼠的紋狀核以模擬人類的基底核出血。以rotarod及核磁共振(MRI)掃描,將篩選後的腦溢血小鼠分為三組:兩組實驗組分別為植入3T3-BDNF-EGFP細胞,以及3T3-EGFP細胞;對照組則接受等量的PBS注射。兩週後犧牲灌流切片,利用EdU, doublecortin, GFAP, NeuN等染色,於顯微鏡下觀察這三組新生的神經細胞數目;藉由行為測試,了解各組的神經功能恢復情形;以及犧牲灌流前的MRI,了解各組腦組織流失的多寡。我們發現兩組接受細胞移植的實驗組,無論在腦室旁或血塊附近,皆有明顯的EdU/GFAP共同標定細胞增加現象;在遷移出去的神經母細胞(neuroblasts)數量方面,則為3T3-BDNF-EGFP組多於3T3-EGFP組,再多於PBS組。我們認為細胞移植能增加神經膠細胞的數量,神經膠細胞會吸引神經母細胞的遷移,BDNF則能避免這些新生細胞的凋亡。因此在MRI檢驗下BDNF治療組有較少的腦組織流失。經由之前的測定,我們的3T3-EGFP細胞亦能分泌少量的BDNF,可解釋為何3T3-EGFP組的遷移性神經母細胞雖然少於3T3-BDNF-EGFP組,但仍多於PBS組。在行為測式方面,我們發現兩組細胞移植組皆比對照組有顯著改善,但3T3-BDNF-EGFP組和3T3-EGFP組並無差異。3T3-BDNF-EGFP治療組雖然有最多的新生神經細胞,但這些細胞大多未成熟,尚未形成新生的神經網路,無法發揮改善功能的效應。經由ELISA的測定,我們發現無論3T3, 3T3-EGFP或3T3-BDNF-EGFP細胞,都能分泌足量的神經生長因子(NGF)及血管內皮生長因子(VEGF)。這可解釋為何兩組細胞移植組有相同的功能進步,我們認為這些進步主要來自於3T3細胞分泌的生長因子的保護作用。基因轉殖的細胞治療,可作為腦溢血神經再生的治療對策之一。zh_TW
dc.description.abstractNeurogenesis by activation of the endogenous neural progenitor cells is considered as a potential treatment strategy for brain disease. Brain-derived neurotrophic factor (BDNF), though several articles support its benefit on neurogenesis, there is still some arguments. BDNF has been widely studied in ischemia animals, but rarely in ICH model.
In our study, cDNAs of mouse Brain-derived neurotrophic factor (BDNF) were transfected into cell lines of 3T3 fibroblasts. BDNF expression and bioactivity were analyzed by immunocytochemistry, Western blot, Enzyme-Linked Immunosorbent Assay (ELISA), and functional assays. The ICH mouse model was produced by collagenase injection. Hematoma area and brain tissue loss were assessed by magnetic resonance imaging (MRI). Either BDNF transfected 3T3 fibroblasts or 3T3 fibroblasts were implanted as a growth factor source in ICH mice. Neurogenesis and functional recovery was evaluated 15 days post-ICH. BDNF treatment mice have most doublecortin positive cells toward lesions and least brain tissue loss in all groups. Both cell treatment groups have profound newly proliferative glial fibrillary acidic protein (GFAP) positive cells and better functional improvement than the PBS controls. Fibroblast transplantation together with recombinant BDNF treatment has a potential benefit to neurogenesis in ICH mice. The early functional recovery may result from the growth factors that are provided or evoked by the implanted grafts. A potential approach could combine both gene and cell therapy for stroke treatment.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:16:45Z (GMT). No. of bitstreams: 1
ntu-102-D93446006-1.pdf: 32544423 bytes, checksum: 679299d862e728ed03467901f9daf6d1 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsTable of Contents
Acknowledgements...........................................................................................................i
Abbreviations.................................................................................................................iii
Abstract in Chinese..........................................................................................................v
Abstract in English........................................................................................................vii
General Introductions......................................................................................................1
ㄧ、神經細胞再生原理...................................................................................................1
二、外源性細胞的移植..................................................................................................2
三、內源性神經細胞的增生與遷移...............................................................................4
四、其他輔助治療...........................................................................................................5
五、細胞新生治療在神經系統疾病的使用..................................................................6
六、結語...........................................................................................................................8
1. Introduction..................................................................................................................9
2. Materials and Methods...............................................................................................11
2.1 Cloning of the pBDNF -EGFP construct.............................................................11
2.2 Cell Culture..........................................................................................................11
2.3 DNA transfection and selection...........................................................................11
2.4 Western blot Analysis..........................................................................................12
2.5 ELISA..................................................................................................................12
2.6 Functional assays of BDNF in conditional media...............................................13
2.7 MTT assay...........................................................................................................14
2.8 Animal Preparation..............................................................................................14
2.9 Mouse ICH model and cell implantation.............................................................15
2.10 MRI measurement of hematoma and brain tissue .............................................16
2.11 Immunofluorescence staining and EdU assay...................................................17
2.12 Quantification of the image...............................................................................17
2.13 Behavior test: rotarod test and modified neurological severity score................18
2.14 Statistical Analysis.............................................................................................19
3. Results........................................................................................................................20
3.1 Immunocytochemical patterns of BDNF in 3T3, 3T3-EGFP and 3T3-BDNF-
EGFP cells...........................................................................................................20
3.2 Protein levels of BDNF in 3T3, 3T3-EGFP and 3T3-BDNF-EGFP cells...........20
3.3 Concentrations of secreted BDNF from 3T3, 3T3-EGFP and 3T3-BDNF-EGFP
cells......................................................................................................................21
3.4 Bioactivity of BDNF secreted from the 3T3, 3T3-EGFP and 3T3-BDNF-EGFP
cells......................................................................................................................21
3.5 Transplanted 3T3-EGFP-BDNF cells produce BDNF in ICH mice brains.........22
3.6 3T3-EGFP-BDNF treatment group has less brain tissue loss than the control
groups...................................................................................................................23
3.7 Cell transplantation enriched the number of EdU/GFAP colabeled cells in the
brains of ICH mice...............................................................................................23
3.8 The 3T3-BDNF-EGFP treatment group had most migratory Neuroblasts in all
groups...................................................................................................................24
3.9 Both cell treatment groups promote functional recovery in rotarod test and
mNSS...................................................................................................................25
4.Discussion.............................................27
5.Conclusions............................................34
6.Future experiment......................................35
I.Effect of EPO on neurogenesis in ICH mice..........................................................35
II.The effect of antiepilepsy, antiinflammtion medications, and G-CSF on
neurogenesis and functional recovery of ICH mice............42
Figures
Figure 1 Exogenous stem cells transplantation..............................................................46
Figure 2 Activation of endogenous stem cells...............................................................48
Figure 3 Immunostain, Western blot and ELISA of BDNF in 3T3, 3T3-EGFP and
3T3-BDNF-EGFP fibroblasts..........................................................................50
Figure 4 Bioactivity assay and statistical analysis of BDNF in conditional media prepared from 3T3, 3T3-EGFP and 3T3-BDNF-EGFP fibroblasts................53
Figure 5 ICH mouse model and cell implantation.........................................................55
Figure 6 Immune response 14 days after 3T3 intracerebral transplantation..................57
Figure 7 Evaluation of hematoma-associated injury area and brain tissue loss after cell implantation by MRI................59
Figure 8 Prominent GFAP positive cells in the SVZ of both cell transplantation groups..............................62
Figure 9 Increased reactive astrocytes in the perihematoma area of both cell transplantation groups.................................64
Figure 10 Enhanced neuroblast migration in both cell treatment groups......................66
Figure 11 The BDNF treatment group has most DCX/EdU colocalizing cells outside the SVZ among all groups.............68
Figure 12 Behavior test of ICH mice after 3T3-BDNF-EGFP cells, 3T3-EGFP cells, and PBS treatments......................71
Figure 13 3T3 graft volume changes after intracerebral transplantation.......................73
Figure 14 Quantification of NGF and VEGF secreted by 3T3, 3T3-EGFP and 3T3-BDNF-EGFP cells........................75
References.......................................................77
dc.language.isoen
dc.title移植腦衍生神經滋養因子基因轉殖的3T3纖維母細胞對於腦溢血小鼠神經新生的功能恢復影響zh_TW
dc.titleNeurogenesis and Functional Recovery after Intracerebral
Implantation of Brain-Derived Neurotrophic Factor Transfected 3T3 Fibroblasts in Cerebral Hemorrhage Mice
en
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree博士
dc.contributor.oralexamcommittee盧國賢,蔡瑞章,賴達明,賴逸儒
dc.subject.keyword腦溢血,腦衍生神經滋養因子,3T3纖維母細胞移植,神經細胞新生,zh_TW
dc.subject.keywordIntracerebral hemorrhage,3T3 Fibroblast transplantation,BDNF,Neurogenesis,en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2013-02-05
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
31.78 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved