請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62948完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳奕君(I-Chun Cheng) | |
| dc.contributor.author | Ching-Wen Hsu | en |
| dc.contributor.author | 許瀞文 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:16:04Z | - |
| dc.date.available | 2014-03-06 | |
| dc.date.copyright | 2013-03-06 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-05 | |
| dc.identifier.citation | [1] R. Perez and M. Perez, 'A fundamental look at energy reserves for the planet,' The IEA SHC Solar Update, vol. 50, pp. 2-3, 2009.
[2] N. Lior, 'The ECOS 2009 World Energy Panel: An introduction to the Panel and to the present (2009) situation in sustainable energy development,' Energy, vol. 36, pp. 3620-3628, 2011. [3] M. A. Green, 'The path to 25% silicon solar cell efficiency: history of silicon cell evolution,' Progress in Photovoltaics: Research and Applications, vol. 17, pp. 183-189, 2009. [4] E. Cartlidge, 'Bright outlook for solar cells,' Physics world, vol. 20, pp. 20-24, 2007. [5] W. Shockley and H. J. Queisser, 'Detailed balance limit of efficiency of p‐n junction solar cells,' Journal of Applied Physics, vol. 32, pp. 510-519, 1961. [6] Y. Hamakawa, Thin-film solar cells: next generation photovoltaics and its applications vol. 13: Springer, 2004. [7] V. Fthenakis, 'Sustainability of photovoltaics: The case for thin-film solar cells,' Renewable and Sustainable Energy Reviews, vol. 13, pp. 2746-2750, 2009. [8] G. Conibeer, 'Third-generation photovoltaics,' Materials Today, vol. 10, pp. 42-50, 2007. [9] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, 'Solar cell efficiency tables (version 39),' Progress in Photovoltaics: Research and Applications, vol. 20, pp. 12-20, 2012. [10] M. Gratzel, 'Dye-sensitized solar cells,' Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 4, pp. 145-153, 2003. [11] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, 'Dye-sensitized solar cells,' Chemical Reviews, vol. 110, pp. 6595-6663, 2010. [12] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, et al., 'Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency,' Science, vol. 334, pp. 629-634, 2011. [13] I. Chung, B. Lee, J. He, R. P. H. Chang, and M. G. Kanatzidis, 'All-solid-state dye-sensitized solar cells with high efficiency,' Nature, vol. 485, pp. 486-489, 2012. [14] K. Kneipp, M. Moskovits, and H. Kneipp, Surface-enhanced raman scattering: physics and applications vol. 103: Springer, 2006. [15] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, 'The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,' The Journal of Physical Chemistry B, vol. 107, pp. 668-677, 2003. [16] K. A. Willets and R. P. Van Duyne, 'Localized surface plasmon resonance spectroscopy and sensing,' Annu. Rev. Phys. Chem., vol. 58, pp. 267-297, 2007. [17] A. J. Haes and R. P. Van Duyne, 'A unified view of propagating and localized surface plasmon resonance biosensors,' Analytical and bioanalytical chemistry, vol. 379, pp. 920-930, 2004. [18] S. Link and M. A. El-Sayed, 'Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,' The Journal of Physical Chemistry B, vol. 103, pp. 8410-8426, 1999. [19] E. Ozbay, 'Plasmonics: merging photonics and electronics at nanoscale dimensions,' science, vol. 311, pp. 189-193, 2006. [20] J. R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, et al., 'Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy,' Analyst, vol. 133, pp. 1308-1346, 2008. [21] V. E. Ferry, J. N. Munday, and H. A. Atwater, 'Design considerations for plasmonic photovoltaics,' Advanced Materials, vol. 22, pp. 4794-4808, 2010. [22] K. Kalyanasundaram, Dye-sensitized solar cells: CRC, 2009. [23] B. C. O'Regan, J. R. Durrant, P. M. Sommeling, and N. J. Bakker, 'Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit,' The Journal of Physical Chemistry C, vol. 111, pp. 14001-14010, 2007. [24] M. Gratzel, 'Photoelectrochemical cells,' 2001. [25] M. Gratzel, 'Solar energy conversion by dye-sensitized photovoltaic cells,' Inorganic Chemistry, vol. 44, pp. 6841-6851, 2005. [26] N. G. Park, J. Van de Lagemaat, and A. Frank, 'Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells,' The Journal of Physical Chemistry B, vol. 104, pp. 8989-8994, 2000. [27] M. GRATZEL and J. R. DURRANT, 'Dye-sensitised Mesoscopic solar cells,' Nanostructured and photoelectrochemical systems for solar photon conversion, vol. 3, 2008. [28] Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, 'Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,' Coordination chemistry reviews, vol. 248, pp. 1381-1389, 2004. [29] S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Gratzel, M. K. Nazeeruddin, et al., 'Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%,' Thin Solid Films, vol. 516, pp. 4613-4619, 2008. [30] N. G. Park, G. Schlichthorl, J. Van de Lagemaat, H. Cheong, A. Mascarenhas, and A. Frank, 'Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4,' The Journal of Physical Chemistry B, vol. 103, pp. 3308-3314, 1999. [31] P. Sommeling, B. O'regan, R. Haswell, H. Smit, N. Bakker, J. Smits, et al., 'Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells,' The Journal of Physical Chemistry B, vol. 110, pp. 19191-19197, 2006. [32] S. W. Lee, K. S. Ahn, K. Zhu, N. R. Neale, and A. J. Frank, 'Effects of TiCl4 Treatment of Nanoporous TiO2 Films on Morphology, Light Harvesting, and Charge-Carrier Dynamics in Dye-Sensitized Solar Cells,' The Journal of Physical Chemistry C, 2012. [33] L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, and S. Tanemura, 'Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering,' Applied surface science, vol. 212, pp. 255-263, 2003. [34] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, 'Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells,' Nano Letters, vol. 6, pp. 215-218, 2006. [35] F. J. Knorr, D. Zhang, and J. L. McHale, 'Influence of TiCl4 treatment on surface defect photoluminescence in pure and mixed-phase nanocrystalline TiO2,' Langmuir, vol. 23, pp. 8686-8690, 2007. [36] S. Fonash, Solar cell device physics: Academic Press, 2010. [37] Q. Wang, S. Ito, M. Gratzel, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, et al., 'Characteristics of high efficiency dye-sensitized solar cells,' The Journal of Physical Chemistry B, vol. 110, pp. 25210-25221, 2006. [38] C. Wen, K. Ishikawa, M. Kishima, and K. Yamada, 'Effects of silver particles on the photovoltaic properties of dye-sensitized TiO2 thin films,' Solar energy materials and solar cells, vol. 61, pp. 339-351, 2000. [39] C. Hagglund, M. Zach, and B. Kasemo, 'Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,' Applied Physics Letters, vol. 92, pp. 013113-013113-3, 2008. [40] M. Ihara, S. Ikenouchi, K. Taniguchi, Y. Tanaka, and T. Hasegawa, 'Photoabsorption-enhanced dye-sensitized solar cells using localized surface plasmon of gold nanoparticles with 16-mercapto hexadecanoic acid,' in Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE, 2011, pp. 000881-000885. [41] W. Hou, P. Pavaskar, Z. Liu, J. Theiss, M. Aykol, and S. B. Cronin, 'Plasmon resonant enhancement of dye sensitized solar cells,' Energy & Environmental Science, vol. 4, pp. 4650-4655, 2011. [42] K. Deepa, P. Lekha, and S. Sindhu, 'Efficiency enhancement in DSSC using metal nanoparticles: A size dependent study,' Solar Energy, 2011. [43] C. Nahm, H. Choi, J. Kim, D. R. Jung, C. Kim, J. Moon, et al., 'The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells,' Applied Physics Letters, vol. 99, pp. 253107-253107-4, 2011. [44] S. Muduli, O. Game, V. Dhas, K. Vijayamohanan, K. Bogle, N. Valanoor, et al., 'TiO2–Au plasmonic nanocomposite for enhanced dye-sensitized solar cell (DSSC) performance,' Solar Energy, 2012. [45] J. Du, J. Qi, D. Wang, and Z. Tang, 'Facile synthesis of Au@ TiO2 core–shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency,' Energy & Environmental Science, 2012. [46] H. Choi, W. T. Chen, and P. V. Kamat, 'Know Thy Nano Neighbor. Plasmonic versus Electron Charging Effects of Metal Nanoparticles in Dye-Sensitized Solar Cells,' ACS nano, vol. 6, pp. 4418-4427, 2012. [47] S. Chang, Q. Li, X. Xiao, Y. K. Wong, and T. Chen, 'Enhancement of Low Energy Sunlight Harvesting in Dye-Sensitized Solar Cells Using Plasmonic Gold Nanorods,' Energy & Environmental Science, 2012. [48] T. C. Li, M. S. Goes, F. Fabregat-Santiago, J. Bisquert, P. R. Bueno, C. Prasittichai, et al., 'Surface passivation of nanoporous TiO2 via atomic layer deposition of ZrO2 for solid-state dye-sensitized solar cell applications,' The Journal of Physical Chemistry C, vol. 113, pp. 18385-18390, 2009. [49] T. W. Hamann, O. K. Farha, and J. T. Hupp, 'Outer-sphere redox couples as shuttles in dye-sensitized solar cells. Performance enhancement based on photoelectrode modification via atomic layer deposition,' The Journal of Physical Chemistry C, vol. 112, pp. 19756-19764, 2008. [50] T. W. Hamann, A. B. F. Martinson, J. W. Elam, M. J. Pellin, and J. T. Hupp, 'Atomic layer deposition of TiO2 on aerogel templates: new photoanodes for dye-sensitized solar cells,' The Journal of Physical Chemistry C, vol. 112, pp. 10303-10307. [51] C. Prasittichai and J. T. Hupp, 'Surface modification of SnO2 photoelectrodes in dye-sensitized solar cells: significant improvements in photovoltage via Al2O3 atomic layer deposition,' The Journal of Physical Chemistry Letters, vol. 1, pp. 1611-1615, 2010. [52] S. D. Standridge, G. C. Schatz, and J. T. Hupp, 'Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,' Journal of the American Chemical Society, vol. 131, p. 8407, 2009. [53] M. Ihara, M. Kanno, and S. Inoue, 'Photoabsorption-enhanced dye-sensitized solar cell by using localized surface plasmon of silver nanoparticles modified with polymer,' Physica E: Low-dimensional Systems and Nanostructures, vol. 42, pp. 2867-2871, 2010. [54] S. J. Lin, K. C. Lee, J. L. Wu, and J. Y. Wu, 'Enhanced performance of dye-sensitized solar cells via plasmonic sandwiched structure,' Applied Physics Letters, vol. 99, pp. 043306-043306-3, 2011. [55] J. Li, X. Chen, N. Ai, J. Hao, Q. Chen, S. Strauf, et al., 'Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells,' Chemical Physics Letters, vol. 514, pp. 141-145, 2011. [56] J. Qi, X. Dang, P. T. Hammond, and A. M. Belcher, 'Highly Efficient Plasmon-Enhanced Dye-Sensitized Solar Cells through Metal@ Oxide Core–Shell Nanostructure,' ACS nano, vol. 5, pp. 7108-7116, 2011. [57] N. C. Jeong, C. Prasittichai, and J. T. Hupp, 'Photocurrent Enhancement by Surface Plasmon Resonance of Silver Nanoparticles in Highly Porous Dye-Sensitized Solar Cells,' Langmuir, vol. 27, pp. 14609-14614, 2011. [58] C. C. Chang, H. L. Wu, C. H. Kuo, and M. H. Huang, 'Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures,' Chemistry of Materials, vol. 20, pp. 7570-7574, 2008. [59] D. W. Liu, I. Cheng, J. Z. Chen, H. W. Chen, K. C. Ho, and C. C. Chiang, 'Enhanced optical absorption of dye-sensitized solar cells with microcavity-embedded TiO2 photoanodes,' Optics Express, vol. 20, pp. A168-A176, 2012. [60] R. A. Spurr and H. Myers, 'Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer,' Analytical Chemistry, vol. 29, pp. 760-762, 1957. [61] S. S. Instruments, 'Diffuse Reflectance Measurement,' shimadzu, vol. http://www.ssi.shimadzu.com/products/product.cfm?product=uv_accy_solid_guide1. [62] A. Zeng, E. Liu, I.F. Annergren, S.N. Tan, S. Zhang, P. Hing, J. Gao, 'EIS capacitance diagnosis of nanoporosity effect on the corrosion protection of DLC films,' Diamond and Related Materials 11 (2002) 160–168 [63] Q. Wang, J. E. Moser, and M. Gratzel, 'Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells,' The Journal of Physical Chemistry B, vol. 109, pp. 14945-14953, 2005. [64] L. Han, N. Koide, Y. Chiba, and T. Mitate, 'Modeling of an equivalent circuit for dye-sensitized solar cells,' Applied Physics Letters, vol. 84, pp. 2433-2435, 2004. [65] C. P. Hsu, K. M. Lee, J. T. W. Huang, C. Y. Lin, C. H. Lee, L. P. Wang, et al., 'EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells,' Electrochimica Acta, vol. 53, pp. 7514-7522, 2008. [66] W. Lai, 'Impedance spectroscopy as a tool for electrochemical study of mixed conducting ceria,' California Institute of Technology, 2007. [67] A.J. Haes et al., 'Using Solution-Phase Nanoparticles, Surface-Confined Nanoparticle Arrays and Single Nanoparticles as Biological Sensing Platforms,' Journal of fluorescence 14, no. 4 (2004). [68] J. Fu and Y. Zhao, 'Au Nanoparticle Based Localized Surface Plasmon Resonance Substrates Fabricated by Dynamic Shadowing Growth,' Nanotechnology 21, no. 17 (2010). [69] A. Davis and T. Tran, 'Gold dissolution in iodide electrolytes,' Hydrometallurgy, vol. 26, pp. 163-177, 1991. [70] Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, et al., 'Janus Au‐TiO2 Photocatalysts with Strong Localization of Plasmonic Near‐Fields for Efficient Visible‐Light Hydrogen Generation,' Advanced Materials, 2012. [71] J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, and S. Gimenez, 'Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements,' The Journal of Physical Chemistry C, vol. 113, pp. 17278-17290, 2009. [72] W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, and J. Cui, 'Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity,' ACS Appl. Mater. Interfaces, vol. 2, pp. 2385-2392, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62948 | - |
| dc.description.abstract | 本研究主要探討奈米金粒子摻雜於染料敏化太陽能電池之二氧化鈦光電極之效應。奈米金粒子和二氧化鈦奈米粒子間存在侷域性表面電漿共振效應,其效應可增強奈米金粒子鄰近之電磁場強度(約10奈米),進而提升光電極之光吸收率。此外、由電化學阻抗頻譜可得知,金奈米粒子可以有效減少電子在二氧化鈦光電極傳輸時的內部阻抗,即二氧化鈦/染料分子/電解液的接面阻抗,並且提升電子傳播的速度。
本研究提出了三種摻雜奈米金粒子的結構: (1) 吸附金的二氧化鈦結構(液滴塗佈法): 藉由鍛燒二氧化鈦光電極混摻聚苯乙烯微米球後所產生之空間,利用液滴塗佈法將奈米金粒子吸附在二氧化鈦薄膜的表面。 (2) 嵌入金的二氧化鈦結構(磁石攪扮法): 藉由磁石攪拌法,將奈米金粒子有效地混摻於二氧化鈦塗料中。相較於第一種方法,此法使得奈米金粒子更均勻分布於光電極併且更妥善地包覆在二氧化鈦環境中。 (3) 四氯化鈦後處理於嵌入金的二氧化鈦結構: 將奈米金粒子有效地摻雜於二氧化鈦塗料中,並且以四氯化鈦法做後處理,使得奈米金粒子表面包覆額外的二氧化鈦層(約1奈米)。 在以上三種結構中,奈米金粒子的加入皆不會影響開路電壓及填充因子,而短路電流則會和電池效率呈高度正相關。短路電流及電池效率會與摻雜奈米金粒子的濃度呈現先上升、後下降的趨勢。實驗結果顯示最佳摻雜金奈米粒子濃度為0.5 wt.%,其效率可提升19.0 %。 | zh_TW |
| dc.description.abstract | This research studies the effect of additive Au nanoparticles incorporated in the TiO2 photoanodes of dye-sensitized solar cells (DSSCs). Localized surface plasmon resonance (LSPR), which exists at the interfaces between the Au nanoparticles and the TiO2 nanoparticles, could enhance the electromagnetic field in the proximity of Au nanoparticles (~10 nm), and furthermore, increase the light absorption of TiO2 photoanodes. In addition, the Electrochemical Impedance Spectroscopy (EIS) measurement results show that Au nanoparticles could reduce the electron transfer resistance at the interfaces of TiO2/dye/electrolyte, and therefore facilitate the charge transport in the DSSCs.
In this research, we study three different structures with additive Au nanoparticles: (1) Au-adsorbed TiO2 films via drop-casting method: The Au nanoparticles were drop-casted and then adsorbed at the surface of TiO2 film. The Au nanoparticles penetrated the TiO2 film via the microcavaties, which were created by calcinating the polystyrene spheres embedded TiO2 film. (2) Au-embedded TiO2 films via stirring method: The Au nanoparticles were mixed properly with TiO2 nanoparticles via stirring method. The Au nanoparticles dispersed at the TiO2 matrix more randomly and were covered by the TiO2 nanoparticles more properly than the drop-casting method. (3) Au-embedded TiO2 films with TiCl4 post-treatment: Au-embedded TiO2 films were applied with TiCl4 treatment, which enabled the growth of additional TiO2 layer (~ 1 nm) at the surface of Au nanoparticles. In all structures studied, the existence of Au nanoparticles do not influence the open circuit voltage (V¬oc) and fill factor (F.F.). The cell efficiency is positively correlated with the short circuit current density (Jsc), which increases first and then decreases as the concentration of Au nanoparticles increases. An optimal efficiency enhancement of 19.0 % is obtained when the concentration of Au nanoparticles is 0.5 wt.%. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:16:04Z (GMT). No. of bitstreams: 1 ntu-102-R99941126-1.pdf: 6136300 bytes, checksum: f8d46f92db1e195b00b0d47e9222eca6 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 I
Abstract III 摘要 V Contents VI List of figures IX List of tables XIII Chapter 1 Introduction 1 1.1 The challenges of our generation 1 1.2 Outlook of solar cell technology 2 1.3 The potentials of DSSC 4 1.4 Localized surface plasmon resonance 5 1.5 Motivation 10 Chapter 2 Theories 12 2.1 Operational principles of DSSC 12 2.1.1 Energetics of operation 13 2.1.2 Kinetics of operation 14 2.2 Components of DSSCs 18 2.2.1 Photoanode 18 2.2.2 Platinum counter electrode 20 2.2.3 Dye molecules 21 2.2.4 The electrolyte 22 2.3 TiCl4 post-treatment 22 2.4 Solar cell parameters 24 2.5 Literature review on plasmonic DSSCs 27 2.5.1 Literature review on plasmonic DSSCs with Au nanoparticles 29 2.5.2 Literature review on plasmonic DSSCs with Ag nanoparticles 38 Chapter 3 Experimental 46 3.1 Materials and equipment 46 3.2 Preparation of conventional DSSCs 47 3.3 Preparation of DSSCs incorporated Au nanoparticles 50 3.4 Characterization 54 3.4.1 Materials characterization of the photoanodes 54 3.4.2 Optical properties of TiO2 Films 55 3.4.3 Photoelectrical characterization of DSSCs 57 Chapter 4 Results and discussion 62 4.1 Au-adsorbed DSSCs via drop-casting method 62 4.1.1 Material characterizations of the photoanodes 63 4.1.2 Optical properties of TiO2 films 67 4.1.3 Photoelectrical characterization of DSSCs 70 4.2 Au-embedded DSSCs via stirring method 73 4.2.1 Materials characterization of the photoanodes 73 4.2.2 Optical properties of TiO2 films 85 4.2.3 Photoelectrical characterization of DSSCs 89 4.3 Au-embedded TiO2 films withTiCl4 post-treatment 98 4.3.1 Optical properties of TiO2 Films 99 4.3.2 Photoelectrical characterization of DSSCs 102 Chapter 5 Conclusion and future work 112 Appendix 114 A. Ag-embedded DSSCs via stirring method 114 A.1 Materials characterization of the photoanodes 114 A.2 Optical properties 116 A.3 Photoelectrical characterization of DSSCs 117 B. AuAg-embedded DSSCs via stirring method 120 B.1 Materials Characterization of the photoanodes 120 B.2 Optical properties of TiO2 Films. 121 B.3 Photoelectrical characterization of DSSCs 122 C. TiO2 photoanodes with atomic layer deposition 124 C.1 Photoelectrical characterization of DSSCs 124 D. EIS analysis 132 Bibliography 135 | |
| dc.language.iso | en | |
| dc.subject | 侷域性表面電漿共振 | zh_TW |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 染料敏化太陽能電池 | zh_TW |
| dc.subject | 金奈米粒子 | zh_TW |
| dc.subject | 電子傳輸 | zh_TW |
| dc.subject | 光散射效應 | zh_TW |
| dc.subject | TiO2 | en |
| dc.subject | electron transfer | en |
| dc.subject | light scattering effect | en |
| dc.subject | localized surface plasmon resonance | en |
| dc.subject | Dye-sensitized solar cell | en |
| dc.subject | Au nanoparticles | en |
| dc.title | 金奈米粒子摻雜於染料敏化太陽能電池之二氧化鈦光電極的應用與研究 | zh_TW |
| dc.title | The Effect of Gold Nanoparticle Incorporation
in the TiO2 Photoanodes for Dye-Sensitized Solar Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳志毅(Chih-I Wu),陳建彰(Jian-Zhang Chen) | |
| dc.subject.keyword | 染料敏化太陽能電池,二氧化鈦,金奈米粒子,侷域性表面電漿共振,光散射效應,電子傳輸, | zh_TW |
| dc.subject.keyword | Dye-sensitized solar cell,TiO2,Au nanoparticles,localized surface plasmon resonance,light scattering effect,electron transfer, | en |
| dc.relation.page | 139 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-05 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 5.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
