Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6291
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 林雨德 | |
dc.contributor.author | Shan-Ta Tao | en |
dc.contributor.author | 陶善達 | zh_TW |
dc.date.accessioned | 2021-05-16T16:25:11Z | - |
dc.date.available | 2015-06-21 | |
dc.date.available | 2021-05-16T16:25:11Z | - |
dc.date.copyright | 2013-06-21 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-06-03 | |
dc.identifier.citation | 1. Abramoff, M. D., Magalhaes, P. J., & Ram, S. J. (2004). Image Processing with Image J. Biophotonics International, 11(7), 36-42.
2. Amarasekare, P. (2003). Competitive coexistence in spatially structured environments: a synthesis. Ecology Letters, 6(12), 1109-1122. 3. Arif, S., Adams, D. C., & Wicknick, J. A. (2007). Bioclimatic modelling, morphology, and behaviour reveal alternative mechanisms regulating the distributions of two parapatric salamander species. Evolutionary Ecology Research, 9, 843-854. 4. Bean, W. T., Stafford, R., & Brashares, J. S. (2012). The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography, 35(3), 250-258. 5. Beuttell, K. & Losos, J. B. (1999). Ecological morphology of Caribbean anoles. Herpetological Monographs, 13, 1-28. 6. Brown, W. L., & Wilson, E. O. (1956). Character Displacement. Systematic Zoology, 5(2), 49-64. 7. Butler, M. A., & Losos, J. B. (2002). Multivariate sexual dimorphism sexual selection and adaptation in Greater Antillean Anolis lizards. Ecology, 72(4), 541-559. 8. Chase, J. M., Abrams, P. A., Grover, J. P., Diehl, S., Chesson, P., Holt, R. D., Richards, S. A., Nisbet, R. M., & Case, T. J. (2002). The interaction between predation and competition: A review and synthesis. Ecology Letters 5:302-315 9. Chiba, S. (1999). Character displacement, frequency-dependent selection, and divergence of shell colour in land snails Mandarina (Plumonata). Biological Journal of the Linnean Society, 66, 465-479. 10. Cooper ., W. E., Vitt, L. J., Hedges, R., & Huey, R. B. (1990). Locomotor impairment and defense in gravid lizards (Eumeces laticeps): behavioral shift in activity may offset costs of reproduction in an active forager Behavioral Ecology and Sociobiology, 27, 153-157. 11. Cunningham, H.R., Rissler, L. J., & Apodaca, J. J. (2009). Competition at the range boundary in the slimy salamander using reciprocal transplants for studies on the role of biotic interactions in spatial distributions. Journal of Animal Ecology, 78, 52-62. 12. Dayan, T., & Simberloff, D. (2005). Ecological and community-wide character displacement: the next generation. Ecology Letters, 8(8), 875-894. 13. Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677-697. 14. Ferrier, S., & Guisan, A. (2006). Spatial modelling of biodiversity at the community level. Journal of Applied Ecology, 43(3), 393-404. 15. Garland, T., & Losos, J. B. (1994). Ecological morphology of locomotor performance in Squamate reptiles. In P. C. Wainwright & S. M. Reilly (Eds.), Ecological Morphology: Integrative Organismal Biology (pp. 240-302): University of Chicago 16. Gause, G. F. (1934). The Struggle for Existence-A Classic in Mathematical Biology and Ecology. 17. Gormley, A. M., Forsyth, D. M., Griffioen, P., Lindeman, M., Ramsey, D. S., Scroggie, M. P., & Woodford, L. (2011). Using presence-only and presence-absence data to estimate the current and potential distributions of established invasive species. Journal of Applied Ecology, 48(1), 25-34. 18. Grant, P. R. (1972). Convergent and divergent character displacement. Biological Journal of the Linnean Society, 4, 39-68. 19. Grant, P. R., & Grant, B. R. (2006). Evolution of character displacement in Darwin's finches. Science, 313(5784), 224-226. 20. Hardin, G. (1960). The Competitive Exclusion Principle. Science, 131(3409), 1292-1297. 21. Heinanen, S., Erola, J., & Numers, M. (2012). High resolution species distribution models of two nesting water bird species: a study of transferability and predictive performance. Landscape Ecology, 27(4), 545-555. 22. Hernandez, P. A., Franke, I., Herzog, S. K., Pacheco, V., Paniagua, L., Quintana, H. L., Young, B. E. (2008). Predicting species distributions in poorly-studied landscapes. Biodiversity and Conservation, 17(6), 1353-1366. 23. Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773-785. 24. Herrel, A., Joachim, R., Vanhooydonck, B., & Irschick, D. J. (2006). Ecological consequences of ontogenetic changes in head shape and bite performance in Jamaican lizard Anolis lineatopus. Biological Journal of the Linnean Society, 89, 443-454. 25. Holt, R. D. (1985). Population dynamics in two-patch environments: some anomalous consquences of an optimal habitat distribution. Theoretical Population Biology, 28(2), 181-208. 26. Hsiang, G. S. (1997). Phylogenetic Relationships and Biogeography in the Genus Japalura of Taiwan Base on the Variation of mtDNA Sequences. (M.D.), National Sun Yat-sen University, R.O.C. (in Chinese) 27. Hutchinson, G. E. (1957). Concluding Remarks. Paper presented at the Cold Spring Harbor Laboratory Symposium on Quantitative Biology. 28. Jenks, G. F. (1967). The Data Model Concept in Statistical Mapping. Cartography and Geographic Information Science, 7, 186-190. 29. Kira,T., 1945a, New climatic zonation in eastern Asia as a basis of agricultural geography. Kyoto Imperial University, 24p, 1945a. (in Japanese) 30. Kira,T., 1945b. New Climatic zonation in southeastern Asia. Kyoto Imperial University, 24p, 1945b. (in Japanese) 31. Kumar, S., & Stohlgren, T.J. (2009). Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and Natural Environment, 1(4), 94-98. 32. Kuo, C.-Y., Lin, Y.-S., & Lin, Y. K. (2007). Resource Use and Morphology of Two Sympatric Japalura Lizards (Iguania: Agamidae). Journal of Herpetology, 41(4), 713-723. 33. Kuo, C.-Y., Lin, Y.-T., & Lin, Y.-S. (2009). Sexual Size and Shape Dimorphism in an Agamid Lizard, Japalura swinhonis (Squamata: Lacertilia: Agamidae). Zoological Studies, 48(3), 351-361. 34. Lee, P. F., Liao, C. Y., Lee, Y. C., Pan, Y. H., Fu, W. H., & Chen, H. W. (1997). An Ecological and Environmental GIS database for Taiwan. Taipei. (in Chinese) 35. Lin, J.-Y., & Lu, K.-H.. (1982). Populaiton Ecology of the Lizard Japalura swinhonis formosensis (Sauria: Agamidae) in Taiwan. Copeia, 1982(2), 425-434. 36. Losos, J. B. (1990). The Evolution of Form and Function Morphology and Locomotor Performance in West Indian Anolis Lizards. Evolution, 44(5), 1189-1203. 37. Losos, J. B. (1994). Integrative approaches to evolutionary ecology Anolis lizards as model systems. Annual Review of Ecology and Systematics, 25, 467-493. 38. Losos, J. B. (2000). Ecological character displacement and the study of adaptation. Proceedings of the National Academy of Sciences, 97(11), 5693-5695. 39. Losos, J. B. (2009). Lizards in an Evolutionary Tree: Ecology and Adaptive Radiation of Anoles. University of California Press, Berkeley, USA 40. Losos, J. B., & Sinervo, B. (1989). The Effects of Morphology and Perch Diameter on Sprint Performance of Anolis Lizards. Journal of Experimental Biology, 145, 23-30. 41. Lue, K.-Y., Ye, G.-Q., Chen, S.-H., Lin, Z.-Y., & Chen, S.-L. (1987). Herpetological and amphibian survey report of the Yangminshan national park. Taipei: Yangminshan National Park, Construction and Planning Agency Ministry of the Interior. (in Chinese) 42. MacArthur, R. H., & Levins, R. (1967). The Limiting Similarity Convergence, and Divergence of Coexisting Species. The American Naturalist, 101(921), 377-385. 43. Martinez-Freiria, F., Sillero, N., Lizana, M., & Brito, J. C. (2008). GIS-based niche models identify environmental correlates sustaining a contact zone between three species of European vipers. Diversity and Distributions, 14(3), 452-461. 44. Martin, J., Revilla, E., Quenette, P.-Y., Naves, J., Allaine, D., & Swenson, J. E. (2012). Brown bear species distribution in the Pyrenees: transferability across sites and linking scales to make the most of scarce data. Journal of Applied Ecology, 49(3), 621-631. 45. May, R. M., & MacArthur, R. H. (1972). Niche overlap as a function of environmental variability. Proceedings of the National Academy of Sciences, 65(5), 1109-1113. 46. McCormack, J. E., Zellmer, A. J., & Knowles, L. L. (2010). Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation? Insights from tests with niche models. Evolution, 64(5), 1231-1244. 47. Medley, K. A. (2010). Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global Ecology and Biogeography, 19(1), 122-133. 48. Miles, D. B., Sinervo, B., & Frankino, W. A. (2000). Reproductive burden, locomotor performance and the cost of reproduction in free ranging lizards. Evolution, 54(4), 1386-1395. 49. Mosimann, J. E. (1970). Size Allometry: Size and Shape Variables with Characterizations of the Lognormal and Generalized Gamma Distributions. Journal of the American Statistical Association, 65(330), 930-945. 50. Ota, Hidetoshi. (1991b). Taxonomic Redefinition of Japalura swinhonis Gunther (Agamidae: Squamata), with a Description of a New Subspecies of J. polygonata from Taiwan. Herpetologica, 47(3), 280-294. 51. Papeş, M., & Gaubert, P. (2007). Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Diversity and Distributions, 13(6), 890-902. 52. Peterson, C. C., & Husak, J. F. (2006). Locomotor Performance and Sexual Selection: Individual Variation in Sprint Speed of Collared Lizards Copeia, 2006(2), 216-224. 53. Pfennig, D. W., & Pfennig, K. S. (2012). Development and evolution of character displacement. Annals of the New York Academy of Sciences, 1256, 89-107. 54. Pfennig, D. W., & Murphy, P. J. (2000). Character Displacement in Polyphenic Tadpoles. Evolution, 54(5), 1738-1749. 55. Pfennig, D. W., Rice, A. M., & Martiin, R. A. (2006). Ecological Oppoptunity and Phenotypic Plasticity Interact to Promote Character Displacement and Species Coexistence. Ecology, 87(3), 769-779. 56. Phillips, S. J. (2004). A maximum entropy approach to species distribution modeling. Paper presented at the Proceedings of the 21st International Conference on Machine Learning, Banff, Canada. 57. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. 58. Pulliam, H. R. (2000). On the relationship between niche and distribution. Ecology Letters, 3, 349-361. 59. Pulliam, H. R., & Brent, J. D. (1991). Sources, sinks, and habitat selection: a landscape perspective on population dynamics. The American Naturalist, 137, S51-S66. 60. Rundle, H. D., Vamosi, S. M., & Schluter, D. (2003). Experimental test of predation’s effect on divergent selection during character displacement in sticklebacks. Proceeding of the National Academy of Sciences (USA) 100(14), 14934-14948. 61. Schluter, D., & McPhail, J. D. (1992). Ecological Character Displacement and Speciation in Sticklebacks. The American Naturalist, 140(1), 85-108. 62. Schluter, D. (2000). The ecology of adaptive radiation. Oxford University Press, Oxford, UK. 63. Seigel, R. A., Huggins, M. M., & Ford, N. B. (1987). Reduction in locomotor ability as a cost of reproduction in gravid snakes Oecologia, 73, 481-485. 64. Slatkin, M. (1980). Ecological Character Displacement. Ecology, 61(1), 163-177. 65. Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293. 66. Van Damme, R., Aerts, P., & Vanhooydonck, B. (1998). Variation in morphology gait characteristics and speed of locomotion in two populations of lizards. Biological Journal of the Linnean Society, 63, 409-427. 67. Vanhooydonck, B., & Van Damme, R. (1999). Evolutionary relationships between body shape and habitat use in lacertid lizards. Evolutionary Ecology Research, 1, 785-805. 68. Yang, S.-M., & Lin, Y.-T. K. (2009). Mechanisms of Coexistence of Two Agamid Lizrds in Northern Taiwan: An Eco-morphology Perspective. (MD), National Taiwan University, Taipei, Taiwan. (in Chinese) 69. Zeng, J.-K., & Gao, S. (2004). A herpetological survey of the Jinmian mountain at the NwiHu area, Taipei. Science Monthly, 270, 16-25. (in Chinese) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6291 | - |
dc.description.abstract | 形態置換假說:當形態相似的物種共存於同一群聚時,同一物種於共域區的族群會在一個或多個形態上產生分化。透過形態上差異的增加,可降低對於限制性資源的種間競爭強度。斯文豪氏攀蜥(Japalura swinhonis)與黃口攀蜥(Japalura polygonata xanthostoma)皆有分布在台灣北部地區。這兩個同屬種有相似的外觀型值與生態習性,但在巨觀棲地上有所差異。我使用兩物種在巨觀棲地上有所差異的變數建構各物種的分布模式,預測兩物種的潛在共域區,並由潛在共域區的資訊選擇樣區檢視兩物種的形態置換現象。物種分布模式的結果顯示對這兩個物種出現機率影響最大的兩項因子分別是到人為土地利用密集區的距離以及森林面積,同時預測的結果讓我得以確認四個共域區作為後續檢視形態置換現象之用。對相同物種而言,四個共域區中有三個發現其與鄰近的非共域區在頭部相關的外觀型值顯著的變小。分析結果也發現對共域區內的族群而言,與咬合力有關的外觀型值在確實有發現明顯的形態置換現象;但與最大衝刺速度較有相關的外觀型值在共域區的種間差異反而降低了。形態置換現象可能同時受到種間競爭與天敵捕食壓力的影響,因而降低兩物種在共域區的種間差異。 | zh_TW |
dc.description.abstract | Character displacement hypothesis states: when species with character similarity coexist in the same community, the population in sympatric location would displace in one or more characters. The increased differences in character space would reduce the strength of inter-specific competition for limited resources. Both Japalura swinhonis and Japalura polygonata xanthostoma occur in northern Taiwan. The two congeners have similar morphology and ecology, yet different macro-habitats. I applied species distribution model to identify environmental features that describe their differences in macrohabitat use, and predict the potential contact zone of the two species. Then use the latter to examine the pattern of character displacement. The results of species distribution modeling showed the distance to human-use area and total area of forest contribute the most to the distribution of the two species. The models allowed me to successfully locate four main regions of species coexistence. I found evidence for character displacement in most sympatric locations of Japalura swinhonis and Japalura polygonata xanthostoma. In four of the sympatric locations I surveyed, three of them showed significant intra-specific differences in their morphology between sympatric and allopatric locations. The head related parameters were consistently smaller for both species. While inter-specific difference of bite force related characters were greater in the sympatric than allopatric locations, characters related to sprint speed were more similar in the sympatric locations. Character displacement may be effect by inter-specific competition and predation risk in sympatric location, therefore, the characters related to sprint speed would be more similar. | en |
dc.description.provenance | Made available in DSpace on 2021-05-16T16:25:11Z (GMT). No. of bitstreams: 1 ntu-102-R98b44011-1.pdf: 6144282 bytes, checksum: 5a15fd98336d857d5aecbd52dae5e130 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 誌謝.................................................... i
摘要.................................................... ii Abstract............................................... iii Introduction........................................... 1 Materials and Methods.................................. 5 Pilot Survey....................................... 5 Field Survey for Species Distribution Modeling..... 6 Species Distribution Modeling...................... 6 Identifying Potential Contact Zone................. 9 Field Sampling for Character Displacement Analyses .................................................. 10 Morphometric analyses............................. 11 Result................................................ 15 Pilot Survey...................................... 15 Field Survey for Species Distribution Modeling.... 15 Constructing Species Distribution Models.......... 15 Identifying Potential Contact Zone................ 18 Field Sampling for Character Displacement Analyses 18 Morphometric analyses............................. 19 Discussion............................................ 21 Species Distribution Modeling......................... 21 The Pattern of Character Displacement................. 22 Conclusion............................................ 27 Reference............................................. 28 Table................................................. 33 Figure................................................ 71 Appendix.............................................. 82 | |
dc.language.iso | en | |
dc.title | 以物種分布模式預測台灣北部兩種攀蜥的共域區並檢視形態置換現象 | zh_TW |
dc.title | Examining the Pattern of Character Displacement of Two Sympatric Agamid Lizards in Northern Taiwan by Species Distribution Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李培芬,林思民,陳賜隆 | |
dc.subject.keyword | 斯文豪氏攀蜥,黃口攀蜥,棲位,物種分布模式,形態置換, | zh_TW |
dc.subject.keyword | Japalura swinhonis,Japalura polygonata xanthostoma,niche,species distribution model,character displacement, | en |
dc.relation.page | 108 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2013-06-04 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生態學與演化生物學研究所 | zh_TW |
Appears in Collections: | 生態學與演化生物學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-102-1.pdf | 6 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.