請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62904完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江俊斌(Chun-Pin Chiang) | |
| dc.contributor.author | Lee-Ting Huang | en |
| dc.contributor.author | 黃立婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:14:22Z | - |
| dc.date.available | 2013-03-04 | |
| dc.date.copyright | 2013-03-04 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-07 | |
| dc.identifier.citation | 1. Salata, O. Applications of nanoparticles in biology and medicine, J Nanobiotechnology. 2(1):3 (2004).
2. Edelstein, R.L., Tamanaha, C.R., Sheehan, P.E., Miller, M.M., Baselt, D.R., Whitman, L.J. and Colton, R.J. The BARC biosensor applied to the detection of biological warfare agents, Biosens Bioelectron. 14:805-13 (2000). 3. Nam, J.M., Thaxton, C.C. and Mirkin, C.A. Nanoparticles-based bio-barcodes for the ultrasensitive detection of proteins, Science. 301:1884-1886 (2003). 4. Bruchez, M., Moronne, M., Gin, P., Weiss, S. and Alivisatos, A.P. Semiconductor nanocrystals as fluorescent biological labels, Science. 281:2013-2016 (1998). 5. Chan, W.C. and Nie, S.M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science. 281:2016-2018 (1998). 6. Wang, S., Mamedova, N., Kotov, NA., Chen, W. and Studer, J. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates, Nano Letters. 2:817-822 (2002). 7. Mah, C., Zolotukhin, I., Fraites, T.J., Dobson, J., Batich, C. and Byrne, B.J. Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo, Mol Therapy. 1:S239 (2000). 8. Panatarotto, D., Prtidos, C.D., Hoebeke, J., Brown, F., Kramer, E., Briand, J.P., Muller, S., Prato, M. and Bianco, A. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses, Chemistry & Biology. 10:961-966 (2003). 9. Weissleder, R., Elizondo, G., Wittenburg, J., Rabito, C.A., Bengele, H.H. and Josephson, L. Ultrasmall superparamagnetic iron oxide: charcterization of a new class of contrast agents for MR imaging, Radiology. 175:489-493 (1990). 10. Molday, R.S. and MacKenzie, D. Immunospecific ferromagnetic iron dextran reagents for the labeling and magnetic separation of cells, J Immunol Methods. 52:353-367 (1982). 11. Shenderova, O.A., Zhirnov, V.V. and Brenner, D.W. Carbon nanostructures, Crit. Rev. Solid State Mater. Sci. 27:227-356 (2002). 12. Danilenko, V. V. On the history of the discovery of nanodiamond synthesis, Phys. Solid State. 46:595–599 (2004). 13. Gruber, A., Drabenstedt, A., Tietz, C., Fleury, L., Wrachtrup, J. and Vonborczyskowski, C. Scanning confocal optical microscopy and magnetic resonance on single defect centers, Science. 276:2012-2014 (1997). 14. Chang, Y.R., Lee, H.Y., Chen, K., Chang, C.C., Tsai, D.S., Fu, C.C., Lim, T.S., Tzeng, Y.K., Fang, C.Y., Han, C.C., Chang, H.C. and Fann, W. Mass production and dynamic imaging of fluorescent nanodiamonds, Nat. Nanotechnol. 3:284-288 (2008). 15. Freitas, R.J. Nanomedicine Volume IIA: Biocompatibility, Landes Bioscience: Georgetown, TX (2003). 16. Xing, Y. and Dai, L. Nanodiamonds for nanomedicine, Nanomedicine (Lond). 4(2):207-18 (2009). 17. Holt, K.B. Diamond at the nanoscale: Applications of diamond nanoparticles from cellular biomarkers to quantum computing, Philos. Transact. A Math Phys. Eng. Sci. 365(1861):2845-2861 (2007). 18. Krueger, A. New carbon materials: Biological applications of functionalized nanodiamond materials, Chem. Eur. J. 14:1382-1390 (2008). 19. Puzyr, A.P., Baron, A.V., Purtov, K.V., Bortnikov, E.V., Skobelev, N.N., Moginaya, O.A. and Bondar, V.S. Nanodiamonds with novel properties: A biological study, Diamond Relat. Mater.16: 2124-2128 (2007). 20. Smith, B.R. Niebert, M. Plakhotnik, T. and Zvyagin, A.V. Transfection and imaging of diamond nanocrystals as scattering optical labels, J. Luminescence. 127:260-263 (2007). 21. Schrand, A.M., Lin, J.B., Hens, S.C. and Hussain, S.M. Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds, Nanoscale.3(2):435-445 (2011). 22. Fu, C.C., Lee, H.Y. Chen, K., Lim, T.S., Wu, H.Y., Lin, P.K., Wei, P.K., Tsao, P.H., Chang, H.C., and Fann, W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers, Proc. Natl. Acad. Sci. 104:727-732 (2007). 23. Nel, A., Xia, T., Madler, L. and Li, N. Toxic potential of materials at the nanolevel, Science. 311:622-627 (2006). 24. Schwertfeger, H., Fokin, A.A. and Schreiner, P.R. Diamonds are a chemist’s best friend: Diamondoid chemistry beyond adamantane, Angew. Chem. Int. Ed. Engl. 47: 1022-1036 (2008). 25. Hurt, R.H., Monthioux,M. and Kane, A. Toxicology of carbon nanomaterials: Status, trends, and perspectives on the special issue, Carbon. 44(6):1028-1033 (2006). 26. Schrand, A.M., Dai, L., Schlager, J.J., Hussain, S.M. and Ôsawa, E. Differential biocompatibility of carbon nanotubes and nanodiamonds, Diamond Relat. Mater. 16(12):2118-2123 (2007). 27. Chao, J.I., Perevedentseva, E., Chung, P.H., Liu, K.K., Cheng, C.Y., Chang, C.C. and Cheng, C.L. Nanometer-sized diamond particle as a probe for biolabeling, Biophys. J. 93:2199-2208 (2007). 28. Yu, S.J., Kang, M.W., Chang, H.C., Chen, K.M. and Yu, Y.C. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity, J. Am. Chem. Soc. 127:17604-17605 (2005). 29. Huang, H., Pierstorff, E., Ôsawa, E. and Ho, D. Active nanodiamond hydrogels for chemotherapeutic delivery, Nano. Lett. 7:3305-3314 (2007). 30. Schrand, A.M., Huang, H., Carlson, C., Schlager, J.J., Ôsawa, E., Hussain, S.M. and Dai, L. Are diamond nanoparticles cytotoxic?, J. Phys. Chem. B. 111:2-7 (2007). 31. Wu, Y.N., Yang, L.X., Shi, X.Y., Li, I.C., Biazik, J.M., Ratinac, K.R., Chen, D.H., Thordarson, P., Shieh, D.B. and Braet, F. The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy, Biomaterials. 32(20):4565-4573 (2011). 32. Liu, K.K., Cheng, C.L., Chang, C.C. and Chao, J.I. Biocompatible and detectable carboxylated nanodiamond on human cell, Nanotechnology. 18(32): 325102 (2007). 33. Chen, S.C., Liao, T.L., Wei, Y.H., Tzeng, C.R. and Kao, S.H. Endocrine disruptor, dioxin (TCDD)-induced mitochondrial dysfunction and apoptosis in human trophoblast-like JAR cells, Mol. Hum. Reprod.16(5):361–372 (2010) 34. Matthew, G., Cantley, L.C. and Thompson, C.B. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation, Science. 324(5930):1029-1033 (2009) 35. Warburg, O. On the Origin of Cancer Cells Warburg, Science. 123(3191):309-314 (1956). 36. Dourmishev, L.A., Dourmishev, A.L., Palmeri, D., Schwartz, R.A. and Lukac, D.M. Molecular genetics of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis, Microbiol. Mol. Biol. Rev. 67:175–212 (2003). 37. Delgado, T., Carroll, P.A., Punjabi, A.S., Margineantu, D., Hockenbery, D.M. and Lagunoff , M. Induction of the Warburg effect by Kaposi’s sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells, Proc. Natl. Acad. Sci. 107(23): 10696–10701 (2010). 38. Watanabe. M., Houten, S.M., Mataki, C., Christoffolete, M.A., Kim, B.W., Sato, H., Messaddeq, N., Harney, J.W., Ezaki, O., Kodama, T., Schoonjans, K., Bianco, A.C. and Auwerx, J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation, Nature. 439:484-489 (2006). 39. Lim, J.P. and Gleeson, P.A. Macropinocytosis: an endocytic pathway for internalising large gulps, Immunol Cell Biol. 89(8):836-843 (2011). 40. Sun, P., Yamamoto, H., Suetsugu, Shiro., Miki, H., Takenawa, T., and Endo, T. Small GTPase Rah/Rab34 Is Associated with Membrane Ruffles and Macropinosomes and Promotes Macropinosome Formation, J. Biol. Chem. 278:4063-4071 (2003). 41. Huangr, S., Chueh, P.J., Lin, Y.W., Shih, T.S., and Chuang, S.M. Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure. Toxicol. Appl. Pharmacol. 241(2):182-94 (2009). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62904 | - |
| dc.description.abstract | 螢光奈米鑽石是大小位於奈米層級的鑽石顆粒,通過高速粒子束的撞擊後再以熱能結合創造出晶格缺陷。由於其特殊的晶格結構,螢光奈米鑽石在約 560 nm 波長的光激發之下,可以發出波長約 700 nm的紅色的螢光。螢光奈米鑽石的螢光具有高穩定性,在組織中穿透深度高等特性,且無光漂白、光閃爍的缺點。文獻指出,螢光奈米鑽石不具生物毒性,與其他碳結構之奈米材料相比亦具有較佳的生物相容性。同時奈米鑽石的表面易於做官能基的修飾,便於更進一步以生物分子如核酸或蛋白質等做結合。許多研究指出螢光奈米鑽石於生醫領域的應用有高度潛力,如運載藥物分子或做為細胞標定的探針。為了評估並優化螢光奈米鑽石於臨床上的運用,進一步深入了解奈米鑽石顆粒對細胞的交互作用與影響是必要的。以做為基因治療之藥物載體為例,奈米鑽石需要進入細胞內釋放搭載的核酸藥物以達到治療的效果。然而螢光奈米鑽石對於細胞內部的影響,目前還尚不清楚。在本研究中,我們利用口腔癌細胞株為研究模式,詳盡的探討細胞在吞入螢光奈米鑽石顆粒後受產生的變化。我們發現細胞攝入螢光奈米鑽石後,細胞的增生會更加活化;同時細胞主要代謝途徑中的醣解作用與粒線體有氧呼吸效率也受到提升。我們並使用代謝體輪廓分析之技術來鑑別導致此現象之可能相關代謝途徑;而實驗顯示醣解作用路徑之代謝流通量降低,而乳酸生成和胺基酸之生合成的胞內代謝物水平有所增加,可能代表著更多碳源的利用自能量產生導向生合成的途徑。這些結果或許是由於細胞將攝入之螢光奈米鑽石誤認為如碳水化合物之營養物,進而導致胞內的代謝流向改變。我們將更進一步釐清細胞受到影響的分子層面之機制,而未來也可以將螢光奈米鑽石在促進細胞增殖與活化細胞代謝之特性於運用臨床治療的設計;把奈米鑽石與標靶於特定細胞代謝途徑或針對細胞分裂之藥物作結合使用,以提升治療的效果,實現多功能奈米載體在癌症治療的應用。本研究探討螢光奈米鑽石對細胞之細部影響,揭露了奈米鑽石運用於生醫領域的全新觀念:奈米鑽石不但具有作為藥物載體之潛力,其與細胞之交互作用或許可以輔助藥物運作以提升治療效果或降低副作用。 | zh_TW |
| dc.description.abstract | Fluorescent nanodiamonds (FNDs) are nanometer scale diamond particles bearing incandescent fluorescence, and can be easily functionalized with chemical groups and bio-molecules. Several studies have reported that FNDs display better biocompatibility than most of the other carbon-based nanomaterials. In our lab, we have previously demonstrated that FNDs promote delivery of siRNA into cancer cells to enhance target gene suppression. Together, these properties illustrate FNDs as an ideal candidate nanovector for cancer therapy, with potential to combine imaging, targeting, and enhanced delivery into cancerous tissues. Toward the optimization and evaluation of FNDs as clinically applicable biomedical carrier, it is obligatory to understand the detailed interactions between cells and FND, an issue that remains largely obscure. In this study, we use oral cancer cell models to monitor cellular interactions with FNDs upon their delivery as drug carriers. We found that FND-internalized cells display enhanced proliferation compared to untreated control cells. This was accompanied with increasing oxygen consumption as well as anaerobic glycolysis, suggesting a major change on cellular metabolism. To understand how FND evoke this metabolic change in cells, we employed metabolomic methodology to identify the putative signaling pathways underlying this response. Our data revealed an increasing glycolytic flux into lactate production also amino acid and lipid anabolism, suggesting an increased tilt of carbon sources utilization towards biosynthetic pathways. This unprecedented effect of FND implies the possibility of cells to uptake FNDs in view of mistaking FNDs as nutrients, which leads to subsequent change in cell metabolism. Furthermore, we can make use of the metabolic and proliferative change induced by internalizing FNDs to drug delivery applications by combining anti-cancer drugs specifically against metabolism or cell division. Understanding the cellular response to FND reveals a new aspect of FND in drug delivery. FND has the potential not only being a vehicle transporting drugs, the interaction of FND and cells itself can be used to help improve therapeutic outcomes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:14:22Z (GMT). No. of bitstreams: 1 ntu-102-R99450011-1.pdf: 2880877 bytes, checksum: 8fa886d42396d807c09f47139de314b6 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 iii ABSTRACT v CONTENTS vii Chapter 1 Introduction 1 1.1 Nanomaterials 1 1.2 Fluorescent nanodiamonds 2 1.3 Established cellular response to NDs 4 1.4 Metabolism and nanomaterials 5 1.5 Premise 6 1.6 Aim 7 Chapter 2 Materials and Methods 8 2.1 Fluorescent nanodiamonds 8 2.2 Cell culture condition 8 2.3 Preparation of FND 8 2.4 FND administration procedures 9 2.5 Hyperspectral microscopy 9 2.6 Trypan blue exclusion assay 10 2.7 CFSE dilution proliferation assay 10 2.8 Time lapse assay 11 2.9 Cell size analysis 11 2.10 Cell cycle analysis 12 2.11 Clonogenic assay 12 2.12 Cell activity assay 12 2.13 Real-time extracellular flux analysis 13 2.14 Measurement of cellular ATP levels 14 2.15 Mitochondrial potential assay 15 2.16 LC/MS-based mtabolomic analysis 16 Chapter 3 Results 18 3.1 Cells uptake FND particles during FND co-incubation 18 3.2 The effect of internalized FND on cell viability 18 3.3 Measuring the cell proliferation activity by CFSE-labeling cells 19 3.4 To monitoring cell doubling times and cell division dynamics by time lapse assay 20 3.5 Analysis cell size during accelerated cell division 21 3.6 Analysis cell cycle distribution after FND internalization 22 3.7 Cells with increased colony forming ability after FND internalization 22 3.8 FND internalization and cell metabolic activity 23 3.9 To clarify the real-time alterations in cellular metabolism after FND internalization by measuring cellular bioenergetics 24 3.10 Metabolic profiling by LC-MS revealed the inner metabolic change 27 Chapter 4 Discussion 29 Metabolic change upon FND internalization 29 Possible mechanism involved in FND-induced metabolic change 30 FND internalization and cell cycle progression 31 Incorporation of cellular response characteristic of FND in delivery strategy 32 Chapter 5 Conclusions 33 Chapter 6 Future work 34 Investigation of long term impact of FND on cell cellular bioenergetics 34 To establish the regulation mechanism of FND-induced metabolic change on protein level 34 Determination of alteration in glucose uptake after FND internaliazation 35 Observation of the FND particle influences on human whole genome using microarray analysis 35 REFERENCE 36 FIGURE 40 APPENDIX 60 | |
| dc.language.iso | en | |
| dc.subject | 細胞增生 | zh_TW |
| dc.subject | 糖解作用 | zh_TW |
| dc.subject | 細胞代謝 | zh_TW |
| dc.subject | 有氧呼吸 | zh_TW |
| dc.subject | 螢光奈米鑽石 | zh_TW |
| dc.subject | fluorescent nanodiamond | en |
| dc.subject | proliferation | en |
| dc.subject | glycolysis | en |
| dc.subject | mitochondrial respiration | en |
| dc.subject | metabolic profiling | en |
| dc.title | 探討螢光奈米鑽石載體對細胞代謝之影響 | zh_TW |
| dc.title | Characterization of cellular response to fluorescent nanodiamonds | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 周涵怡(Han-Yi Elizabeth Chou) | |
| dc.contributor.oralexamcommittee | 李伯訓(Bor-Shiunn Lee),宋孔彬(Kung-Bin Sung) | |
| dc.subject.keyword | 螢光奈米鑽石,細胞增生,細胞代謝,有氧呼吸,糖解作用, | zh_TW |
| dc.subject.keyword | fluorescent nanodiamond,proliferation,glycolysis,mitochondrial respiration,metabolic profiling, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-07 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
