Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62881
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋孔彬(Kung-Bin Sung)
dc.contributor.authorYEN-LIN LIUen
dc.contributor.author劉彥麟zh_TW
dc.date.accessioned2021-06-16T16:13:30Z-
dc.date.available2015-03-15
dc.date.copyright2013-03-15
dc.date.issued2013
dc.date.submitted2013-02-07
dc.identifier.citation1. Lee, K.H., et al., Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. Biosens Bioelectron, 2007. 23(4): p. 466-72.
2. Jeong Hoon Lee, Y.-A.S., Steven R. Tannenbaum, Jongyoon Han, Increase of Reaction Rate and Sensitivity of Low-Abundance Enzyme Assay Using Micro/Nanofluidic Preconcentration Chip. Anal. Chem, 2008(80): p. 3198-3204.
3. Sorensen, T.S., Surface Chemistry and Eletrochemistry of Membranes. 1999: Dekker.
4. Pu, Q.S., et al., Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Letters, 2004. 4(6): p. 1099-1103.
5. Wu, D. and A.J. Steckl, High speed nanofluidic protein accumulator. Lab Chip, 2009. 9(13): p. 1890-6.
6. Huang, K.-D. and R.-J. Yang, Formation of ionic depletion/enrichment zones in a hybrid micro-/nano-channel. Microfluid Nanofluid, 2008. 5: p. 631-638.
7. Wang, Y.C., A.L. Stevens, and J. Han, Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal Chem, 2005. 77(14): p. 4293-9.
8. Roberto Venditti, X.X., Dongqing Li, Experimental characterization of the temperature dependence of zeta potential and its effect on electroosmotic flow velocity in microchannels. Microfluid Nanofluid, 2006. 2: p. 7.
9. Li-Jing Cheng, L.J.G., Ionic Current Rectification, Breakdown, and Switching in Heterogeneous Oxide Nanofluidic Devices. American Chemical Society, 2009. 3(3): p. 575-584.
10. Leinweber, F.C. and U. Tallarek, Nonequilibrium electrokinetic effects in beds of ion-permselective particles. Langmuir, 2004. 20(26): p. 11637-11648.
11. Chatterjee, A.N., et al., Modeling and simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects. Journal of Nanoparticle Research, 2005. 7(4-5): p. 507-516.
12. Berli, C.L.A., Equivalent circuit modeling of electrokinetically driven analytical microsystems. Microfluid Nanofluid, 2008. 4: p. 9.
13. Thomas S. Hug, N.F.d.R., U. Staufer, Fabrication and electroosmotic flow measurements in micro- and nanofluidic channels. Microfluid Nanofluid, 2006. 2: p. 8.
14. Sarah Arulanandam, D.L., Liquid transport in rectangular microchannels by electroosmotic pumping. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000. 161: p. 89-102.
15. Berli, C.L.A., Theoretical modelling of electrokinetic flow in microchannel networks. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2007. 301(1-3): p. 271-280.
16. 表面電漿共振架設圖. Available from: http://www.bionavis.com/.
17. Kim, S.J., et al., Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett, 2007. 99(4): p. 044501.
18. Sung, K.-B., et al., Development of a nanofluidic preconcentrator with precise sample positioning and multi-channel preconcentration. Microfluidics and Nanofluidics, 2012: p. 1613-4990.
19. Homola, J. and S.S. Yee, Novel polarization control scheme for spectral surface plasmon resonance sensors. Sensors and Actuators B-Chemical, 1998. 51(1-3): p. 331-339.
20. Ren, X., et al., Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane). J Chromatogr B Biomed Sci Appl, 2001. 762(2): p. 117-25.
21. Ramirez, J.C. and A.T. Conlisk, Formation of vortices near abrupt nano-channel height changes in electro-osmotic flow of aqueous solutions. Biomed Microdevices, 2006. 8(4): p. 325-30.
22. Kim, A., et al., Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors. Biosensors & Bioelectronics, 2010. 25(7): p. 1767-1773.
23. Krishnamoorthy, G., et al., Integrated electrokinetic sample focusing and surface plasmon resonance imaging system for measuring biomolecular interactions. Anal Chem, 2009. 81(5): p. 1957-63.
24. 留連晉, 表面電漿共振感測系統應用於微奈米流體晶片之蛋白質檢測, in 臺灣大學電機工程學研究所學位論文2008, 臺灣大學. p. 1-62.
25. Gupta, R., M.J. Dyer, and W.A. Weimer, Preparation and characterization of surface plasmon resonance tunable gold and silver films. Journal of Applied Physics, 2002. 92(9): p. 5264-5271.
26. Kurita, R., et al., On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system. Analytical Chemistry, 2006. 78(15): p. 5525-5531.
27. Structural formula of EDC/NHS Available from: http://www.piercenet.com.
28. 于念中, 利用表面電漿共振感測微米流體晶片中的蛋白質免疫分析反應, in 臺灣大學生醫電子與資訊學研究所學位論文2010, 臺灣大學. p. 1-63.
29. Karlsson, R., A. Michaelsson, and L. Mattsson, Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J Immunol Methods, 1991. 145(1-2): p. 229-40.
30. Lok, B.K., Y.L. Cheng, and C.R. Robertson, Protein Adsorption on Crosslinked Polydimethylsiloxane Using Total Internal-Reflection Fluorescence. Journal of Colloid and Interface Science, 1983. 91(1): p. 104-116.
31. Hu, G., Y. Gao, and D. Li, Modeling micropatterned antigen-antibody binding kinetics in a microfluidic chip. Biosens Bioelectron, 2007. 22(7): p. 1403-9.
32. Black, M.H., et al., Characterization of monoclonal antibodies for prostate-specific antigen and development of highly sensitive free prostate-specific antigen assays. Clin Chem, 1999. 45(3): p. 347-54.
33. Kim, S.J., Y.-A. Song, and J. Han, Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and application. Chem. Soc. Rev., 2010. 39: p. 912-922.
34. Schasfoort, R.B.M. and A.J. Tudos, Handbook Of Surface Plasmon Resonance. 2008.
35. Tadjeddine, A., F. Abeles, and T. Lopez.Rios, INVESTIGATION OF THE METAL-ELECTROLYFE INTERFACE USING SURFACE PLASMA WAVES WITH ELLIPSOMETRIC DETECTION. Solid State Communications, 1975. 16: p. 843-847.
36. Iwasaki, Y., et al., Time differential surface plasmon resonance measurements applied for electrochemical analysis. Electroanalysis, 1997. 9(16): p. 1239-1241.
37. Lioubimov, V., et al., Effect of varying electric potential on surface-plasmon resonance sensing. Appl Opt, 2004. 43(17): p. 3426-32.
38. Katsamba, P.S., I. Navratilova, and D.G. Myszka, Kinetic analysis of a high-aYnity antibody/antigen interaction performed by multiple Biacore users. Analytical Biochemistry, 2006. 352: p. 208-221.
39. Vermesh, U., et al., Fast nonlinear ion transport via field-induced hydrodynamic slip in sub-20-nm hydrophilic nanofluidic transistors. Nano Lett, 2009. 9(4): p. 1315-9.
40. Tybrandt, K., et al., Ion bipolar junction transistors. Proc Natl Acad Sci U S A, 2010. 107(22): p. 9929-32.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62881-
dc.description.abstract人體內微量的蛋白質變化能用於早期癌症的診斷,如前列腺特異性抗原。奈米等級的流道具有離子篩選的功能,配合微-奈-微流道的結構設計,就能利用電壓源的施加讓微米流道內產生蛋白質的濃縮。蛋白質的預濃縮能增加偵測系統的靈敏度,並降低人體血清中微量的蛋白質分析的時間和生物樣本的消耗。利用濃縮晶片能將抗原濃縮後藉由濃度的提高增加免疫分析中抗體-抗原鍵結反應的靈敏度。MIT的Dr. Jongyoon Han團隊在2005年利用這樣的流道設計配合半導體技術將濃縮晶片製作出來,達到高濃度的蛋白質濃縮(Applied Optics 40, 3810-3821)。我的實驗主要目標是進一步將濃縮晶片搭配架設好的表面電漿共振系統進行免螢光標靶的蛋白質免疫分析。為了優化奈米流道濃縮晶片,我利用電流計測量微奈米流道的導電率常數,進而建立電阻式電路模型。運用模型計算出微奈米濃縮晶片流道的參數,利用半導體製程將晶片完成。架設表面電漿共振系統,量測不同樣式、尺寸金膜的表面電漿共振訊號。架設正立式螢光顯微鏡,配合微奈米濃縮晶片與表面電漿共振系統測量前列腺特異性抗原PSA(prostate – specific antigen)的免疫分析。電阻式電路模型首創應用在濃縮晶片的設計上,成功的建立流道尺寸對應濃縮產生和濃縮倍率的關係,並藉由模擬結果優化最後濃縮晶片的表現。首次利用表面電漿共振系統測量經濃縮過後的蛋白質免疫分析,證實能利用濃縮增加蛋白質抗體-抗原的鍵結。zh_TW
dc.description.abstractSome concentration variation of antigens can be considered as cancer marker. Nanochannels between two microchannels can achieve protein preconcentrator due to ion selectivity of nanochannels. Using nanochannels and microchannels, Professor Han’s group developed a million-fold preconcentrator in 2004(Applied Optics 40, 3810-3821). I set up surface plasmon resonance (SPR) system as a label-free sensor to detect variation of antigen-antibody conjugate, and combined with the preconcentrator to enhance sensitivity of immunoassays by upper antigen concentration which is preconcentrated by the preconcentrator. To optimize the performance of preconcentrator, Picoammeter was used to identify the parameters of micro/nanochannels. The resistive network electrical model was built by the identified parameters of micro/nanochannels to calculate and design the channel size of preconcentration chip, then fabricate chips using semiconductor technologies and equipment. The surface plasmon resonance (SPR) platform was set up to measure SPR signal and design the size and shape of the thin film gold in the preconcentration chip. The fluorescence microscopy was set up to integrated with SPR platform and preconcentration chip to do immunoassays of preconcentrated prostate – specific antigen (PSA). Originally, the resistive network circuit model was developed. And the preconcentration chip design rule was built. The SPR system combined with preconcentration chip to be applied to immunoassays, and the antigen-antibody conjugate enhanced by preconcentration.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:13:30Z (GMT). No. of bitstreams: 1
ntu-102-R99945024-1.pdf: 9124760 bytes, checksum: 8b9778a68d5f0e098afc5a54a477f5e0 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT III
CONTENTS IV
LIST OF FIGURES VI
LIST OF TABLES X
第一章 導論 1
1-1 研究背景 1
1-2 研究目的與動機 2
1-3 本文結構 3
第二章 實驗理論 5
2-1 濃縮晶片理論背景 5
2-2 濃縮晶片原理介紹 6
2-3 電路模擬模型原理 10
2-4 稜鏡耦合式表面電漿共振系統原理 12
第三章 濃縮晶片設計與實驗結果 16
3-1 濃縮晶片設計 16
3-2 濃縮晶片製作 24
3-3 濃縮晶片濃縮效率的分析與討論 31
3-4 結論與討論 38
第四章 表面電漿共振系統架設與測量 41
4-1 表面電漿共振系統和正立式螢光顯微鏡架設 42
4-2 應用於表面電漿共振系統之金膜設計與製作 43
4-3 不同尺寸與形狀之金膜的表面電漿共振訊號 46
4-4 表面電漿共振系統與正立式螢光顯微鏡效能測試及分析 53
4-5 結論與討論 60
第五章 配合微奈米晶片之免疫分析 62
5-1 蛋白質固化及免疫分析流程 62
5-2 在流體環境中的蛋白質免疫分析 66
5-3 預濃縮的蛋白質免疫分析 70
5-4 結論與討論 73
未來展望 76
參考文獻 78
dc.language.isozh-TW
dc.title利用表面電漿共振感測微奈米濃縮晶片的蛋白質免疫分析zh_TW
dc.titleUsing surface plasmon resonance sensing for protein immunoassays in preconcentration microfluidic chipen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.coadvisor田維誠(Wei-Chang Tian)
dc.contributor.oralexamcommittee林致廷(Chih-Ting Lin)
dc.subject.keyword微流道電路模型,微奈米濃縮晶片,預濃縮,免疫分析,表面電漿共振,zh_TW
dc.subject.keywordpreconcentration,microfluidic,nanofluidic,surface plasmon resonance (SPR),immunoassay,resistive network electrical model,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2013-02-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
8.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved