請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62878完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張育森(Yu-Sen Chang) | |
| dc.contributor.author | Tsai-Yi Chang | en |
| dc.contributor.author | 張采依 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:13:24Z | - |
| dc.date.available | 2016-03-15 | |
| dc.date.copyright | 2013-03-15 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2013-02-08 | |
| dc.identifier.citation | 方智芳. 2011 台中地區生態屋頂適生植物之研究. 造園景觀學報 18:61-85.
王光耀、劉俊梅、張儀. 1999. 菜豆四個不同抗熱性品種的氣孔特性. 農業生物技術學. 7:267-270. 王材源、楊培岭、李雲開、任樹梅、路璐、趙魯. 2012. 非充分灌溉對屋頂綠化大葉黃楊生長及水碳通量的影響. 農業工程學報 28:145-150. 王亞光和李曉靜. 2012. 淺析苗木移栽難、成活率低的原因. 內蒙古科技與經濟 15:46-47. 王孟宇. 2009. 作物生長與環境. p.157-161. 化學工業出版社. 北京. 王秋姣、廖飛勇、唐红. 2012. 水分脅迫對花葉絡石光合和螢光參數的影響. 中國農學通報 28:215-219. 王寶山. 2010. 逆境植物生物學. p.198-208. 高等教育出版社. 北京. 王艷秋和劉曉蘭. 2012. 容器苗植苗擠實鏟製作及使用. 中國林業. 6:43. 台灣綠屋頂暨立體綠化協會. 2012. 我愛綠屋頂. 麥浩斯出版社. 台北. 臺灣. 朱德民. 1990. 植物與環境逆境.台修一版. p. 65-143. 國立編譯館.台北. 吳昇儒. 2010. 漂浮系統應用於蔬菜育苗之研究. 國立宜蘭大學園藝學系碩士論文. 宜蘭. 李讚壽. 1991. 非洲鳳仙花和四季秋海棠之周年生產品質與品種間耐熱性之比較. 國立臺灣大學園藝系碩士論文. 台北. 林孟璇、楊純明. 2011. 植物荷爾蒙介紹及其對改善逆境之應用. 台中農改場農業試驗所技術服務 86:24-26. 林鈴娜. 2011. 水楊酸對提升花卉作物溫度逆境耐受性之研究. 國立臺灣大學園藝學系博士論文. 台北. 林錦松. 2007. 什麼是綠屋頂. p. 5-23 刊於:林錦松等編著. 你也能有綠屋頂. 財團法人台北市錫瑠環境綠化基金會, 台北. 林寶秀. 2010. 植栽綠地降溫效果之研究. 國立臺灣大學園藝系博士論文. 台北. 松下暢子、森山正和. 2010. 屋上緑化の維持管理に関する研究. 日本建築學會技術報告集. 16:221-226. 姚銘輝、盧虎生、朱鈞. 2002.葉綠素螢光與作物生理反應. 科學農業 50:31-41. 胡玉咏、劉露、劉一明、王登甫、王兆龍. 2009. 四種屋頂綠化候選植物的耐熱性研究. 上海交通大學學報農業科學版 27:210-214. 倪君蒂、李振國. 2000. 淹水對大豆生長的影響. 大豆科學 19:42-48. 倪龍鳳、水華、張健. 2008. 馬齒牡丹的特性及對養蜂價值的探討. 中國蜂業7: 32. 徐華盛、蔡永暭、林富雄. 2002. 香草植物-有機栽培與利用. 高雄區農業專訊41:10-12. 徐超華、張曉海、李軍營、黄國賓、榮智媛、楊利雲、崔明昆、龔明. 2012. 循環乾旱鍛鍊對在乾旱脅迫下菸草植株光合參數及葉綠素螢光參數的影響. 安徽農業科學 40 :13685-13687,13704. 馬琴. 2012. 綠化苗木的移栽方法. 中國林業 6:46. 馬艷麗、王鵬. 2010. 植物在乾旱中的適應機制研究進展. 河北林果研究25:359-361. 國立中央大學太空及遙測研究中心. 2002. 綠資源NDVI 調查計畫(成果報告書).行政院農委會林務局農林航空測量所, 台北, 臺灣. 張文娟、李連國、郭金麗、孫潛、單崢. 2012. 乾熱脅迫下六種景天植物的形態特徵及生理響應. 北方園藝 17:71-75. 張永平、范紅偉、楊少軍、陳幼源. 2012. 表油菜素內酯對高溫脅迫下甜瓜幼苗葉綠素螢光特性的影響. 上海農業學報 28:17-21. 張育森、賴允慧、侯炳丞、張采依、陳昱心. 2010. 綠屋頂的環境效益與相關技術探討. pp. 9-23. 『都市新田園』綠屋頂、綠牆推廣展示活動資料. 財團法人台北巿錫瑠環境綠化基金會, 台北. 張育森、賴允慧、侯炳丞. 2009. 綠屋頂介質與植物之關係. pp. 18-24. 節能減碳綠工法~綠綠屋頂及綠牆交流討論及推廣展示活動資料. 財團法人台北巿錫瑠環境綠化基金會, 台北. 張旻宜. 2008. 盆中盆育苗模式及反射光譜技術在苗木生產之應用. 國立臺灣大學園藝學系碩士論文. 台北. 張咏新、關艷清. 2010. 兩種植物生長調節劑對八寶景天株型的影響. 遼寧農業職業技術學院學報 12:3-4. 連祥萍. 2009. 運用省水耐旱植栽進行屋頂薄層綠化之熱效應研究.碩士論文. 國立中興大學園藝學研究所. 台中 郭幸榮. 2003. 植物在逆境下的生存策略. 科學發展 366:32-37. 郭倩妤. 2005. 硼、氯化鈉、儲運、溫度與澆水頻率對擎天鳳梨葉片生長與產後品質之影響. 國立臺灣大學園藝學系碩士論文. 台北. 陳坤燦. 2008. 綠屋頂植物材料選擇要點與植物種類介紹. pp. 27-29. 綠屋頂推廣交流討論會資料. 財團法人台北巿錫瑠環境綠化基金會, 台北. 陳祝林. 2010. 水分脅迫對園林植物的影響. 綠色科技7:65-68. 黃怡嘉. 2008. 溫度、光度及水楊酸對火鶴花光合作用與生育品質之影響. 國立臺灣大學園藝學系碩士論文. 台北. 葉小梅、盧忠華、蔡麗萍、王彩雲. 2007. 4種引進月季品種葉片耐熱性生理生化指標初探. 廣東林業科技 23:80-83. 董飛、劉偉、洪升、高文強. 2008. 幾種屋頂綠化植物的栽植試驗. 山東林業科技 176:49-50. 趙玉婷、胡永紅、張啟翔. 2004. 屋頂綠化植物選擇研究進展. 山東林業科技 151:27-29. 趙昕、李玉霖. 2001. 高溫脅迫下冷地型草坪草幾項生理指標的變化特徵. 草業學報 10:85-91. 趙翠榮、趙開斌、唐前勇、彭萍、李瑞琪. 2008. 四季秋海棠的繁殖與栽培技術. 農技服務 25:99. 劉文利、葉建軍、余世孝、孫淑玲、李恒威、魏道江. 2011. 景天類和馬齒莧類植物耐旱性快速評價方法初探. 安徽農業科學 39:13907-13910. 劉思吟. 2011. 薄層屋頂綠化適用植栽之研究. 國立中興大學園藝系碩士論文. 台中. 劉虹. 2004. 屋頂綠化植物的選擇. 湖南林業 11:8. 潘瑞熾. 2006. 植物生理學. 藝軒圖書出版社, 台北, 臺灣. 蔡建泓. 2012. 薄層屋頂綠化植栽選種及灌溉量之研究-以台北、台中、台南為例. 國立勤益科技大學景觀系碩士論文. 台中. 魯松. 2012. 乾旱逆境對植物生長及其生理的影響. 江蘇林業科技 39:51-54. 繆曼珉、張玉華、蔣亞華、薛林寶. 2005. 黄瓜耐熱性與其葉片、根系和花粉性狀關係的研究. 揚州大學學報 26:83-85. Albouchi, A., R. Ghrir, M.H. EI Aouni. 1997. Drought hardening, soluble carbohydrates and free amino acid accumulation in Acacia cyanophylla phyllodes. Ann Sci Forestieres 54:155-168. Alexandri, E. and P. Jones. 2008. Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Building and Enviro. 43:480-493. Alvarez , S., A. Navarro, S. Banon, and M.J. Sańchez-Blanco. 2009. Regulated deficit irrigation in potted Dianthus plants: Effects of severe and moderate water stress on growth and physiological responses. Scientia Hort. 122:579-585. Anderson, J.A. and S.R. Padhye. 2004. Protein aggregation, radical scavenging capacity, and stability of hygrogen peroxide defense systems in heat-stressed vinca and sweet pea leaves. J. Amer. Soc. Hort. Sci. 129:54-59. Backwith, A.G., Y. Zhang, N.P. Seeram, A.C. Cameron, and M.G. Nair. 2004. Relationship of light quality and anthocyanin production in Pnnisetum setaceum cvs. rubrum and red riding hood. J. Agr. Food. Chem. 52:456-461. Ball, M.C., J.A. Butterworth, J.S. Roden, R. Christian, and J.J.G. Egerton. 1994. Applications of chlorophyll fluorescence to forest ecology. J. Plant Physiol. 22: 311-319. Bańon, S., J. Ochoa, J.A. Franco, J.J. Alarćon, and M.J. Śanchez-Blanco. Hardening of oleander seedlings by deficit irrigation and low air humidity. Environ. Exper. Bot. 56:36-43. Banon, S., J. Ochoa, J.A. Franco, M.J. Śanchez-Blanco, and J.J. Alarcon. 2003. Influence of water deficit an low air humidity in the nursery on survival of Rhannus alaternus seedlings following planting. J. Hort. Sci. Biotechnol. 78:518-522. Bjorkman, O. and B. Demming. 1987. Photon yield of O2 evolution an d chlorophyll fluorescence characteristics at 77k among vascular plants of diverse origin. Planta 170: 489-504. Bolhar-Nordenkam, H.R., S.P. Long, N.R. Baker, G. Oquist, U. Schreiber, and G. Lechner. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: A review of current instrumentation. Funct. Ecol. 3:497-514 Bond, U. 1988. Heat shock but not other stress inducers leads to the discruption of a subset of snRNPs and inhibition of in vitro splicing in HeLa cells. EMBO. J. 7:3509-3518. Bousselot, J.M., J.E. Klett, and R.D. Koski. 2010. Extensive green roof species evaluations using digital image analysis. HortScience 45:1288-1292. Bousselot, J.M., J.E. Klett, and R.D. Koski. 2011. Moisture content of extensive green roof substrate and growth response of 15 temperate plant species during dry down. HortScience 46:518-522. Butler, C. and C.M. Orians. 2011. Sedum cools soil and can improve neighboring plant performance during water deficit on a green roof. Ecol. Eng. 37:1796-1803. Butler, W.L. 1978. Energy distribution in the photochemical apparatus of photosynthesis. Annu. Rev. Plant Physiol. 29:345-378. Castellarin, S.D., A. Pfeiffer, P. Sivilotti, M. Degan, E. Peterlunger, and G.D. Gaspero. 2007. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ. 30:1381-1399. Chen, L.Z., W.Q. Wang, and P. Lin. 2005. Photosynthetic and physiological responses of Kandelia candel L. Druce seedlings to duration of tidal immersion in artificial seawater. Environ. Expt. Bot. 54:256-266. Christie, P.J., M.R. Alfeino, and V. Walbot. 1994. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways:Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541-549. Cohen, W.B. 1991. Response of vegetation indices to changes in three measures of leaf water stress. Photogrammetric Engineer. Remote Sens. 57:195-202. Conroy, J.A., J.M. Virgona, R.M. Smillie, and E.W. Barlow. 1988. Influence of drought acclimation and CO2 enrichment on osmotic adjustment and chlorophyll a fluorescence of sunflower during drought. Plant Physiol. 86:1108-1115. Dat, J.F., H. Lopez-Delgado, C.H. Foyer, and I.M. Scott. 1998. Parallel Changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol. 116:1351-1357. De Boer waterproofing solutions rrv. 2011. Installation green roofs, Title 2. Methods and techniques. 26 Oct. 2012.<http://www.deboer.be/exen/site/deboer-about.aspx >. Diekelman, N.W. 2009. Green roof plant trial array. Oklahoma Univ., Tulsa, Ok., USA., Master thesis. Drew, M.C. 1997. Oxygen deficiency and root metabolism:injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:223–250. Du, H., Z. Wang, and B. Huang. 2009. Differential responses of warm-season and cool-season turfgrass species to heat stress associated with antioxidant enzyme activity. J. Amer. Soc. Hort. Sci. 134:417-422. Dunnett, N. and A. Nolan. 2004. The effect of substrate depth and supplementary watering on the growth of nine herbaceous perennials in a semi-extensive green roof . Acta Hort. 643:305-309. Dunnett, N. and N. Kingsbury. 2008. Planting green roofs and living walls. Timber Press, Portland, OR. Durhman, A.K. and D.B. Rowe. 2006. Effect of watering regimen on chlorophyll fluorescence and growth of selected green roof plant taxa. HortScience 41:1623-1628. Durhman,A.K., D.B. Rowe, and C.L. Rugh. 2007. Effect of substrate depth on initial growth, coverage, and survival of 25 succulent green roof plant taxa. HortScience 42:588-595. Dvorak, B. and A. Volder. 2010. Green roof vegetation for North American ecoregions: A literature review. Landscape Urban Plan. 96:197-213. Emilsson, T. 2006. Extensive vegetated roofs in Sweden. Swedish Univ. Agr. Sc., Alnarp Sverige, Uppsala., Sweden., PhD thesis. Emilsson, T. 2008. Vegetation development on extensive vegetated green roofs: Influence of substrate composition, establishment method and species mix. Ecol. Engineer. 33:265-277. Emilsson, T. and K. Rolf. 2005. Comparison of establishment methods for extensive green roofs in southern Sweden. Urban For. Urban Greening 3:103-111. Faralonia, C., I. Cutinob, R. Petruccellib, A.R. Levab, S. Lazzerib, and G. Torzilloa. 2011. Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress. Environ. Expt. Bot. 73:49-56. Faria, T., D. Silverio, E. Breia, R. Cabral, A. Abadia, J.S. Pereira, and M.M. Chaves. 1998. Differences in the response of carbon assimilation to summer stress (water deficits, high light and temperature) in four Mediterranean tree species. Physiol. Plant. 102:419-428. Farrant, J.M. 2000. A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plants species. Plant Ecol. 151: 29-39. Farrell, C., R.E. Mitchell, C. Szota, J.P. Rayner, and N.S.G. Williams. 2012. Green roofs for hot and dry climates: Interacting effects of plant water use, succulence and substrate. Ecol. Eng. 49:270-276. Flexas, J., M. Baron, J. Bota, J.M. Ducruet, A. Galle, J. Galmeś, M. Jimenez, A. Pou, M. Ribas-Carbo, C. Sajnani, M. Tomaś, and H. Medrano. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri ×V. rupestris). J. of Exp. Bot. 60:2361-2377. Franco, J.A., V. Cros, S. Banon, A. Gonzalez, and J.M. Abrisqueta. 2002. Effects of nursery irrigation on postplanting root dynamics of Lotus creticus in semiarid field conditions. HortScience 37:525-528. Gebre, G.M. and M.R. Kuhns. 1993. Effects of water stress preconditioning on gas exchange and water relations of Populus deltoides clones. Can. J. For. Res. 23: 1291-1297. Getter, K.L. and D.B. Rowe. 2007. Effect of substrate depths and planting season on Sedum plug survival on green roofs. J. Environ. Hort. 25:95-99. Getter, K.L. and D.B. Rowe. 2008. Media depth influences Sedum green roof establishment. Urban Ecosyst. 11:361-372. Getter, K.L. and D.B. Rowe. 2009. Sudstrate depth influences Sedum plant community on a green roof. HortScience 44:401-407. Getter, K.L., D.B. Rowe, and B.M. Cregg. 2009. Solar radiation intensity influences extensive green roof plant communities. Urban For. Urban Greening 8:269-281. Goward, S.N., K.F. Huemmrich, and R.H. Waring. 1994. Visible-near infrared spectral reflectance of landscape components in Western Oregon. Remote Sens. Environ. 47:190-203. Gravatt, D.A. and C.E. Martin. 1992. Comparative ecophysiology of five species of Sedum (Crassulaceae) under well-watered and drought-stressed conditions. Oecologia 92:532-541. Griffin, J.J., T.G. Ranney, and D.M. Pharr. 2004. Heat and drought influence photosynthesis, water relations, and soluble carbohydrates of two ecotypes of redbud (Cercis canadensis). J. Amer. Soc. Hort. Sci. 129:497-502. Harris, J.R. and E.F. Gilman. 1993. Production method affects growth and post-transplant establishment of‘East Palatka’holly. J. Amer. Soc. Hort. Sci. 118:94-200. Havaux, M. and R. Lannoye. 1985. Drought resistance of hard wheat cultivars measured by a rapid chlorophyll fluorescence test. J. Agric. Sci. 104: 501-504. Havaux, M. and F. Tardy. 1999. Loss of chlorophyll with limited reduction of photosynthesis as an adaptive response of Syrian barley landraces to high-light and heat stress. Aust. J. Plant Physiol. 26:569-578. Hayat, S., B. Alt, and A. Ahmad. 2007. Salicylic acid: biosynthesis, metabolism and physiological role in plants. Salicylic acid: a plant hormone. Springer Verlage. P.1-14. He, D.and G.E. Edwards. 1996. Evalution of the potential to measure photosynthetic rates in C3 plants (Flaveria pringlei and Oryza sativa) by combining chlorophyll fluorescence analysis and stomatal conductance model. Plant Cell Environ. 19: 1272-1280. Hunt, E. R., B. R. Rock, and P.S. Nobel. 1987. Measurement of leaf realative water content by infrared reflectance. Remote Sens. Environ. 22:429-435. Ibrahim, L., M.F. Pore, and A.D. Cameron. 1998. Interactive effects of nitrogen and water availabilities on gas exchange and whole-plant carbon allocation in poplar. Tree Physiol. 18:481-487. Kaur, P., N. Ghai, and M.K. Sangha. 2009. Induction of thermotolerance through heat acclimation and salicylic acid in Brassica species. African J. Biotechnol. 8:619-625. Larson, K.L. and R.E. Mullen. 1995. Drought injury and resistance of crop plants. In: Gupta, U.S. (Ed.), Production and Improvement of Crops for Drylands. Oxford-IBH Publishing, New Delhi, India. Lazar, D. and P. Ilik. 1997. High-temperature induced chlorophyll fluorescence changes in barley leaves comparison of the critical temperatures determined from fluorscence induction and from fluorscence temperature curve. Plant Sci. 124: 159-164. Lee, E.H. 1991. Chlorophyll fluorescence as an indicator to detect differential tolerance of snapbean cultivars in response to O 3 stress. Taiwania. 36: 220-233. Levitt, J. 1980. Responses of plants to environment stresses vol.2. 2nd ed. Academic Press. New York. USA. Li, C. 2000. Population differences in water-use efficiency of Eucalyptus microtheca seedlings under different watering regimes. Physiol. Planta. 108:134-139. Lin, Y. and Lin, H. 2011. Thermal performance of different planting substrates and irrigation frequencies in extensive tropical rooftop greeneries. Building and Envir. 46:345-355. Lin, Z.F., C.L. Peng. and G.Z. Lin. 2003. Photooxidation in Leaves of Facultative CAM Plant Sedum spectabile at C3 and CAM Mode. Acta Bot. Sinica. 3 :301-306. Liptay, A., P. Sikkema, and W. Fonteno. 1998. Transplant growth control through water deficit stress: a review. HortTechnology 8:540–543. Liua, X. and B.Huang. 2000. Heat Stress Injury in Relation to Membrane Lipid Peroxidation in Creeping Bentgrass. Crop Science 40:503-510. Mathers, H.M., S.B. Lowe, C. Scagel, D.K. Struve, and L.T. Case. 2007. Abiotic factors influencing root growth of woody nursery plants in containers. HortTechnology. 17:151-162. Maxwell, K. and G.N. Johnson. 2000. Chlorophyll fluorescence-A practical guide. J. Exp. Bot. 51:659-668. McKown, R., G. Kuroki, and G. Warren. 1996. Cold responses of Arabidopsis mutants impaired in freezing tolerance. J. Exp. Bot. 47:1919-1925. Meidner, H. 1952. An instrument for the continuous determination of leaf thickness changes in the field. J.Exp.Bot. 3:319-325 Mielke, M.S. and B. Schaffer. 2009. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding. Tree Physiol. 30:45-55. Mitchell, S. and H. Pelham. 1985. Molecular genetics:what turns on heat shock genes. Nature 317:477-478. Monterusso, M.A., D.B. Rowe, and C.L. Rugh. 2005. Establishment and persistence of Sedum spp. and native taxa for green roof applications. HortScience 40:391-396. Mori, I.C., S. Utsugi, S. Tanakamaru, A. Tani, T. Enomoto, and M. Katsuhara. 2009. Biomarkers of green roof vegetation:Anthocyanin and chlorophyll as stress marker pigments for plant stresses of roof environments. J. Environ. Eng. Manage. 19:21-27. Nagase. A. and N. Dunnett. 2010. Drought tolerance in different vegetation types for extensive green roofs:Effects of watering and diversity. Landscape and Urban Planning 97:318-327. Natarajan, S. and J.S. Kuehny. 2008. Morphological, physiological, and anatomical characteristics associated with heat preconditioning and heat tolerance in Salvia splendens. J. Amer. Soc. Hort. Sci. 133(4):527-534. Nektarios, P.A., Amountzias, I., Kokkinou, I. and Ntoulas, N. 2011. Gcreen roof substrate type and depth affect the growth of the native species Dianthus fruticosus under reduced irrigation regimens. HortScience 46:1208-1216. Noh, B. and E.P. Spalding. 1998. Anion channels and the stimulation of anthocyanin accumulation by blue light in arabidopsis seedlings. Plant Physiol. 116:503-509. Ozaki,K. and H. Watabe. 2009. Bacterial wilt of geranium and portulaca caused byRalstonia solanacearum in Japan. Bull. Minamikyushu Univ. 39: 67-71. Pan, Q., J. Zhan., H. Liu., J. Zhang., J. Chen, P. Wen., and W. Huang. 2006.Salicylic acid synthesized by benzoic 2-hydroxylase participates in the development of thermotolerance in pea plants. Plant Sci. 171:226-233. Panković, D., Z. Sakač, S. Kevrešan, and M. Plesničar. 1999. Acclimation to long-term water deficit in the leaves of two sunflower hybrids: photosynthesis, electron transport and carbon metabolism . J. of Exp. Bot. 50:127-138. Pastor, J.N., S. Bures, O. Marfa, R. Save, J.M. Pages, and A.P. Papadopoulos. 1999. Transplant adaptation in landscape of ornamental shrubs in relation with substrate physical properties and container size. Acta Hort. 481:137-144. Pedrol, N., P. Ramos, and M.J. Reigosa. 2000. Phenotypic plasticity and acclimation to water deficits in velvet-grass: a long-term greenhouse experiment. Changes in leaf morphology, photosynthesis and stress-induced metabolites. J. Plant Physiol. 157:383-393. Price, J.G., S.A. Watts, A.N. Wright, R.W. Peters, and J.T. Kirby. 2011. Irrigation lowers substrate temperature and enhances survival of plants on green roofs in the Southeastern United States. Hortechnology 21:586-592. Provenzano, M.E., M. Cardarelli, F. Saccardo, and G. Colla. 2010. Evaluation of perennial herbaceous species for their potential use in a green roof under Mediterranean climate conditions. Acta Hort. 881: 661-667. Ranney, T.G. and M.M. Peet. 1994. Heat tolerance of five taxa of birch (Betula): physiological responses to supraoptimal leaf temperatures. J. Amer. Soc. Hort. Sci. 119(2):243–248. Schroll, E., J.G. Lambrinos, and D. Sandrock. 2011. An evaluation of plant selections and irrigation requirements for extensive green roofs in the Pacific Northwestern United States. Hortechnology 21:314-322. Schulze, E.D., E. Beck, and K. Muller-Hohenstein. 2005. Environment as stress factor: stress physiology of plants.Plant Ecology. Sendo, T., M. Kanechi, Y. Uno, and N. Inagaki. 2010. Evaluation of growth and green coverage of ten ornamental species for planting as urban rooftop greening. J. Japan. Soc. Hort. Sci. 79(1):69-76. Sendo, T., N. Inagaki, M. Kanechi and Y. Uno. 2007. What kind of plant species are the best for urban rooftop gardening? Acta Hort. 762:333–339. Shi, Q., Z. Bao., Z. Zhu., Q. Ying, and Q. Qian. 2006. Effects of different treatments of salicylic acid on heat tolerance, chlorophyll flurescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul. 48:123-135 Shiono, K., H. Takahashi, T.D. Colmer, and M. Nakazono. 2008. Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci. 175:52-58. Snodgrass, E.C. and L.L. Snodgrass. 2006. Green roof plants: A resource and planting guide. Timber Press, Portland, OR. Solfjeld, I. and O.B. Hansen. 2004. Post-transplant growth of five deciduous Nordic tree species as affected by transplanting date and root pruning. Urban For. Urban Green. 2:129-137. Soljan, D. 2011. Sedum sarmentosum Bunge (Crassulaceae) an allochthonous species in the flora of Bosnia and Herzegovina. Herbologia 12:15-21. Syvertsen, J.P. and Y. Levy. 1982. Diurnal changes in Citrus leaf thickness, leaf water potential and leaf to air temperature difference. J. Exp. Bot. 135: 783-789. Thuring, C.E., R.D. Berghage, and D.J. Beattie. 2010. Green roof plant responses to different substrate types and depths under various drought conditions. HortTechnology 20:395-401. Timothy, J.T., G.A. Tuskan, and G.M. Gebre. 1998. Drought resistance of two hybrid Populus clones grown in a large-scale plantation. Tree Physiol. 18:653-658. Van Woert, N.D., D.B. Rowe, J.A. Andresen, C.L. Rugh, and L. Xiao. 2005. Watering regime and green roof substrate design affect Sedum plant growth. HortScience 40:659-664. Villar-Salvador, P., L. Ocana, J. Penuelas, and I. Carrasco. 1999. Effect of water stress conditioning on the water relations, root growth capacity, and the nitrogen and non-structural carbohydrate concentration of Pinus halepensis Mill. (Aleppo pine) seedlings. Ann. For. Sci. 56:459-465. Wang, W.Q., Y. Xiao, L.Z. Chen, and P. Lin. 2007. Leaf anatomical responses to periodical waterlogging in simulated semidiurnal tides in mangrove Bruguiera gymnorrhiza seedlings. Aquat. Bot. 86:223-228. Warner, R.M. and J.E. Erwin. 2005. Prologed high temperature exposure and daily light integral impact growth and flowering of five herbaceous ornamental species. J. Amer. Soc. Hort. Sci. 130:319-325. Weis, E. 1984. Short term acclimation of spinach to high temperatures effect on chlorophyll fluorescence at 293 and 77 Kelvin in intact leaves. Plant Physiol. 74: 402-407. Willits, D. and M. Peet. 1999. Using chlorophyll fluorescence to model leaf photosynthesis in greenhouse pepper and tomato. Acta Hort. 507:311-317. Winter, K., C.B. Osmond, and J.S. Pate. 1981. Coping with salinity. In: Pate, J.S., McComb, A.J. (Eds.), The Biology of Australian Plants. University of Western Australia Press, Nedlands, WA, pp. 1–32. Wolf, D., and J.T. Lundholm. 2008. Water uptake in green roof microcosms:Effect of plant species and water availability. Ecol. Eng. 33:179-186. Xiao, Y., Z. Jie, M. Wang, G. Lin and W. Wang. 2009. Leaf and stem anatomical responses to periodical waterlogging in simulated tidal floods in mangrove Avicennia marina seedlings. Aquat. Bot. 91: 231-237. Zhang, J. and M.B. Kirkham. 1994. Drought stress induced changes in activities of superoxide dismutase, catalase, and peroxidase in Wheat species. Plant Cell Physiol. 35:785-791. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62878 | - |
| dc.description.abstract | 薄層屋頂綠化(Extensive green roof)具低承載需求、費用成本低及方便維護管理等特性,但屋頂環境嚴苛且介質層淺薄,故選擇和應用適合的屋頂綠化植物為重要之環節。本研究擬挑選適應臺灣氣候的屋頂綠化植物種類,並提升應用性相關技術為研究重點。植物材料選擇方面,藉由調查臺北地區屋頂綠化施作地點,尋求各季節適用的植物種類,並探討夏季高溫環境下適用之植物及其篩選方式。技術層面上,於臺灣北部不同季節氣候環境,調查適合之維護管理與出貨前馴化措施,最後探討不同育苗容器型式對屋頂綠化植物生長之影響。
臺北地區屋頂綠化植物應用現況方面,垂盆草(Sedum sarmentosum)、怡心草(Tripogandra cordifolia)、麒麟花(Euphorbia milii)及芳香萬壽菊(Tagetes lemmonii)等在不同季節下皆生長良好。而松葉景天(Sedum mexicanum)於春季開花後生長衰弱、小花馬齒牡丹(Portulaca oleracea)和小松葉牡丹(Portulaca gilliesii)低溫下生長較差,藍星花(Evolvulus nuttallianus)因當地環境雨量豐沛造成部分葉片腐爛,台北草(Zoysia matrella)則因後續維護管理不當導致植株枯萎;此外苗期品質亦影響定植後之表現,如黃金萬年草(Sedum acre)。整體而言,影響屋頂綠化植物生長主要因素為植物特性、環境氣候、維護管理及苗期品質。 夏季高溫環境適用植物篩選方面,於夏季期間實際種植28種常見之屋頂綠化植物,生長表現良好者為垂盆草、小松葉牡丹、怡心草、射干(Belamcanda chinensis)、黃邊短葉虎尾蘭(Sansevieria trifasciata ‘Golden Hahnii’)等;而藉由模擬高溫環境篩選耐熱性較佳者為小松葉牡丹、大花松葉牡丹(Portulaca grandiflora ‘Jewel’)、怡心草、小蚌蘭(Rhoeo spathacea ‘Compacta’)和黃邊短葉虎尾蘭。篩選指標中多肉植物以相對葉片厚度與景觀效果相關性較高;而地被植物與景觀效果相關性較高者則為相對葉綠素螢光,故建議不同植物特性可採用不同指標進行評估較為適當。溫度影響多肉植物株型與開花之表現,圓葉景天(Sedum makinoi)適合生長之溫度範圍較廣,萬年草(Sedum hispanicum )具耐寒性,於15/13℃下節間短、植株低矮且葉色轉紅較具觀賞價值;大花松葉牡丹和小花馬齒牡丹則耐熱性佳,於35/30℃外觀表現良好,且開花量多。 維護管理方面,於臺灣北部不同季節下探討灌溉頻度對屋頂綠化植物生長之影響,針對綠薄荷(Mentha spicata)、紅毛莧(Acalypha pendula)、繁星花(Pentas lanceolata)、麒麟花、圓葉景天和斑葉佛甲草(Sedum lineare ‘Variegatum’),以三種灌溉頻度:未灌溉(NI)、低頻度灌溉(LFI)及高頻度灌溉(HFI)進行試驗。結果顯示春季期間,繁星花、薄荷、紅毛莧灌溉處理六週後其常態化差異植生指數(NDVI)、光化學效率(Fv’/Fm’)和景觀效果較NI處理高,但灌溉處理間無顯著差異;而麒麟花、圓葉景天和斑葉佛甲草表現不受灌溉頻度影響;冬季試驗中所有植物景觀效果均維持7.0分以上,各處理間均無顯著差異;夏季則隨灌溉頻度增加,植物生長越佳。 出貨前馴化措施方面,屋頂綠化植物經馴化作業後有利於定植後之表現,以綠薄荷、麒麟花、越橘葉蔓榕(Ficus vaccinioides)、怡心草於各季節進行增加澆水頻度組(Increase watering, IW)、降低澆水頻度組(Reduce watering, RW)、持續施肥組(Fertilize, F)和噴施抗逆劑(200 μM SA)組之馴化作業。秋季出貨馴化試驗中,綠薄荷、越橘葉蔓榕、怡心草定植後因連日下雨,以IW馴化處理之葉綠素螢光值(Fv/Fm)和景觀效果較高,RW最差。麒麟花則以IW和F馴化處理景觀效果較佳。於定植後F馴化處理初期下降,但後期雨量增加,處理間無顯著差異。於春季期間定植前,綠薄荷和越橘葉蔓榕經噴施200 μM SA和RW馴化處理,定植四週後Fv/Fm和景觀效果表現較佳。麒麟花和怡心草則以F馴化處理生理和外觀表現皆較佳,尤以怡心草較為顯著。同樣於夏季定植前,綠薄荷和越橘葉蔓榕經噴施200 μM SA和RW馴化處理後生長較佳,怡心草則以定植前持續施肥組馴化處理生理和外觀表現皆較佳。 育苗容器型式影響方面,以綠薄荷、繁星花、怡心草、越橘葉蔓榕、麒麟花、圓葉景天和斑葉佛甲草進行不同育苗容器型式試驗,處理分為三寸盆(9 cm pot)、植栽槽(Planting container)和育苗盤(植栽毯, Vegetation mat)。使用植栽槽提前育苗可顯著提高薄荷的存活率和繁星花Fv/Fm表現較佳;越橘葉蔓榕以植栽毯或三寸盆定植,植株皆能生長良好;怡心草則以三寸盆處理為佳;圓葉景天和斑葉佛甲草以植栽毯方式種植較佳,而麒麟花則不受育苗容器型式影響其生長。 綜合上述研究,於臺灣北部從事薄層綠屋頂綠化時,應選擇耐熱、耐旱性強之植物種類,以達到低維護管理之目的;利用相對葉片厚度、相對葉綠素螢光能快速篩選高溫逆境下耐熱性佳之植物。維護管理方面,冬季氣候環境下可不需灌溉、春秋季則建議每週灌溉一次即可;夏季建議可每週灌溉兩次以上,以維持植株之良好生長。出貨前馴化技術可依照不同季節做調整,如多雨季節可於出貨前增加澆水頻度馴化;而高溫乾旱環境則可於定植前四小時噴施200 μM SA或降低澆水頻度馴化處理有助於抵抗屋頂嚴苛環境。育苗方式上,一般植物以植栽槽或植栽毯方式提前育苗較適宜,但生長快速之植物種類,則建議可採用三寸盆移植。總之,除了選擇適合當地氣候環境之植物種類外,應配合完整的育苗、馴化和灌溉管理相關技術,方可提升屋頂綠化植物之應用性,促進臺灣屋頂綠化的發展。 | zh_TW |
| dc.description.abstract | Extensive green roof exerts less load on the building, requires less cost, and is easy to maintain. However, due to the thin layer of substrate coupled with the harsh conditions often found at the rooftop environment, the selection of suitable plants is very important for extensive green roof. The aim of this research is to solve the problems encountered during the growth of green roof plants, with emphasis on selection of plants that suit the climate of Taiwan and improvement of cultivation practices. On the selection of suitable plants, actual green roofs in Taipei were surveyed to investigate the plants used at the different seasons. The adaptability of plants in summer heat and screening method for heat tolerance were also investigated. On the aspect of cultivation practices, suitable green roof maintenance and acclimation measures before dispatch for planting were determined for the different seasonal weather conditions in Taipei. The effect of container type for planters on the quality of the planters was also investigated.
Based on the survey of actual green roofs in Taipei, Sedum samentosum, Tripogandra cordifolia, Euphorbia milii, and Tagetes lemmonii performed well in all seasons. Sedum mexicanum deteriorated in growth after flowering in spring, while Portulaca oleracea and Portulaca gilliesii grew poorly at low temperatures. The growth of Evolvulus nuttallianus was affected greatly by the environment, whereas Zoysia matrella withered due to improver cultivation management. The quality of planters also influenced subsequent performance of the plants, such as shown by Sedum acre. Collectively, the main factors that influence the growth of green roof plants were plant characteristics, environmental condition, cultivation management and quality of planters. During summer 28 commonly used green roof plants were grown experimentally on a green roof. Sedum sarmentosum, Portulaca gilliesii, Tripogandra cordifolia, Belamcanda chinensis, and Sansevieria trifasciata ‘Golden Hahnii’ performed well. Portulaca gilliesii, Portulaca grandiflora ‘Jewel’, Tripogandra cordifolia, Rhoeo spathacea ‘Compacta’, and Sansevieria trifasciata ‘Golden Hahnii’ showed good heat tolerance under screening at simulated high temperature environment. Among the selection criteria, relative coverage, relative leaf thickness, and relative chlorophyll fluorescence were closely related to ornamental value. However, a comprehensive evaluation is suggested due to differences in plant characteristics. Temperature affected the appearance and flowering of succulent plants. Sedum makinoi grew under a wide temperature range while Sedum hispanicum showed tolerance to chilling, with short internodes and low growth under 15/13℃, coupled with red coloration of the leaves which increased its ornamental value. Portulaca grandiflora and Portulaca oleracea showed good tolerance to heat, with good growth and highest flower number observed at 35/30℃. On the aspect of maintenance, the effect of irrigation frequency during the different seasons in northern Taiwan on the growth of green roof plants was investigated. Mentha spicata, Acalypha pendula, Pentas lanceolata, Euphorbia milii, Sedum makinoi, and Sedum lineare ‘Variegatum’ were subjected to three irrigation frequencies: no irrigation (NI), low frequency irrigation (LFI) and high frequency irrigation (HFI). The results show that in spring, Pentas lanceolata, Mentha spicata, and Acalypha pendula had higher NDVI and Fv’/Fm’ values and better ornamental value after 6 weeks of irrigation treatment compared with NI treatment, but there was no significant difference between irrigation treatments. Euphorbia milii, Sedum makinoi, and Sedum lineare ‘Variegatum’ were unaffected by irrigation frequency. During winter all plants maintained ornamental value scores of 7.0 and higher and there was no significant difference among treatments. In summer, plant growth improved as irrigation frequency increased. Acclimation procedure before dispatch for planting was found to improve the performance of green roof plants after planting. Mentha spicata, Euphorbia milii, Ficus vaccinioides, and Tripogandra cordifolia were given acclimation treatments of increase watering (IW), reduce watering (RW), fertilize (F), and 200 μM salicylic acid (SA) spray. When the experiment was done in autumn, it rained for days on end after planting. Mentha spicata, Ficus vaccinioides, and Tripogandra cordifolia had higher Fv/Fm and better ornamental value when acclimated with IW, but performed worst when acclimated with RW. Euphorbia milii had the best ornamental value when acclimated with IW or F. The performance of plants acclimated with F decreased at the early stages after planting, but as rainfall increased toward the later stages, there was no significant difference among treatments. In spring, Mentha spicata and Ficus vaccinioides acclimated with RW or sprayed with 200 μM SA had better Fv/Fm and ornamental value 4 weeks after planting. Euphorbia milii and Tripogandra cordifolia acclimated with F treatment had better physiological and ornamental values, and this was especially evident for Euphorbia milii. Similarly, in summer, Mentha spicata and Ficus vaccinioides acclimated with RW or sprayed with 200 μM SA had better growth, whereas Tripogandra cordifolia had better physiological and ornamental values when continually fertilized during the acclimation period. The quality of planters of green roof plants was related to their subsequent growth after planting. The results show that green roof plants were influenced by the container used for the planters. Planters of Mentha spicata, Pentas lanceolata, Tripogandra cordifolia, Ficus vaccinioides, Euphorbia milii, Sedum makinoi, and Sedum lineare ‘Variegatum’ were grown in different containers: 9 cm pot, planting container, and vegetation mat. Using planting container to start the plants increased the survival rate of Mentha spicata and resulted in better Fv/Fm for Pentas lanceolata. Ficus vaccinioides grew well whether grown in vegetation mat or 9 cm pot. Tripogandra cordifolia performed better in 9 cm pot. Sedum makinoi and Sedum lineare ‘Variegatum’ performed better when grown in vegetation mat, whereas the growth of Euphorbia milii was unaffected by container type. In conclusion, for extensive green roof in northern Taiwan, heat- and drought-tolerant plants should be selected for the purpose of low maintenance. Plants with good tolerance against heat stress can be quickly screened with relative leaf thickness and relative chlorophyll fluorescence. As for maintenance, irrigation may not be needed during winter, while weekly irrigation may be sufficient in spring. In summer, irrigation frequency should be twice weekly or more in order to maintain good plant growth. Acclimation before dispatch for planting can be adjusted according to the season, such as increasing irrigation frequency before dispatch during rainy periods. Spraying with 200 μM SA 4 h before planting or acclimating with reduced irrigation could increase the plants’ tolerance to heat and drought that are often encountered in the harsh rooftop environment. As for starting the planters, early planting in planting container or vegetation mat is preferred, but repotting plants grown in 9 cm pots can be done for fast-growing plants. In addition to choosing plants suitable for the local climate, techniques such as growing and acclimating planters and irrigation management should be incorporated to increase the applicability of green roofs and promote the development of green roofs in Taiwan. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:13:24Z (GMT). No. of bitstreams: 1 ntu-101-R98628110-1.pdf: 19915250 bytes, checksum: 444e28d7068a50e5a9065e0fd17e0dc4 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 目錄 i
表目錄 iii 圖目錄 iv 摘要 vi Abstract ix 第一章 前言 1 第二章 前人研究 4 一、屋頂綠化之類型 4 二、屋頂綠化氣候環境 4 三、環境逆境對植物生長之影響 5 四、薄層屋頂綠化植物之選擇原則與種類 8 五、改善屋頂綠化植物生長之技術 10 第三章 臺北地區屋頂綠化植物於不同季節下應用現況 15 摘要(Abstract) 15 一、前言(Introduction) 16 二、材料方法(Materials and Methods) 17 三、結果(Results) 19 四、討論(Discussion) 20 五、結論(Conclusion) 23 第四章 高溫逆境對屋頂綠化植物生長之影響 30 摘要(Abstract) 30 一、前言(Introduction) 31 二、材料方法(Materials and Methods) 32 試驗一、28種屋頂綠化植物應用於夏季薄層屋頂之生長表現 32 試驗二、高溫逆境對14種屋頂綠化植物生長之影響 34 試驗三、溫度對4種多肉植物生長之影響 36 三、結果(Results) 37 四、討論(Discussion) 41 五、結論(Conclusion) 46 第五章 探討不同季節下灌溉頻度對屋頂綠化植物生育表現之影響 69 摘要(Abstract) 69 一、前言(Introduction) 70 二、材料方法(Materials and Methods) 71 三、結果(Results) 73 四、討論(Discussion) 75 五、結論(Conclusion) 77 第六章 屋頂綠化植物於不同季節下其出貨前馴化技術之應用性 87 摘要(Abstract) 87 一、前言(Introduction) 88 二、材料方法(Materials and Methods) 89 三、結果(Results) 92 四、討論(Discussion) 94 五、結論(Conclusion) 96 第七章 育苗容器型式對屋頂綠化植物生育表現之影響 111 摘要(Abstract) 111 一、前言(Introduction) 112 二、材料方法(Materials and Methods) 113 三、結果(Results) 116 四、討論(Discussion) 117 五、結論(Conclusion) 121 第八章 結論 133 參考文獻(References) 135 附錄(Appendix) 145 | |
| dc.language.iso | zh-TW | |
| dc.subject | 育苗容器型式 | zh_TW |
| dc.subject | 薄層屋頂綠化 | zh_TW |
| dc.subject | 篩選屋頂綠化植物 | zh_TW |
| dc.subject | 高溫逆境 | zh_TW |
| dc.subject | 灌溉頻度 | zh_TW |
| dc.subject | 出貨前馴化 | zh_TW |
| dc.subject | Heat stress | en |
| dc.subject | Nursery container types | en |
| dc.subject | Acclimation program | en |
| dc.subject | Irrigation frequency | en |
| dc.subject | Extensive green roof | en |
| dc.subject | Selection of green roof plants | en |
| dc.title | 薄層屋頂綠化植物選擇與應用之研究 | zh_TW |
| dc.title | Studies on Plants Selection and Application of Extensive Green Roof | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張祖亮(Tsu-Liang Chang),葉德銘(Der-Ming Yeh),熊同銓(Tung-Chuan Hsiung) | |
| dc.subject.keyword | 薄層屋頂綠化,篩選屋頂綠化植物,高溫逆境,灌溉頻度,出貨前馴化,育苗容器型式, | zh_TW |
| dc.subject.keyword | Extensive green roof,Selection of green roof plants,Heat stress,Irrigation frequency,Acclimation program,Nursery container types, | en |
| dc.relation.page | 159 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-08 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 19.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
