Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62873
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張育森(Yu-Sen Chang)
dc.contributor.authorMing-Yu Hoen
dc.contributor.author何明昱zh_TW
dc.date.accessioned2021-06-16T16:13:13Z-
dc.date.available2016-03-15
dc.date.copyright2013-03-15
dc.date.issued2012
dc.date.submitted2013-02-08
dc.identifier.citation全國法規資料庫. 2011. 室內空氣品質管理法. <http://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=O0020084>
行政院環境保護署. 2005. 揮發性有機物空氣汙染管制及排放標準. <http://ivy5.epa.gov.tw/epalaw/docfile/040162.pdf>
行政院環境保護署. 2011. 揮發性有機物空氣汙染管制及排放標準. <http://indoor.ncet.com.tw/>
余軍洪. 2010. 常見室內植物移除甲醛能力之研究. 臺灣大學園藝系碩士論文. 臺北.
阮漢城. 2010. 不同室內觀葉植物搭配光源頻譜變化對室內化學污染物質濃度減低效果之探討. 國立成功大學建築學系. 臺南.
金荷仙、史倓、王雁. 2008. 室內植物對人體健康影響研究綜述. 林業科技開發 22:14-18.
范曉榮、沈其榮. 2003. ABA、IAA對旱作水稻葉片氣孔的調節作用. 中國農業科學 36:1450-1455.
孫岩章. 1993. 綠色植物淨化空氣的機能. 科學農業41:163-176.
孫岩章. 1999. 利用植物清淨生態系統裝置改善室內空氣品質之一種設計. 中華民國環境保護學會會誌 22:131-141.
孫基哲. 2006. 王海娟譯. 孫基哲編著. 種植有益健康的室內植物. 晨星文化出版社, 台中, 臺灣.
涂玉峰. 1999. 室內空氣環境綜合評估指標之探討-以台灣南部工業區辦公大樓為例. 碩士論文.台南:國立成功大學建築研究所. p.10-11.
曹哲維. 2011. 栽培光度及介質對室內植物吸收苯及甲苯之影響. 國立臺灣大學植物病理與微生物學系碩士論文. 臺北.
郭博文. 2009. 植栽改善空氣中二氧化碳濃度之研究. 環境與生態學報 2:53-64.
郭傳、陸旺、孫海燕. 2007. 室內環境對銀心吊蘭生長及調節空氣效能的影響. 黑龍江八一農墾大學學報 19:23-25.
陳彥宇. 2007. 常見室內植物對甲醛及二氧化碳之吸收及反應.臺灣大學植物病理與微生物學系碩士論文. 臺北.
陳海曙. 1990. 室內空氣品質不佳之案例研究. 中華民國建築學會第三屆建築學術研究發表會論文集. p.263-266.
黃玉立. 2006. 高汙染空品區有害空氣汙染物本土暴露特性分析與資料庫建置. 子計畫一:本土化生活型態及呼吸暴露係數之建置與評估. 國立高雄第一科技大學環境與安全衛生工程系. NSC 94-EPA-Z-327-002
黃怡嘉. 2008. 溫度、光強度及水楊酸對火鶴花光合作用與生育品質之影響. 國立臺灣大學園藝系碩士論文. 臺北.
經濟部能源局. 我國辦公大樓耗電比例統計. 2009. <http://web3.moeaboe.gov.tw/ECW/populace/home/Home.aspx>
葉德銘. 1990. 光馴化-生產觀葉植物新觀念. 豐年 40:22-24.
褚昱均. 2003. 出瓶光度與培植時期對數種天南星科植物組培苗出瓶後生長之影響. 國立臺灣大學園藝系碩士論文. 臺北.
蘇慧貞. 2005. 室內空氣汙染物健康風險評估與管制成本效益分析. 國立成功大學環境醫學研究所. EPA-93-FALL-03-A118
ACGIH. 1995. Threshold limit values for chemical substance and physical agents and biological exposure indices. Cincinnati: American Conference of Governmental Industrial Hygienists.
Apte, M.G., W.J. Fisk, and J.M. Daisey. 2000. Associations between indoor CO2 concentrations and sick building syndrome symptoms in U.S. office buildings: an analysis of the 1994-1996 BASE study data. Indoor Air 10:246-257.
ASHRAE. 1999. Ventilation for acceptable indoor air quality. Atlanta, GA, American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE Standard 62-1999).
Awbi, H.B. and A.J. Pay. 1995. A study of the air quality in classrooms. Proc. Intl. Proceedings of Second International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings. p. 93-104.
Backman, P.A., P.J. Landschoot, and D.R. Huff. 1999. Variation in pathogenicity, morphology, and RAPD marker profiles in Colletotrichum graminicola from turfgrasses. Crop Sci. 39:1129-1135.
Banon, S., J. Ochoa, J.A. Franco, M.J. Śanchez-Blanco, and J.J. Alarcon. 2003. Influence of water deficit and low air humidity in the nursery on survival of Rhannus alaternus seedlings following planting. J. Hort. Sci. Biotechnol. 78:518-522.
Blackman, P.G. and W.J. Davies. 1983. The effects of Cytokinins and ABA on stomatal behaviour of maize and Commelina. J. Experi Bot. 34:1619-1626.
Blankenship, R.E. and R.C. Prince. 1985. Excited state redox potentials and the Z scheme of photosynthesis. Trends Biochem. Sci. 10:382-383.
Blankenship, R.E. and R.C. Prince. 1985. Excited-state redox potentials and the Z scheme of photosynthesis. Trends Biochem. Sci. 10:382-383.
Cape, J.N. 2003. Effects of airborne volatile organic compounds on plants. Environ. Pollut. 122:145-157.
Clements-Croome, D.J., H.B. Awbi, Z.S. Bako-Biro, N. Kochhar, and M. Williams. 2008. Ventilation rates in schools. Building and Environment 43: 362-367.
Daisey, J.M., W.J. Angell, and M.G. Apte. 2003. Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air 13: 53-64.
Doi, M., M. Wada, and K. Shimazaki. 2006. The fern Adiantum capillus-veneris lacks stomatal response to blue light. Plant Cell Physiol. 47:748-755.
Fanger, P.O. 1988. Introduction of the olf and decipol units to quantify air pollution perceived by humans indoors and out-doors. Energy Buildings 12:1-6.
Fanger, P.O. 2000. Indoor air quality in the 21st century: search for excellence. Indoor Air 10:68-73.
Farquhar, G.D., and S.C. Wong. 1984. An empirical model of stomatal conductance. Aust. J. Plant Physiol. 11:191-210.
Fisk, W.J. and A.H. Rosenfeld. 1997. Estimates of improved productivity and health from better indoor environments. Indoor Air 7:158-172.
Frechilla, S., L.D. Talbott, R.A. Bogomolni, and E. Zeiger. 2000. Reversal of blue light-stimulated stomatal opening by green light. Plant Cell Physiol. 41:171-176.
Giese, M., U. Bauer-Doranth, C. Langebartels, and H. Sandermann. 1994. Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures. Plant Physiol. 104:1301-1309.
Godish, T. and J.D. Spengler. 1996. Relationships between ventilation and indoor air quality: a review. Indoor Air 6:135-145.
Grantz, D.A. 1990. Plant response to atmospheric humidity. Plant Cell Environ 13:667-679.
Heeo, J., C. Lee, D. Chakrabarty, and K. Paek. 2002. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regulat. 38:225-230.
Hogewoning, S.W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, and J. Harbinson. 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red blue light. J. Expt. Bot. 61:3107-3117.
IARC. 1995. Formaldehyde: IARC monographs on the evaluation of carcinogenic risks to human, wood dust and formaldehyde, International Agency for Research on Cancer, Lyon, France, 62: 217–362.
IARC. 2006. Formaldehyde, 2-butoxyethanol and 1-tert-butoxy-2-ol. Monographs on the evaluation of the carcinogenic risks to humans. Vol. 88.
Jones, A.P. 1999. Indoor air quality and health. Atmos. Environ. 33:4535-4564.
Kiburn, K.H. 1994. Neurobehavioral impairment and seizures from formaldehyde. Arsh. Environ. Health 49:37.(abstr.)
Kil, M.J., K.J. Kim, C.H. Pak, H.H. Kim, and Y.W. Lim. 2008. Effects of growing media and exposure frequency on the volatile formaldehyde removal in potted Epipremnum aureum. Kor. J. Hort. Sci. Technol. 26:325-330.(abstr.)
Kil, M.J., K.J. Kim, J.K. Cho, and C.H. Pak. 2008. Formaldehyde gas removal effects and physiological response of Fatsia japonica and Epipremnum aureum according to various light intensity. Kor. J. Hort. Sci. Technol. 26:189.(abstr.)
Kim, K.J. and D.W. Lee. 2008. Efficiency of volatile formaldehyde removal of orchids as affected by species and crassulacean acid metabolism (CAM) nature. Hort. Environ. Biotechnol. 49:132-137.
Kim, K.J., M.J. Kil, J.S. Song, E.H. Yoo, K.C. Son, and S.J. Kays. 2008. Efficiency of volatile formaldehyde removal by indoor plants: Contribution of aerial plant parts versus the root zone. J.Amer. Soc. Hort. Sci. 133:521-526.
Klepeis, N.E., W.C. Nelson, W.R. Ott, J.P. Robinson, A.M. Tsang, P. Switzer, J.V. Behar, S.C. Hern, and W.H. Engelmann. 2001. The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Exposure Anal. Environ. Epidem. 11:231-52.
Kondo, T., K. Hasegawa, R. Uchida, and M. Onishi. 1998. Absorption of atmospheric C2-C5 aldehydes by various tree species and their tolerance to C2-C5 aldehydes. Sci. Total Environ. 224:121-132.
Levitt, K.L., D.B. Stein, and B. Rubinstein. 1987. Promotion of stomatal opening by indoleacetic acid and ethrel in epidermal strips of Vicia faba L.. Plant Physiol. 85:318-321.
Lieth, J.H. and C.C. Pasian. 1990. A model for net photosynthesis of rose leaves as a function of photosynthetically active radiation, leaf temperature, and leaf age. J. Amer. Soc. Hort. Sci. 115:486-491.
Lim, Y.W., H.H .Kim, J.Y. Yang, K.J. Kim, J.Y. Lee, and D.C. Shin. 2009. Improvement of indoor air quality by houseplant in new-build apartment budildings. J.Jpn. Soc. Hort. Sci. 78:456-462.
Mahmoudi, M. and M.E. Gershwin. 2000. Sick Building Syndrome III stachybotrys chartarum . J. ASTHMA . 37:191-198.
Meidner, H. and T.A. Mansfield. 1968. The role of rhythms in stomatal behaviour. In Physiology of Stomata. McGraw-Hill, New York, 102-169.
Morison, J.I.L. 1987. Intercellular CO2 concentration and stomatal response to CO2. p.229-251. In Zeiger, E., G.D. Farquhar, and I.R. Cowan (eds), Stomatal Function. Stanford University Press, Stanford, CA.
Morison, J.I.L. and R.M. Gifford. 1983. Stomatal sensitivity to carbon dioxide and humidity. Plant Physiol. 71:789-796.
Mott, A.K. 1988. Do stomata respond to CO2 concentrations other than intercellular? Plant Physiol. 86:200-203.
Nemali, K.S. and M.W. van Iersel. 2008. Physiological responses to different substrate water content: Screening for high water-use efficiency in bedding plants. J. Amer. Soc. Hort. Sci. 133:333-340.
Niven, R.M.L., A.M. Fletcher, C.A.C. Pickering. 2000. Building sickness syndrome in healthy and unhealthy buildings: an epidemiological and environmental assessment with cluster analysis. OEM. 57:627-634.
Orwell, R.L., R.L. Wood, J. Tarran, F. Torpy, and M.D. Burchett. 2004. Removal of benzene by the indoor plant/ substrate microcosm and implications for air quality. Water Air Soil Pollut. 157:193-207.
Persily, A.K. (1997). Evaluating building IAQ and ventilation with indoor carbon dioxide. ASHRAE Transactions 103: 193-204.
Phipps, R.A., W.E. Sisk, and G.L. Wall. 1999. “Comparison of two studies reporting the prevalence of the sick building syndrome in New Zealand and England.” N. Z. Med. J. 112:228-230.
Poudel, P.R., I. Kataoka, and R. Mochioka. 2008. Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Organ Cult. 92:147-153.
Raza, S.H. and G. Shylaja. 1995. Different abilities of certain succulent plants in removing CO2 from the indoor environment of a hospital. Environment International 21:465-469.
Rottenberger, S., U. Kuhn, A. Wolf, G. Schebeske, S.T. Olivab, T.M. Tavaresb, and J. Kesselmeiera. 2005. Formaldehyde and acetaldehyde exchange during leaf development of the Amazonian deciduous tree species Hymenaea courbaril. Atmos. Environ. 39:2275-2279.
Schmitz, H., U. Hilgers, and M. Weidner. 2000. Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification. New Phytol. 147:307-315.
Schulze, E.D., N.C. Turner, T. Gollan, and K.A. Shackel. 1987. Stomatal responses to air humidity and soil drought. p.311-321. In Zeiger, E., G.D. Farquhar, and I.R. Cowan (eds), Stomatal Function. Stanford University Press, Stanford, CA.
Seco, R., J. Penuelas, and I. Filella. 2008. Formaldehyde emission and uptake by Mediterranean trees Quercus ilex and Pinus halepensis. Atmos. Environ. 42:7907-7914.
Seidner, A. 1999. Sick building syndrome. Hosp Pract (Minneap). 34:127-129.
Seppanen, O.A., W.J. Fisk, and M.J. Mendell. 1999.Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air 9:226-252.
Sharkey, T.D. and K. Raschke. 1980. Effects of phaseic acid and dihydrophaseic acid on stomata and the photosynthetic apparatus. Plant Physiol. 65:291-297.
Sharkey, T.D. and T. Ogawa. 1987. Stomatal responses to light. p.195-208. In Zeiger, E., G.D. Farquhar, and I.R. Cowan (eds), Stomatal Function. Stanford University Press, Stanford, CA.
Shimazaki, K., M. Doi, S.M. Assmann, and T. Kinoshita. 2007. Light regulation of stomatal movement. Annu. Rev. Plant Biol. 58:219-247.
Spengler J.D. and Q. Chen. 2000. Indoor air quality factors in designing a healthy building. Annual Review of Energy and the Environment 25:567-600.
Spengler, J.D. 2002. Research futures for healthy indoor air. 9th International conference on indoor air quality and climate. Monterey, California. June 30 – July 5.
Stenberg, B. and S. Wall. 1995. Why do women report 'sick building symptoms' more often than men? Soc. Sci. Med. 40:491-502.
Sundell, J. 2004. On the history of indoor air quality and health. Indoor Air 14:51-58.
Taiz, L. and E. Zeiger. 2006. Plant Physiology, Fourth Edition. Sinauer Associates. Sunderland, MA.
Talbott, L.D. and E. Zeiger. 1998. The role of sucrose in guard cell osmoregulation. J. Expt. Bot. 49: 329-337
Talbott, L.D., I.J. Shmayevich, Y. Chung, J.W. Hammad, and E. Zeiger. 2003. Blue light and phytochrome-me- diated stomatal opening in the npq1 and phot1 phot2 mutants of Arabidopsis. Plant Physiol. 133:1522-1529.
Talbott, L.D., J.W. Hammad, L.C. Harn, V.H. Nguyen, J. Patel, and E. Zeiger. 2006. Reversal by green light of blue light-stimulated stomatal opening in intact, attached leaves of Arabidopsis operates only in the potassium-dependent, morning phase of movement. Plant Cell Physiol. 47:249-257.
U.S. Environmental Protection Agency. 2008. Indoor Air Quality, An Introduction to Indoor Air Quality. Formaldehyde. Indoor Air Quality Home, Washington, D.C. 6 April 2010. <http://www.epa.gov/iaq/formalde.html>
Ugrekhelidze, D., F. Korte., G. Kvesitadze. 1997. Uptake and transformation of benzene and toluene by plant leaves. Ecotoxicol Environ. Saf. 37:24-29.
Wargocki, P., D.P. Wyon, Y.K. Baik, G. Clausen, and P.O. Fanger. 1999. Perceived air quality, sick building syndrome (SBS) symptoms and productivity in an office with two different pollution loads. Indoor Air 9:165-179.
Weshler, C.J. 2009. Changes in indoor pollutants since the 1950s. Atmos. Environ. 42:153-169.
Wolverton, B.C. 1988. Foliage plants for improving indoor air quality. Report. National Aeronautics and Space Administration, Stennis Space Center, Mississippi.
Wolverton, B.C. and J.D. Wolverton. 1993. Plants and soil microorganisms: removal of formaldehyde, xylene and ammonia from the indoor environment. J. MS. Acad. Sci. 38:11-15.
Wolverton, B.C., A. Johnson, and K. Bounds. 1989. Interior landscape plants for indoor air pollution abatement. Report. National Aeronautics and Space Administration, Stennis SpaceCenter, Mississippi.
Wood, R.A. and M.D. Burchett. 1995. Developing interior foliage plants for the improvement of air quality. Acta Horticulturae 391:119-125.
Wood, R.A., R.L. Orwall, J. Tarran, F. Torpy, and M.D. Burchett. 2002. Potted plant growth media: interaction and capacities in removal of volatiles from indoor air. J. Hort. Sci. Biotechnol. 77:120-129.
Wyon, D.P. 2004. The effects of indoor air quality on performance and productivity. Indoor Air 14:92-101.
Yassi, A., T. Kjellstrom, T.K. De, and T.L. Guidotti. 2001. Basic environmental health. Oxford: University Press: 291-292.
Zeiger, E. 1990. Light perception in guard cells. Plant Cell Environ. 13:739-747.
Zeiger, E. and P.K. Hepler. 1977. Light and stomatal function: blue light stimulates swelling of guard cell protoplast. Sciences 196:887-889.
Zeiger, E., L.D. Talbott, S. Frechilla, A. Srivastava, and J. Zhu. 2002. The guard cell chloroplast: a perspective for the twenty-first century. New phytol. 153:415-424.
Zhang, J.F. and K.R. Smith. 2003. Indoor air pollution: a global health concern. British Medical Bulletin 68:209-225.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62873-
dc.description.abstract隨著人們生活水準的提高,室內裝飾材料不斷翻新,導致辦公大樓和住宅內空氣污染物質增加,威脅人類的健康。二氧化碳(Carbon dioxide, CO2)已被臺灣列為室內空氣污染物質,為室內空氣品質之指標,因此必須維持室內場所之CO2在一定濃度以下,雖然許多研究指出植物具有空氣淨化能力,但利用植物於室內移除CO2之相關資料並不完整,因此本研究將四十種室內植物置於1200 ± 50 μL・L-1之密閉熏氣箱(0.128 m3)中測定其CO2移除能力之差異,進而探討植物於不同光強度、光質、光度馴化及生長調節劑處理,並模擬夜間黑暗環境與長時間於高CO2環境下,對室內植物CO2移除能力之影響。
室內植物之CO2移除能力方面,將四十種室內植物置於光強度80 μmol・m-2・s-1和CO2初始濃度1200 μL・L-1之密閉熏氣箱中,測定0800 HR至1700 HR其CO2移除能力之表現,探討不同室內植物對CO2移除能力之差異。研究結果顯示:所有參試植物種類於高CO2濃度與明亮環境下皆具有CO2移除能力,且多數參試植物於試驗開始至第1小時,有最大的單盆與單位葉面積CO2移除能力;植物之總葉面積多寡與單盆CO2移除能力具顯著相關性(R2=0.58),如波斯頓腎蕨(Nephrolepis exaltata ‘Bostoniensis’)、白鶴芋‘帕拉斯’ (Spathiphyllum floribundum ‘Palas’)及臺灣山蘇(Asplenium nidus)等總葉面積較高者有較高的單盆CO2移除能力。利用單盆、單位葉面積及T50%之CO2移除能力三種方式進行綜合評估,大岩桐(Sinningia speciosa)、黑葉觀音蓮(Alocasia ×amazonica)、聖誕紅‘倍利’ (Euphorbia pulcherrima ‘Pepride’)等,具有較高的CO2移除能力。
室內植物淨化空氣之效果易受到各環境因子影響,其中光線變化影響甚大,因此本研究主要探討光線對室內植物CO2移除能力之影響。大岩桐、黃金葛(Epipremnum aureum)及合果芋‘綠精靈’ (Syngonium podophyllum Schott ‘Pixie’),上述三者之單盆CO2移除能力分別為1203 ± 56 μL・L-1、604 ± 49 μL・L-1及 336 ± 45 μL・L-1,因此將三種室內植物列為CO2移除能力之高、中、低的代表,並進行相關試驗。光強度方面,隨著光強度由5 μmol・m-2・s-1增加至80 μmol・m-2・s-1,大岩桐、黃金葛及合果芋‘綠精靈’CO2移除能力皆提升,但光度為5 μmol・m-2・s-1時,黃金葛與大岩桐單盆CO2移除能力分別為-2.3 μL・L-1與-4.0 μL・L-1,並由三種室內植物之光曲線試驗中結果顯示光補償點可作為評估室內植物維持CO2移除能力之最低光強度標準,而光飽和點則可視為最高光強度標準。在光質方面,光強度40 μmol・m-2・s-1下,以白光、紅光、藍光、紅光/藍光比例為R84/B16、R57/B43及R12/B88之6種不同光質處理,結果以R84/B16光質比例下,大岩桐、黃金葛及合果芋‘綠精靈’均有最佳移除效果。光馴化試驗方面,以臺灣山蘇(Asplenium nidus)於未馴化、光強度100 μmol・m-2・s-1及200 μmol・m-2・s-1下馴化45天後,於40 μmol・m-2・s-1下測定其CO2移除能力,三者之間並無顯著差異,但未馴化者之淨光合作用速率最高,而100 μmol・m-2・s-1馴化者比200 μmol・m-2・s-1馴化者有較高淨光合作用速率。
在生長調節劑試驗方面,先將參試植物置於光強度40 μmol・m-2・s-1下,分別施噴去離子水(對照組)與1、5、10 μM Kinetin (N6-Furfuryladenine)及 1、5、10 μM IBA (indole-3-butyric acid, IBA),測量其前後氣孔導度之差異,以進行後續試驗,研究顯示:在試驗第1小時,5 μM IBA處理之熏氣箱中CO2濃度下降得比對照組快,但於0900 HR後無顯著差異,而合果芋‘綠精靈於試驗開始2小時,5 μM Kinetin處理之熏氣箱中CO2濃度下降得比對照組快,但於1000 HR後無差異。大岩桐噴施5 μM IBA之單盆CO2移除能力與對照組並無顯著差異,而合果芋‘綠精靈’噴施5 μM Kinetin之單盆CO2移除能力與對照組也有相似的結果。因此5 μM IBA與5 μM Kinetin可使植物氣孔導度增加並提升初始CO2吸收速率,但對植物單盆CO2移除量影響不大。
在黑暗環境12個小時之下,大岩桐、黃金葛、合果芋‘綠精靈’及臺灣山蘇四種植物單盆CO2釋放量並無顯著差異,平均僅釋放188.9 μL・L-1。在連續7天於高CO2環境和40 μmol・m-2・s-1光強度下,大岩桐與黃金葛兩種植物夜間雖然釋放CO2,但植物於白天確實能持續吸收CO2,達到長時間移除效果,而隨著時間增加,參試植物之CO2移除能力逐漸下降,在24小時內平均可移除熏氣箱中約60 %之CO2。
zh_TW
dc.description.abstractAs our standard of living improved, our indoor living environment has become more sophisticated. However, this has also increased the level of air pollutants inside our living and working spaces, which can affect our health adversely. Carbon dioxide (CO2) is classed as an indoor air pollutant in Taiwan and CO2 concentration is often used as an indicator of indoor air quality. Therefore, indoor CO2 concentration should be maintained below a certain level. While much research work has shown that indoor plants have the ability to purify the indoor air, the study of CO2 removal capability of indoor plants is largely incomplete. In this study, forty indoor plant species were exposed to CO2 (1200 ± 50 μL・L-1) in airtight chambers (0.128 m3) to determine their ability to remove CO2. How the amount of CO2 removed was affected by light intensity, light quality, light acclimation, plant growth regulators, dark condition and long term exposure to high concentration of CO2 exposure was also assessed.
Forty indoor plant species were tested to determine their ability to remove CO2 under a condition typically found indoors. The plants were exposed to an initial CO2 concentration of 1200 μL・L-1 in fumigation chambers with 80 μmol・m-2・s-1 light intensity to determine CO2 removal from 0800 HR to 1700 HR. The results show that all 40 indoor plants can remove CO2 under high CO2 concentration and bright light. Most plants had highest CO2 removal rate of single whole plant and unit leaf area of the plants, during the first hour of exposure. There was significant correlation between total leaf area of the plant and CO2 removal ability of single whole plant (R2=0.58); plants having higher total leaf area such as Nephrolepis exaltata ‘Bostoniensis’, Spathiphyllum floribundum ‘Palas’, and Asplenium nidus. had higher CO2 removal ability per whole plant. Sinningia speciosa, Alocasia ×amazonica, and Euphorbia pulcherrima ‘Pepride’ were plant with high CO2 removal ability based on evaluations with CO2 removal per whole plant, per unit area and T50%.
The ability of indoor plants to purify air is affected by environmental factors, among which light plays a very important role. The effect of light on CO2 removal by indoor plants was investigated in this study. The CO2 removal abilities of Sinningia speciosa, Epipremnum aureum, and Syngonium podophyllum Schott ‘Pixie’ were 1203 ± 56 μL・L-1, 604 ± 49 μL・L-1, and 336 ± 45 μL・L-1 respectively. They were chosen to represent indoor plants having high, intermediate, and low CO2 removal ability respectively in the following investigations. On the aspect of light intensity, the CO2 removal ability of Epipremnum aureum and Syngonium podophyllum Schott ‘Pixie’ was improved as light intensity increased from 5 μmol・m-2・s-1 to 80 μmol・m-2・s-1. The CO2 removal ability of Epipremnum aureum was -2.3 μL・L-1 and that of Syngonium podophyllum Schott ‘Pixie’ was -4.0 μL・L-1 under 5 μmol・m-2・s-1 PPF. From the light curves of the three indoor plants, light compensation point can be used to estimate the standard for the minimum light intensity required for CO2 removal by indoor plants, and the light saturation point can be regarded as the standard for highest light intensity. In another experiment investigating the effect of light quality under 40 μmol・m-2・s-1 intensity, plants were subjected with 6 different light treatments: white light, red light, blue light, and red:blue light ratios of 84:16 (R84/B16), 57:43 (R57/B43), and 12:88 (R12/B88). CO2 absorption by Syngonium podophyllum ‘Pixie’, Scindapsus aureum, and Sinningia speciosa was optimal under a red:blue ratio of 84:16. On the aspect of light acclimation, Asplenium nidus plants were given no acclimation or acclimated under 100 μmol・m-2・s-1 or 200 μmol・m-2・s-1 light intensity for 45 days before determining CO2 removal at 40 μmol・m-2・s-1 intensity. There was no significant difference in CO2 removal ability among treatments, but plants given no acclimation had the highest net photosynthesis rate, whereas those acclimated at 100 μmol・m-2・s-1 had higher net photosynthesis rate than those acclimated at 200 μmol・m-2・s-1.
On the aspect of plant growth regulator, plants were put under 40 μmol・m-2・s-1 light intensity and were sprayed with deionized water (control), 1, 5, or 10 μM kinetin (N6-furfuryladenine) and 1, 5, or 10 μM IBA (indole-3-butyric acid, IBA), and stomatal conductance was measured before and after spraying. The results show that plants sprayed with 5 μM IBA reduced the CO2 concentration in the chamber faster 1 h after treatment compared with control, but there was no significant difference between treatments after 0900 HR. At 2 hr after treatment, Syngonium podophyllum Schott ‘Pixie’ sprayed with 5 μM Kinetin reduced the CO2 concentration in the chamber faster compared with control, but there was no significant difference between treatments after 1000 HR. Sinningia speciosa showed no significant difference in CO2 removal ability per pot between control and 5 μM IBA treatment and similar result was obtained between Syngonium podophyllum Schott ‘Pixie’ sprayed with 5 μM Kinetin or control. Therefore, spraying with 5 μM IBA and Kinetin increased stomatal conductance and improved the initial CO2 uptake rate, but had no effect on CO2 removal ability per pot. There was no significant difference in CO2 emission per pot between Sinningia speciosa, Epipremnum aureum, Syngonium podophyllum Schott ‘Pixie’ and Asplenium nidus under 12 hours in a dark environment, whereby the average release was 188.9 μL・L-1 CO2. Under high CO2 concentration and 40 μmol・m-2・s-1 light for seven days, Sinningia speciosa and Epipremnum aureum released CO2 at night, but CO2 was removed during the day. As time increased, the ability of the tested plants to remove CO2 decreased; about 60% of the CO2 in chambers could be removed within 24 hours.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:13:13Z (GMT). No. of bitstreams: 1
ntu-101-R99628128-1.pdf: 1315774 bytes, checksum: e9a82618af98fcd2ee9c08bfc5e63613 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄 i
表目錄 iii
圖目錄 iv
摘要 vi
Abstract ix
第一章 前言 1
第二章 前人研究 4
一、室內汙染物與室內空氣品質(Indoor air quality, IAQ) 4
二、室內空氣品質對人類生活之影響 4
三、二氧化碳對人體健康與室內空氣品質之影響 5
四、空氣品質對經濟之影響 6
五、室內植物移除室內空氣之研究 7
六、植物之氣孔運動與移除機制 8
七、室內植物移除二氧化能力之影響因子 9
(一)植物種類 9
(二)光線 9
(三)植物生長調節劑 11
第三章 四十種室內植物對二氧化碳移除能力之影響 12
摘要(Abstract) 12
一、前言(Introduction) 13
二、材料方法(Materials and Methods) 14
三、結果(Results) 18
四、討論(Discussion) 28
五、結論(Conclusion) 31
第四章 光線對四種室內植物二氧化碳移除能力之影響 41
摘要(Abstract) 41
一、前言(Introduction) 42
二、材料方法(Materials and Methods) 43
試驗一、光強度對大岩桐、黃金葛及合果芋‘綠精靈’二氧化碳移除能力之影響 43
試驗二、大岩桐、黃金葛、合果芋‘綠精靈’ 及臺灣山蘇之光反應曲線 45
試驗三、光質對大岩桐、黃金葛及合果芋‘綠精靈’二氧化碳移除能力之影響 47
試驗四、光馴化對臺灣山蘇二氧化碳移除能力之影響 48
三、結果(Results) 50
四、討論(Discussion) 54
五、結論(Conclusion) 57
第五章 生長調節劑、黑暗環境及連續七天高濃度二氧化碳環境對室內植物二氧化碳移除能力之影響 76
摘要(Abstract) 76
一、前言(Introduction) 77
二、材料方法(Materials and Methods) 78
試驗一、Kinetin與IBA對四種室內植物氣孔導度與CO2移除能力之影響 78
試驗二、夜間黑暗環境下對四種室內植物CO2釋放能力之影響 81
試驗三、試驗三、連續二氧化碳處理七天對大岩桐、黃金葛二氧化碳移除能力之影響 82
三、結果(Results) 84
四、討論(Discussion) 87
五、結論(Conclusion) 89
第六章 結論 101
參考文獻(References) 103
附錄(Appendix) 113
dc.language.isozh-TW
dc.title室內植物移除二氧化碳能力之研究zh_TW
dc.titleStudies on Removal of Carbon Dioxide by Indoor Plantsen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee葉德銘(Der-Ming Yeh),熊同銓(Tung-Chuan Hsiung),孫岩章(En-Jung Sun)
dc.subject.keyword室內空氣品質,病態建築症候群,二氧化碳,室內植物,光線,植物生長調節劑,zh_TW
dc.subject.keywordIndoor air quality,Sick building syndrome,Carbon dioxide,Indoor plants,Light,Plant growth regulators,en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2013-02-08
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
1.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved