請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62857
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張耀乾(Yao-Chien Alex Chang) | |
dc.contributor.author | Ya-Chi Yu | en |
dc.contributor.author | 游雅娸 | zh_TW |
dc.date.accessioned | 2021-06-16T16:12:40Z | - |
dc.date.available | 2017-12-01 | |
dc.date.copyright | 2013-04-09 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2013-02-16 | |
dc.identifier.citation | Agboola, A.A. and R.B. Corey. 1973. The relationship between soil ph, organic matter, available phosphorus, exchangeable potassium, calcium, magnesium, and nine elements in the maize tissue. Soil Sci. 115:367-375.
Ariovich, D. and C.F. Cresswell. 1983. The effect of nitrogen and phosphorus on starch accumulation and net photosynthesis in 2 variants of Panicum-Maximum Jacq. Plant Cell Environ. 6:657-664. Ashley, M.K., M. Grant, and A. Grabov. 2006. Plant responses to potassium deficiencies: a role for potassium transport proteins. J. Exp. Bot. 57:425-436. Benning, C. and H. Ohta. 2005. Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants. J. Biol. Chem. 280:2397-2400. Benzing, D.H., W.E. Friedman, G. Peterson, and A. Renfrow. 1983. Shootlessness, velamentous roots, and the pre-eminence of Orchidaceae in the epiphytic biotope. Amer. J. Bot. 70:121-133. Benzing, D.H., D.W. Ott, and W.E. Friedman. 1982. Roots of Sobralia Macrantha (Orchidaceae) - structure and function of the velamen-exodermis complex. Amer. J. Bot. 69:608-614. Besford, R.T. and G.A. Maw. 1975. Effect of Potassium Nutrition on Tomato Plant-Growth and Fruit Development. Plant Soil 42:395-412. Bichsel, R.G., T.W. Starman, and Y.T. Wang. 2008. Nitrogen, phosphorus, and potassium requirements for optimizing growth and flowering of the nobile Dendrobium as a potted orchid. HortScience 43:328-332. Bieleski, R.L. 1973. Phosphate Pools, Phosphate Transport, and Phosphate Availability. Annu. Rev. Plant Physiol. Plant Mol. Biol. 24:225-252. 225 Blanchard, M.G. and E.S. Runkle. 2006. Temperature during the day, but not during the night, controls flowering of Phalaenopsis orchids. J. Exp. Bot. 57:4043-4049. Bocsi, R., G. Horvath, and L. Hanak. 2010. Microalgae production in service of fuel production. Hungarian J. Ind. Chem. veszprem 38:9-13. Brey, R.N. and B.P. Rosen. 1979. Cation-Proton Antiport Systems in Escherichia-Coli - Properties of the Calcium-Proton Antiporter. J. Biol. Chem. 254:1957-1963. Caboche, M., W. Campbell, N.M. Crawford, E. Fernandez, A. Kleinhofs, J. Shoiji, R. Mendel, T. Omata, S. Rothstein, and J. Wray. 1994. Genes involved in nitrate assimilation. Plant Mol. Biol. Rptr. 12:45-49. Cao, S.Q., L. Su, and Y.J. Fang. 2006. Evidence for involvement of jasmonic acid in the induction of leaf senescence by potassium deficiency in Arabidopsis. Can. J. Bot. 84:328-333. Castro, C.E. 1987. Nutrient effects on DNA and chromatin structure. Annu. Rev. Nutr. 7:407-421. Cellier, F., G. Conejero, L. Ricaud, D.T. Luu, M. Lepetit, F. Gosti, and F. Casse. 2004. Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J. 39:834-846. Chang, S., J. Puryear, and J. Cairney. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rptr. 11:113-116. Cheffings, C.M., O. Pantoja, F.M. Ashcroft, and J.A.C. Smith. 1997. Malate transport and vacuolar ion channels in CAM plants. J. Exp. Bot. 48:623-631. Chen, W.H. and Y.T. Wang. 1996. Phalaenopsis orchid culture. Taiwan sugar 43:11-16. Chiang, S.H.T. and T. Chou. 1971. Histological studies on the roots of orchids from Taiwan. Taiwania 16:1-24. 226 Christenson, E. 2001. Phalaenopsis: A Monograph.ed. Timber Press, Portland, OR. Cibes, H.R., N.F. Childers, and A.J. Loustalot. 1947. Influence of mineral deficiencies on growth and composition of Vanilla vines. Plant Physiol. 22:291-299. Corbesier, L., G. Bernier, and C. Perilleux. 2002. C : N ratio increases in the phloem sap during floral transition of the long-day plants Sinapis alba and Arabidopsis thaliana. Plant Cell Physiol. 43:684-688. Daram, P., S. Brunner, C. Rausch, C. Steiner, N. Amrhein, and M. Bucher. 1999. Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11:2153-2166. del Amor, F.M. and L.F.M. Marcelis. 2004. Regulation of K uptake, water uptake, and growth of tomato during K starvation and recovery. Sci. Hort. 100:83-101. DeTurk, E.E. 1941. Plant nutrient deficiency symptoms - Physiological basis. Ind. Eng. Chem. 33:648-653. Ding, G., P. Che, H. Ilarslan, E.S. Wurtele, and B.J. Nikolau. 2012. Genetic dissection of methylcrotonyl CoA carboxylase indicates a complex role for mitochondrial leucine catabolism during seed development and germination. Plant J. 70:562-577. Dressler, R.L. 1981. The orchids: natural history and classification.ed. Harvard University Press. Durell, S.R. and H.R. Guy. 1999. Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K+ channel. Biophys. J. 77:789-807. Essigmann, B., S. Guler, R.A. Narang, D. Linke, and C. Benning. 1998. Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 95:1950-1955. 227 Evers, O.R. and A. Larie. 1940. Nutritional studies with orchids. Ohio Agr. Expt. Sta. Biomonthly Bul. 207:166-173. Forde, B.G. 2000. Nitrate transporters in plants: structure, function and regulation. BiochEM. Biophys. Acta-Biomembranes 1465:219-235. Fredeen, A.L., I.M. Rao, and N. Terry. 1989. Influence of Phosphorus-Nutrition on Growth and Carbon Partitioning in Glycine-Max. Plant Physiol. 89:225-230. Gao, H.B., F. Brandizzi, C. Benning, and R.M. Larkin. 2008. A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 105:16398-16403. Gaxiola, R.A., R. Rao, A. Sherman, P. Grisafi, S.L. Alper, and G.R. Fink. 1999. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc. Natl. Acad. Sci. USA 96:1480-1485. Gierth, M., P. Maser, and J.I. Schroeder. 2005. The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol. 137:1105-1114. Graul, R.C. and W. Sadee. 1997. Sequence alignments of the H+-dependent oligopeptide transporter family PTR: Inferences on structure and function of the intestinal PET1 transporter. Pharmaceut. Res. 14:388-400. Griesbach, R.J. 1995. A Phalaenopsis in every pot. Orchid Dig. 59:42-43. Grundon, N.J. 1987. Hungry crops: a guide to nutrient deficiencies in field crops.ed. Queensland Wheat Res. Inst, Toowoomba. Guo, B., Y. Jin, C. Wussler, E.B. Blancaflor, C.M. Motes, and W.K. Versaw. 2008. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate 228 transporters. New Phytol. 177:889-898. Guo, W.J. and N. Lee. 2006. Effect of leaf and plant age, and day/night temperature on net CO2 uptake in Phalaenopsis anabilis var. formosa. J. Amer Soc. Hort. Sci 131:320-326. Hammond, J.P., M.J. Bennett, H.C. Bowen, M.R. Broadley, D.C. Eastwood, S.T. May, C. Rahn, R. Swarup, K.E. Woolaway, and P.J. White. 2003. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol. 132:578-596. Hammond, J.P., M.R. Broadley, and P.J. White. 2004. Genetic responses to phosphorus deficiency. Ann. Bot. 94:323-332. Hampton, C.R., H.C. Bowen, M.R. Broadley, J.P. Hammond, A. Mead, K.A. Payne, J. Pritchard, and P.J. White. 2004. Cesium toxicity in Arabidopsis. Plant Physiol. 136:3824-3837. Haro, R., L. Sainz, F. Rubio, and A. Rodriguez-Navarro. 1999. Cloning of two genes encoding potassium transporters in Neurospora crassa and expression of the corresponding cDNAs in Saccharomyces cerevisiae. Mol. Microbiol. 31:511-520. Hartt, C.E. 1929. Potassium deficiency in sugar cane. Bot. Gaz. 88:229-261. Havlin, J. 1999. Soil fertility and fertilizers : an introduction to nutrient management.ed. Prentice Hall, Upper Saddle River, N.J. Hew, C.S. and J.W.H. Yong. 2004. The physiology of tropical orchids in relation to the industry. 2 ed. World Scientific, Singapore. Hirai, M.Y., T. Fujiwara, M. Awazuhara, T. Kimura, M. Noji, and K. Saito. 2003. Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to 229 sulfur nutrition. Plant J. 33:651-663. Hirsch, R.E., B.D. Lewis, E.P. Spalding, and M.R. Sussman. 1998. A role for the AKT1 potassium channel in plant nutrition. Science 280:918-921. Holford, I.C.R. 1997. Soil phosphorus: its measurement, and its uptake by plants. Aust. J. Soil Res. 35:227-239. Hopkins, W.G. and N.P.A. Hüner. 2004. Introduction to plant physiology.ed. J. Wiley, Hoboken, NJ. Hwang, M.H. 1994. Studies of flowering regulation,carbohydrate and mineral nutrient changes year round in Phalaenopsis Orchid. Dept. of Hort., Chung Hsing Univ., Taichung, Taiwan, Master's Thesis. Johnsona, C.R. 1973. Symptomatology and analyses of nutrient deficiencies produced on flowering annual plants. Communications in Soil Science and Plant Analysis 4:185-196. Kabu, K.L. and E.W. Toop. 1970. Influence of potassium-magnesium antagonism on tomato plant growth. Can. J. Plant Sci. 50:711-715. Kang, L., J.X. Li, T.H. Zhao, F.M. Xiao, X.Y. Tang, R. Thilmony, S.Y. He, and J.M. Zhou. 2003. Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. Proc. Natl. Acad. Sci. USA 100:3519-3524. Kataoka, K., K. Sumitomo, T. Fudano, and K. Kawase. 2004. Changes in sugar content of Phalaenopsis leaves before floral transition. Sci. Hort. 102:121-132. Kim, K.N., Y.H. Cheong, J.J. Grant, G.K. Pandey, and S. Luan. 2003. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15:411-423. Kodama, Y., T. Tamura, W. Hirasawa, K. Nakamura, and H. Sano. 2009. A novel protein 230 phosphorylation pathway involved in osmotic-stress response in tobacco plants. Biochimie 91:533-539. Kojima, S., A. Bohner, and N. von Wiren. 2006. Molecular mechanisms of urea transport in plants. J. Membrane Biol. 212:83-91. Kumar, R., L.S.P. Tran, A.K. Neelakandan, and H.T. Nguyen. 2012. Higher plant cytochrome b5 polypeptides modulate fatty acid desaturation. Plos One. Lauter, F.R., O. Ninnemann, M. Bucher, J.W. Riesmeier, and W.B. Frommer. 1996. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc. Natl. Acad. Sci. USA 93:8139-8144. Lee, C.H. and N. Lee. 1991. Characteristics of morphology and anatomy in root and leaf of Phalaenopsis amabilis. J. Chiese Soc. Hort. Sci. 37:237-248. Lee, N. 2001. Research on photosynthesis, flowering bphysiology and leaf disorders of Phalaenopsis spp.ed. Industry scientific development and collaboration reports. Taiwan Sugar Corporation, Taipei, Taiwan. Lee, P.C. 2000. Studies on leaf chlorotic spot, flower longevity and flower sensitivity to ethylene of Phalaenopsis sp. Dept. of Hort., National Taiwan Univ., Taipei, Taiwan, Master's Thesis. Lei, S.Y. 2007. Changes of mineral composition and fertilizer requirement of Phalaenopsis during reproductive stages. Dept. of Hort., National Taiwan Univ., Taipei, Taiwan, Master's Thesis. Lian, X.M., S.P. Wang, J.W. Zhang, Q. Feng, L.D. Zhang, D.L. Fan, X.H. Li, D.J. Yuan, B. Han, and Q.F. Zhang. 2006. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray. Plant Mol. Biol. 60:617-631. 231 Lin, C.M. and N. Lee. 1988. Leaf area estimation and the effect of temperature on the growth of Phalaenopsis leaves. J. Chiese Soc. Hort. Sci. 34:73-80. Lin, S.Y. 2011. Physiological responses of Phalaenopsis towards different substrate salinity. Dept. of Hort., National Taiwan Univ., Taipei, Taiwan, Master's Thesis. Lin, T.P. 1987. Native orchids of Taiwan. SMC publishing Inc., Taipei. Lineberry, R.A. and L. Burkhart. 1943. Nutrient deficiencies in the strawberry leaf and fruit. Plant Physiol. 18:324-333. Liu, K.H., C.Y. Huang, and Y.F. Tsay. 1999. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11:865-874. Liu, K.H. and Y.F. Tsay. 2003. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J. 22:1005-1013. Liu, L.H., U. Ludewig, B. Gassert, W.B. Frommer, and N. von Wiren. 2003. Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol. 133:1220-1228. Lugo, H.L. 1955. The effect of nitrogen on the germination of Vanilla-Planifolia. Amer. J. Bot. 42:679-684. Mantri, N.L., R. Ford, T.E. Coram, and E.C.K. Pang. 2007. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics. Marini, A.M., S. SoussiBoudekou, S. Vissers, and B. Andre. 1997. A family of ammonium transporters in Saccharomyces cerevisiae. Mol. Cell Biol. 17:4282-4293. Marini, A.M., S. Vissers, A. Urrestarazu, and B. Andre. 1994. Cloning and epression of the Mep1 gene encoding an ammonium transporter in Saccharomyces-Cerevisiae. EMBO J. 13:3456-3463. 232 Masclaux-Daubresse, C., S. Purdy, T. Lemaitre, N. Pourtau, L. Taconnat, J.P. Renou, and A. Wingler. 2007. Genetic variation suggests interaction between cold acclimation and metabolic regulation of leaf senescence. Plant Physiol. 143:434-446. Maser, P., M. Gierth, and J.I. Schroeder. 2002a. Molecular mechanisms of potassium and sodium uptake in plants. Plant Soil 247:43-54. Maser, P., Y. Hosoo, S. Goshima, T. Horie, B. Eckelman, K. Yamada, K. Yoshida, E.P. Bakker, A. Shinmyo, S. Oiki, J.I. Schroeder, and N. Uozumi. 2002b. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc. Natl. Acad. Sci. USA 99:6428-6433. Menary, R.C. and J. Staden. 1976. Effect of phosphorus nutrition and cytokinins on flowering in the tomato, Lycopersicon esculentum Mill. Aust. J. Plant Physiol. 3:201-205. Menge, K. and E.A. Kirkby. 2001. Principles of Plant Nutrition.ed. Kluwer Academic Publishers, Dordrecht/Boston/London. Mengel, K. and E.A. Kirkby. 2001. Principles of plant nutrition.ed. Kluwer Academic Publishers, Boston. Misson, J., K.G. Raghothama, A. Jain, J. Jouhet, M.A. Block, R. Bligny, P. Ortet, A. Creff, S. Somerville, N. Rolland, P. Doumas, P. Nacry, L. Herrerra-Estrella, L. Nussaume, and M.C. Thibaud. 2005. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc. Natl. Acad. Sci. USA 102:11934-11939. Miura, K., A. Rus, A. Sharkhuu, S. Yokoi, A.S. Karthikeyan, K.G. Raghothama, D. Baek, Y.D. Koo, J.B. Jin, R.A. Bressan, D.J. Yun, and P.M. Hasegawa. 2005. The 233 Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc. Natl. Acad. Sci. USA 102:7760-7765. Morcuende, R., R. Bari, Y. Gibon, W.M. Zheng, B.D. Pant, O. Blasing, B. Usadel, T. Czechowski, M.K. Udvardi, M. Stitt, and W.R. Scheible. 2007. Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant Cell Environ. 30:85-112. Moreira, A.S.P. and R.M.S. Isaias. 2008. Comparative anatomy of the absorption roots of terrestrial and epiphytic orchids. Braz. Arch. Biol. Techn. 51:83-93. Muchhal, U.S., J.M. Pardo, and K.G. Raghothama. 1996. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 93:10519-10523. Nash, N. 1996. Orchids break ground in the floriculture industry. Orchids 65:199-1202. Nelsen, C.E. and G.R. Safir. 1982. Increased drought tolerance of mycorrhizal onion plants caused by improved phosphorus-nutrition. Planta 154:407-413. Ohlrogge, J. and J. Browse. 1995. Lipid biosynthesis. Plant Cell 7:957-970. Ownby, J.D., M. Shannahan, and E. Hood. 1979. Protein-synthesis and degradation in anabaena during nitrogen starvation. J. Gen. Microbiol. 110:255-261. Pantoja, O., A. Gelli, and E. Blumwald. 1992. Characterization of Vacuolar Malate and K+ Channels under Physiological Conditions. Plant Physiol. 100:1137-1141. Pearson, C.J. 1975. Fluxes of potassium and changes in malate within epidermis of Commelina cyanea and their relationships with stomatal aperture. Aust. J. Plant Physiol. 2:85-89. Peng, Y.C. 2008. The Uptake, Partitioning, and Uses of Nitrogen in Phalaenopsis Sogo Yukidian 'V3'. Dept. of Hort., National Taiwan Univ., Taipei, Taiwan, Master's Thesis. 234 Peoples, T.R. and D.W. Koch. 1979. Role of Potassium in Carbon-Dioxide Assimilation in Medicago-Sativa L. Plant Physiol. 63:878-881. Poirier, Y. and M. Bucher. 2002. Phosphate transport and homeostasis in Arabidopsis. In: Somerville CR, Meyerowitz EM, eds. The Arabidopsis Book:1-35. Poole, H.A. and J.G. Seeley. 1977. Nitrogen, potassium and magnesium nutrition of three orchid genera. Amer. Orchid Soc. Bul. 58:8-15. Poole, H.A. and T.J. Sheehan. 1977. Effect of media and supplementary microelements fertilisation on growth and chemical composition of Cattleya. Amer. Orchid Soc. Bul. 45:155-160. Pujos, A. and P. Morard. 1997. Effects of potassium deficiency on tomato growth and mineral nutrition at the early production stage. Plant Soil 189:189-196. Radin, J.W. and M.P. Eidenbock. 1984. Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants. Plant Physiol. 75:372-377. Raghothama, K.G. 1999. Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:665-693. Rausch, C. and M. Bucher. 2002. Molecular mechanisms of phosphate transport in plants. Planta 216:23-37. Rodriguez-Navarro, A. and F. Rubio. 2006. High-affinity potassium and sodium transport systems in plants. J. Exp. Bot. 57:1149-1160. Rubio, V., R. Bustos, M.L. Irigoyen, X. Cardona-Lopez, M. Rojas-Triana, and J. Paz-Ares. 2009. Plant hormones and nutrient signaling. Plant Mol. Biol. 69:361-373. Rubio, V., F. Linhares, R. Solano, A.C. Martin, J. Iglesias, A. Leyva, and J. Paz-Ares. 2001. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Gene Dev. 15:2122-2133. 235 Rufty, T.W., S.C. Huber, and R.J. Volk. 1988. Alterations in leaf carbohydrate-metabolism in response to nitrogen stress. Plant Physiol. 88:725-730. Sakanishi, Y., H. Imanishi, and G. Ishida. 1980. Effect of temperature on growth and flowering of Phalaenopsis amabilis. Bull. Univ. Osaka Pref. Ser. 32:1-9. Scheible, W.R., A. GonzalezFontes, M. Lauerer, B. MullerRober, M. Caboche, and M. Stitt. 1997. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783-798. Sheehan, T.J. 1960. Effects of nutrition and potting media on growth and flowering of certain epiphytic orchids. Amer. Orchid Soc. 30:289-292. Shin, R. and D.P. Schachtman. 2004. Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc. Natl. Acad. Sci. USA 101:8827-8832. Skrypina, N.A., A.V. Timofeeva, G.L. Khaspekov, L.P. Savochkina, and R.S. Beabealashvilli. 2003. Total RNA suitable for molecular biology analysis. J. Biotechnol. 105:1-9. Smith, F.W., M. Sr, A.L. Rae, and D. Glassop. 2003. Phosphate transport in plants. Plant Soil 248:71-83. Smith, P.F., W. Reuther, A.W. Specht, and G. Hrnciar. 1954. Effect of differential nitrogen, potassium, and magnesium supply to young valencia orange trees in sand culture on mineral composition especially of leaves and fibrous roots. Plant Physiol. 29:349-355. Sonoda, Y., A. Ikeda, S. Saiki, N. von Wiren, T. Yamaya, and J. Yamaguchi. 2003a. Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1;3) in rice. Plant Cell Physiol. 44:726-734. Sonoda, Y., A. Ikeda, S. Saiki, T. Yamaya, and J. Yamaguchi. 2003b. Feedback regulation 236 of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell Physiol. 44:1396-1402. Stitt, M. 1999. Nitrate regulation of metabolism and growth. Curr. Opin. Plant Biol. 2:178-186. Stjohn, A.C. and A.L. Goldberg. 1980. Effects of starvation for potassium and other inorganic-ions on protein-degradation and ribonucleic-acid snthesis in Escherichia coli. J. Bacteriol. 143:1223-1233. Sze, H., S. Padmanaban, F. Cellier, D. Honys, N.H. Cheng, K.W. Bock, G. Conejero, X.Y. Li, D. Twell, J.M. Ward, and K.D. Hirschi. 2004. Expression patterns of a novel AtCHX gene family highlight potential roles in osmotic adjustment and K+ homeostasis in pollen development. Plant Physiol. 136:2532-2547. Thomson, W.W. and T.E. Weier. 1962. The fine structure of chloroplasts from mineral-deficient leaves of Phaseolus vulgaris. Amer. J. Bot. 49:1047-1055. Trepanier, M., M.P. Lamy, and B. Dansereau. 2009. Phalaenopsis can absorb urea directly through their roots. Plant Soil 319:95-100. Tsay, Y.F., C.C. Chiu, C.B. Tsai, C.H. Ho, and P.K. Hsu. 2007. Nitrate transporters and peptide transporters. FEBS Lett. 581:2290-2300. Uhde-Stone, C., K.E. Zinn, M. Ramirez-Yanez, A.G. Li, C.P. Vance, and D.L. Allan. 2003. Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiol. 131:1064-1079. Ulrich, A. 1952. Physiological bases for assessing the nutritional requirements of plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 3:207-228. USDA. 2012. National agricultural statistics service: Floriculture crops 2011 summary. 17 Jan. 2013. 237 <http://usda01.library.cornell.edu/usda/current/FlorCrop/FlorCrop-05-31-2012.pdf>. Venema, K., F.J. Quintero, J.M. Pardo, and J.P. Donaire. 2002. The Arabidopsis Na+/H+ exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. J. Biol. Chem. 277:2413-2418. Versaw, W.K. and M.J. Harrison. 2002. A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14:1751-1766. Vesk, M., J.V. Possingham, and F.V. Mercer. 1966. The effect of mineral nutrient deficiencies on the structure of the leaf cells of tomato, spinach, and maize. Aust J. Bot. 14:1-18. Vicente-Agullo, F., S. Rigas, G. Desbrosses, L. Dolan, P. Hatzopoulos, and A. Grabov. 2004. Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J. 40:523-535. Vreugdenhil, D. 1985. Source-to-Sink Gradient of Potassium in the Phloem. Planta 163:238-240. Walker, D.J., R.A. Leigh, and A.J. Miller. 1996. Potassium homeostasis in vacuolate plant cells. Proc. Natl. Acad. Sci. USA 93:10510-10514. Wang, R.C., M. Okamoto, X.J. Xing, and N.M. Crawford. 2003. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol. 132:556-567. Wang, T.B., W. Gassmann, F. Rubio, J.I. Schroeder, and A.D.M. Glass. 1998. Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of 238 barley and wheat following withdrawal of potassium. Plant Physiol. 118:651-659. Wang, W.H., B. Kohler, F.Q. Cao, G.W. Liu, Y.Y. Gong, S. Sheng, Q.C. Song, X.Y. Cheng, T. Garnett, M. Okamoto, R. Qin, B. Mueller-Roeber, M. Tester, and L.H. Liu. 2012. Rice DUR3 mediates high-affinity urea transport and plays an effective role in improvement of urea acquisition and utilization when expressed in Arabidopsis. New Phytol. 193:432-444. Wang, Y.H., D.F. Garvin, and L.V. Kochian. 2001. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol. 127:1323-1323. Wang, Y.T. 1996. Effects of six fertilizers on vegetative growth and flowering of Phalaenopsis orchids. Sci. Hort. 65:191-197. Wang, Y.T. 1998. Impact of salinity and media on growth and flowering of a hybrid Phalaenopsis orchid. HortScience 33:247-250. Wang, Y.T. 2000. Impact of a high phosphorus fertilizer and timing of termination of fertilization on flowering of a hybrid moth orchid. HortScience 35:60-62. Wang, Y.T. 2004. Flourishing market for potted orchids. Flower Tech. 7:2-5. Wang, Y.T. 2007. Potassium nutrition affects Phalaenopsis growth and flowering. HortScience 42:1563-1567. Wang, Y.T. 2008. High NO3-N to NH4-N ratios promote growth and flowering of a hybrid Phalaenopsis grown in two root substrates. HortScience 43:350-353. Wang, Y.T. and L.L. Gregg. 1994. Medium and fertilizer affect the performance of Phalaenopsis orchids during 2 flowering cycles. HortScience 29:269-271. Wang, Y.T. and E.A. Konow. 2002. Fertilizer source and medium composition affect vegetative growth and mineral nutrition of a hybrid moth orchid. J. Amer Soc. Hort. 239 Sci 127:442-447. Wang, Y.T. and A.C.J. Tsai. 2006. Effect of potassium concentration on a hybrid Phalaenopsis grown in a bark mix or sphagnum moss. HortScience 41:980-980. Wasaki, J., R. Yonetani, S. Kuroda, T. Shinano, J. Yazaki, F. Fujii, K. Shimbo, K. Yamamoto, K. Sakata, T. Sasaki, N. Kishimoto, S. Kikuchi, M. Yamagishi, and M. Osaki. 2003. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ. 26:1515-1523. Wei, K.C. 1996. First investigations of the cause of circular yellow spots on Phalaenopsis leaves. Report of theTaiwan Sugar Research Institute 152:19-33. Welch, R.M. 1995. Micronutrient Nutrition of Plants. Crit. Rev. Plant Sci. 14:49-82. West, C.E., W.M. Waterworth, S.M. Stephens, C.P. Smith, and C.M. Bray. 1998. Cloning and functional characterisation of a peptide transporter expressed in the scutellum of barley grain during the early stages of germination. Plant J. 15:221-229. Williams, B., M. Kabbage, R. Britt, and M.B. Dickman. 2010. AtBAG7, an Arabidopsis Bcl-2-associated athanogene, resides in the endoplasmic reticulum and is involved in the unfolded protein response. Proc. Natl. Acad. Sci. USA 107:6088-6093. Xu, J., Y.S. Tian, R.H. Peng, A.S. Xiong, B. Zhu, X.F. Jin, F. Gao, X.Y. Fu, X.L. Hou, and Q.H. Yao. 2010. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231:1251-1260. Yamaguchi, T., M.P. Apse, H.Z. Shi, and E. Blumwald. 2003. Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. Proc. Natl. Acad. Sci. USA 100:12510-12515. Yang, T.B. and B.W. Poovaiah. 2003. Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci. 8:505-512. 240 Yen, W.Y., Y.C.A. Chang, and Y.T. Wang. 2011. The acidification of sphagnum moss substrate during Phalaenopsis cultivation. HortScience 46:1022-1026. Yokoi, S., F.J. Quintero, B. Cubero, M.T. Ruiz, R.A. Bressan, P.M. Hasegawa, and J.M. Pardo. 2002. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J. 30:529-539. Yoneda, K., N. Suzuki, and I. Hasegawa. 1999. Effects of macroelement concentrations on growth, flowering, and nutrient absorption in an Odontoglossum hybrid. Sci. Hort. 80:259-265. Yoneda, K., M. Usui, and S. Kubota. 1997. Effect of nutrient deficiency on growth and flowering of Phalaenopsis. J. Jpn. Soc. Hort. Sci. 66:141-147. Zhang, H.X. and E. Blumwald. 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnol. 19:765-768. Zotz, G. 1998. Demography of the epiphytic orchid, Dimerandra emarginata. J. Trop. Ecol. 14:725-741. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62857 | - |
dc.description.abstract | 蝴蝶蘭 (Phalaenopsis spp.) 原生於熱帶雨林,具有特化的氣生根可附著於樹幹表面。蝴蝶蘭的根部的外皮層具根被包覆,內皮層則有特化的通過細胞協助水分及養分的吸收,但其表面並無根毛。因蝴蝶蘭特殊的著生習性及根部構造,本研究之目的在探討養分受限環境下蝴蝶蘭對營養元素的吸收及分配,以瞭解蝴蝶蘭在低養分環境的生存機制。
本研究於氮、磷及鉀養分逆境下瞭解蝴蝶蘭之生長反應並進行基因功能分析,試驗以Phalaenopsis Sogo Yukidian ‘V3’為材料,施用含不同濃度氮 (0、0.71、7.14 mM)、磷 (0、0.16、1.61 mM) 及鉀 (0、0.38、3.84 mM)之液態肥料,栽植於30/25 oC人工氣候室進行觀察。施肥處理八週後,缺氮、缺磷及缺鉀處理對植株營養生長之影響不大,僅地上部鮮重隨磷肥施用濃度的下降而降低,但觀察成熟葉及根部之氮、磷及鉀的濃度已有顯著降低,顯示蝴蝶蘭對養分的反應緩慢。施肥處理八週後,將植株由30/25 oC移至25/20 oC之自然光照室進行低溫催花。其中以低氮(0.71 mM) 處理組最早抽梗、植株達到50% 抽梗率所需天數最少 (47天) ,全株葉色轉為淺綠, SPAD讀值下降;缺磷處理抽梗延遲,於低溫處理80天後,其抽梗率僅達33.3%,葉尖呈紫紅色;而缺鉀處理組達50% 抽梗率所需天數 (74天) 較對照組 (56天) 長,於花朵開放後其上位葉出現黃色斑塊及壞疽,病徵由葉尖往基部擴散。自花梗發育後,缺氮及缺磷處理之新葉生長速率明顯下降,地上部生長受抑制;但新葉生長速率於缺鉀處理與正常施肥組無異。施肥處理32週後,植體中氮、磷及鉀大量被運移至花梗及花朵,由於花梗發育耗用大量養分,致使營養缺乏之影響較易於生殖生長期中顯現。 短期養分缺乏對蝴蝶蘭的外觀及生長並無明顯影響。藉由生物晶片檢測施肥處理八週後蝴蝶蘭的成熟葉部及根部之基因表現,發現缺氮、缺磷、缺鉀的在基因層次上具有相同調節的基因,在成熟葉中,缺氮、缺磷及缺鉀會共同誘導794個上調及129個下調基因;而在根部則有101個上調及89個下調基因。而在缺乏氮、磷及鉀的處理下,葉片中DNA、RNA調控、蛋白質合成及降解及受體激酶之基因表現皆受缺肥誘導而增加,顯示短期養分缺乏時,蝴蝶蘭已有相應調控,協助植體內的磷之分配與利用。對應阿拉伯芥缺磷之研究顯示蝴蝶蘭的葉及根部之磷轉運蛋白 (phosphate transporter)、磷酸水解酶 (phosphatase) 及甘油類化合物sulfoquinovosyldiacylglycerol 2 (SQD2)等基因上調,且影響糖基甘油酯 (glycosylglycerides) 之代謝。顯示在短期養分缺乏下,蝴蝶蘭雖於外觀無明顯之缺肥徵狀顯現,但於基因調控層次上已有反應,其中轉錄因子PATC128122於蝴蝶蘭之葉片及根部皆受缺磷誘導而表現量大量增加,此基因未來可作為蝴蝶蘭缺磷訊號標誌基因。 | zh_TW |
dc.description.abstract | Phalaenopsis is an epiphyte native to tropical broadleaf forest in Taiwan. Epiphytic roots attach to the surface of tree trunks instead of growing in soil. Unique structures and morphology of Phalaenopsis roots include velamen outside epidermis, absence of root hairs, lack or absence of branch roots and passage cells in endodermis. Understanding the mechanism of nutrients uptake and metabolism in Phalaenopsis is important to determine how efficient nutrition usage is achieved under intermittent supply.
In this study, the growth response and gene expression of Phalaenopsis under N, P, or K deficiency stress were investigated. Phalaenopsis Sogo Yukidian ‘V3’ was grown in a 30/25 oC phytotron and fertilized with solutions containing different concentrations of N (0, 0.71, or 7.14 mM), P (0, 0.16, or 1.6 mM), and K (0, 0.38, or 3.84 mM). Except for lower fresh weight observed in P deficiency treatments, N, P, or K deficiency had little effect on vegetative growth after 8 weeks of treatment, despite lower concentrations of N, P, and K in mature leaves and roots. This shows that Phalaenopsis responds slowly to fertilization. After 8 weeks of treatment in 30/25 °C, plants were transferred to 25/20 °C phytotron to induce spikes. Plants given low N concentration (0.71 mM) had earliest spiking, and required least number of days to 50% spiking (47 days). The SPAD value decreased and the color of the entire foliage of these N-deficient plants turned light green. Phosphorus deficiency delayed spiking where only 33% spiking rate was reached after 80 days of low temperature induction. Purple color was evident on the leaf tips of P-deficient plants. Plants deficient in K required longer to reach 50% spiking (74 days) compared with control (56 days). Yellow spots and necrosis occurred on the upper leaves of these plants after flower opening, and the symptom developed from the tip to the base of the leaves. New leaf growth decreased significantly after spike development in N- and P-deficient plants, but not in K-deficient plants, which had similar new leaf growth rate to plants given full N, P, and K fertilization. After 32 weeks of starvation treatment, significant amounts of N, P, and K were transported to spike and flowers. Because a large amount of nutrients was required for the inflorescence development, the symptoms of nutrition deficiency became evident during the reproductive stage. Microarray analysis revealed differential gene expression in mature leaf and roots during 8 weeks of starvation. There were 794 up-regulated and 129 down-regulated genes commonly appearing in shoots and 101 up- and 89 down-regulated genes in roots under N, P, or K deficiency stress. The transcript levels of DNA and RNA regulation, protein degradation and synthesis, and signaling of receptor kinases were increased in mature leaves. Comparison of the expression of P starvation in Arabidopsis and Phalaenopsis, the phosphate transporter, phosphatase, SQD2 were up-regulated in leaves and roots, and effect on the glycosylglyceride biosynthesis in leaves and roots. Under short-term P starvation, there were no significant symptom in phenotype but the gene regulation already changed. During short-term nutrient starvation, there was regulation of genes for survival in nutrition stress. The PATC128122 was highly up-regulated both in leaf and roots; hence this gene may be used as a marker gene under P starvation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:12:40Z (GMT). No. of bitstreams: 1 ntu-101-R99628113-1.pdf: 4579734 bytes, checksum: 22d60ee891f590e76abeaf2a9fe4b79d (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 誌謝 ...................................................................................................................................i
中文摘要 .......................................................................................................................... ii ABSTRACT .....................................................................................................................iv CONTENTS .....................................................................................................................vi LIST OF TABLES ............................................................................................................. x LIST OF FIGURES ........................................................................................................xvi Chapter 1. General Introduction.................................................................................... 1 1.1 Orchidaceae profile ......................................................................................... 1 1.2 The root type and structure of Phalaenopsis .................................................. 3 1.3 Importance of nutrient .................................................................................... 4 1.4 Effect of N, P, and K on plant physiology ...................................................... 5 Chapter 2. Starvation Physiology in Phalaenopsis ....................................................... 9 2.1 Abstract ........................................................................................................... 9 2.2 Introduction................................................................................................... 10 2.2.1 Nutrition starvation ............................................................................. 10 2.2.2 Effects of nitrogen on Phalaenopsis growth ....................................... 10 2.2.3 Effects of phosphorus on Phalaenopsis growth .................................. 11 2.2.4 Effects of potassium on Phalaenopsis growth .................................... 12 2.3 Materials and methods .................................................................................. 13 2.3.1 Plant materials ..................................................................................... 13 2.3.2 Experimental location ......................................................................... 13 2.3.3 Growing conditions ............................................................................. 13 2.3.4 Experiment outline .............................................................................. 14 vii 2.3.5 Experimental design ............................................................................ 16 2.3.6 Statistical analysis ............................................................................... 17 2.4 Results .......................................................................................................... 19 2.4.1 Growth of new leaves .......................................................................... 19 2.4.2 Effect on growth of shoot and roots .................................................... 20 2.4.3 Effect on growth of stalk and flowers ................................................. 22 2.4.4 Symptoms and relative leaf chlorophyll concentration under starvation ..... 23 2.5 Discussion ....................................................................................................... 24 Tables ...................................................................................................................... 33 Figures ...................................................................................................................... 47 Chapter 3. Nutrient composition of Phalaenopsis plants under N, P, and K starvation ................................................................................................ 55 3.1 Abstract ......................................................................................................... 55 3.2 Introduction................................................................................................... 56 3.2.1 Mineral requirements of tropical orchid plant .................................... 56 3.2.2 Effect of nitrogen deficiency on element change in Phalaenopsis ..... 57 3.2.3 Effect of phosphorus deficiency on element change in Phalaenopsis 58 3.2.4 Effect of potassium deficiency on element change in Phalaenopsis .. 58 3.3 Materials and methods .................................................................................. 60 3.3.1 Plant materials ..................................................................................... 60 3.3.2 Experimental location ......................................................................... 60 3.3.3 Growing conditions ............................................................................. 60 3.3.4 Experiment outline .............................................................................. 61 3.3.5 Elemental analysis ............................................................................... 62 3.3.6 Experimental design ............................................................................ 63 3.3.7 Statistical analysis ............................................................................... 64 viii 3.4 Results .......................................................................................................... 66 3.5 Discussion ..................................................................................................... 81 Tables ...................................................................................................................... 89 Figures .................................................................................................................... 105 Chapter 4. Microarray analysis under nutrient starvation ..................................... 133 4.1 Abstract ....................................................................................................... 133 4.2 Introduction................................................................................................. 134 4.2.1 Mechanisms of nitrogen, phosphorus, and potassium acquisition .... 134 4.2.2 Microarray assay in plant nutrition deficiency .................................. 142 4.3 Materials and methods ................................................................................ 146 4.3.1 Plant materials ................................................................................... 146 4.3.2 Experimental location ....................................................................... 146 4.3.3 Growing conditions ........................................................................... 146 4.3.4 Experiment outline ............................................................................ 147 4.3.5 Orchid chip ........................................................................................ 147 4.3.6 RNA isolation .................................................................................... 148 4.3.7 cDNA synthesis ................................................................................. 150 4.3.8 Microarray analysis ........................................................................... 152 4.3.9 Data analysis ..................................................................................... 153 4.3.10 Comparison with Arabidopsis microarray experiment ..................... 153 4.4 Result .......................................................................................................... 155 4.4.1 Genes appearing under N, P, and K starvation classification by MAPMAN ......................................................................................... 156 4.4.2 Genes commonly expressed under N, P, and K starvation ................ 158 4.4.3 Comparison with Arabidopsis microarray data ................................. 161 4.4.4 Genes networking of P starvation in Phalaenopsis ........................... 167 ix 4.4.5 Transcriptional regulation in pathway of glycosylgyceride .............. 168 4.5 Discussion ................................................................................................... 169 4.5.1 Genes appearing under N, P, and K starvation classification by MAPMAN ......................................................................................... 169 4.5.2 Genes commonly appearing under N, P, and K starvation ................ 170 4.5.3 Comparison with Arabidopsis nutrition starvation microarray ......... 170 4.5.4 Genes regulation of P starvation in Phalaenopsis ............................. 171 4.5.5 Genes networking of P starvation in Phalaenopsis ........................... 172 4.5.6 Transcriptional regulation in pathway of glycosylgyceride .............. 174 Tables .................................................................................................................... 176 Figures .................................................................................................................... 206 Chapter 5. Conclusion ................................................................................................. 222 Chapter 6. References ................................................................................................. 224 Appendix ................................................................................................................ 241 | |
dc.language.iso | en | |
dc.title | 蝴蝶蘭於氮、磷、鉀養分逆境下之生長反應與基因功能分析 | zh_TW |
dc.title | Growth Response and Gene Expression Profiling in Phalaenopsis under Nitrogen, Phosphorus, and Potassium Deficiency Stress | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 施明哲(Ming-Che Shih),蘇春霖(Chun-Lin Su) | |
dc.contributor.oralexamcommittee | 陳福旗(Fure-Chyi Chen),鍾仁賜(Ren-Shih Chung) | |
dc.subject.keyword | 蝴蝶蘭,養分缺乏逆境,缺肥徵狀,元素分析,生物晶片, | zh_TW |
dc.subject.keyword | Phalaenopsis,nutrient starvation,symptom of nutrient deficiency,element analysis,cDNA microarrary, | en |
dc.relation.page | 243 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-02-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 4.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。