請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62855完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 戴昌鳳(Cheng-Feng Dai) | |
| dc.contributor.author | Shuo-Wen Chang | en |
| dc.contributor.author | 張碩文 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:12:35Z | - |
| dc.date.available | 2015-03-15 | |
| dc.date.copyright | 2013-03-15 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-17 | |
| dc.identifier.citation | 朱惠敏。2010。台灣黑唇青斑與黃純青斑海蛇的食物與活動時期之生態區隔研究。國立臺灣師範大學生命科學系碩士論文。台北。
劉于綾。2010。三種闊尾海蛇棲地選擇。國立臺灣師範大學生命科學系碩士論文。台北。 Angilletta MJ Jr, Niewiarowski PH, Navas CA (2002) The evolution of thermal physiology in ectotherms. J Thermal Biol 27: 249–268. Amundsen P, Bohn T, Popova OA, Staldvik FJ, Reshetnikov YS, et al. (2003) Ontogenetic niche shifts and resource partitioning in a subarctic piscivore fish guild. Hydrobiologia 497: 109–119. Arlettaz R, Perrin N, Hausser J (1997) Trophic resource partitioning and competition between the two sibling bat species Myotis myotis and Myotis blythii. J Anim Ecol 66: 897-911. Bacolod PT (1983) Reproductive biology of two sea snakes of the genus Laticauda from central Philippines. Philipp Sci 20: 39-56. Beck DD (1995) Ecology and energetics of three sympatric rattlesnake species in the Sonoran desert. J Herpetol 29: 211-223. Bonnet X, Brishoux F (2008) Thirsty sea snakes forsake refuge during rainfall. Austral Ecol 33: 911–921. Bonnet X, Brischoux F, Lang R (2010) Highly venomous sea kraits must fight to get their prey. Coral Reefs 29:379. Bonnet X, Ineich I, Shine R (2005) Terrestrial locomotion in sea snakes: the effects of sex and species on cliff-climbing ability in sea kraits (Serpentes, Elapidae, Laticauda). Biol J Linn Soc 85: 433-441. Brischoux F, Bonnet X (2009) Life history of sea kraits in New Caledonia. Mem Mus Nat d’Hist Natur 198: 133-147. Brischoux F, Bonnet X, Shine R (2009) Kleptothermy: An additional category of thermoregulation, and a possible example in sea kraits (Laticauda laticaudata, Serpentes). Biol Lett 5: 729–731. Brischoux F, Bonnet X, Shine R (2011) Conflicts between feeding and reproduction in amphibious snakes (sea kraits, Laticauda spp.). Austral Ecol 36: 46–52. Brischoux F, Bonnet X, Cook T, Shine R (2007a) Snakes at sea: Diving performance of free-ranging sea kraits. Proc 11th Annual Meeting on Health, Science & Technology, Universite Francois Rabelais, Tours, p 5–20. Brischoux F, Bonnet X, Shine R (2007b) Foraging ecology of sea kraits Laticauda spp. in the Neo-Caledonian Lagoon. Mar Ecol-Prog Ser 350: 145–151. Brischoux F, Kato A, Ropert-Coudert Y, Shine R (2010) Swimming speed variation in amphibious seasnakes (Laticaudinae): A search for underlying mechanisms. J Exp Mar Biol Ecol 394: 116–122. Brown GP, Shine R, Madsen T (2002) Responses of three sympatric snake species to tropical seasonality in northern Australia. J Trop Ecol 18: 549-568. Carothers JH, Jaksić FM (1984) Time as a niche difference: The role of interference competition. Oikos 42: 403-406. Chave EHN, Randall HA (1971) Feeding behavior of the moray eel, Gymnothorax pictus. Copeia 1971: 570-574. Cogger HG, Heatwole HF (2006) Laticauda frontalis (de Vis, 1905) and Laticauda saintgironsi n.sp. from Vanuatu and New Caledonia (Serpentes: Elapidae: Laticaudinae)—a new lineage of sea kraits? Rec Aust Mus 58: 245–256. Denslow JS (1980) Gap partitioning among tropical rainforest trees. Biotropica 12: 47-55. Diefenbach CO, Emslie SG (1971) Cues influencing the direction of prey ingestion of the Japanese Snake, Elaphe climacophora (Colubridae, Serpentes). Herpetologica 27: 461-466. Diller LV, Wallace RL (1996) Comparative ecology of two snake species (Crotalus viridis and Pituophis melanoleucus) in southwestern Idaho. Herpetologica 52: 343-360. Dunson WA (1968) Salt gland secretion in the pelagic sea snake Pelamis. Am J Physiol 215: 1512-1517. Dunson WA, Packer RK, Dunson MK (1971) Sea snakes: An unusual salt gland under the tongue. Science 173: 437-441. Field IC, Bradshaw CJA, Burton HR, Sumner MD, Hindell MA (2005) Resource partitioning through oceanic segregation of foraging juvenile southern elephant seals (Mirounga leonina). Oecologia 142: 127–135. Glodek GS, Voris HK (1982) Marine snake diets: Prey composition, diversity and overlap. Copeia 1982: 661-666. Greer AE (1997) The biology and evolution of Australian snakes. Surrey Beatty, Sydney. Guinea ML (1991) Rainwater drinking by the sea krait Laticauda colubrina. Herpetofauna 21: 13–14. Heatwole H (1999) Sea snakes. Krieger Publishing Company, Malabar, Florida: 1-148. Heatwole H, Busack S, Cogger H (2005) Geographic variation in sea kraits of the Laticauda Colubrina complex (Serpentes: Elapidae: Hydrophiinae: Laticaudini). Herpetol Monogr 19: 1-136. Heatwole H, Grech A, Monahan JF, King S, Marsh H (2012) Thermal biology of sea snakes and sea kraits. Interg Comp Biol 52: 257–273. Heatwole H, Minton SA Jr, Taylor R, Taylor V (1978) Underwater observations on sea snake behavior. Rec Aust Mus 31: 737–761. Heatwole H, Powell J (1998) Resistance of eels (Gymnothorax) to the venom of sea kraits (Laticauda Colubrina): A test of coevolution. Toxicon 36: 619-625. Hin HK, Stuebing RB, Voris HK (1991) Population structure and reproduction in the marine snake, Lapemis hardwickii Gray, from the west coast of Sabah. Sarawak Mus J 42: 463-475 Inouye DW (1978) Resource partitioning in bumblebees: Experimental studies of foraging behavior. Ecology 59: 672-678. Jenkins KJ, Wright RG (1988) Resource partitioning and competition among cervids in the northern Rocky Mountains. J Appl Ecol 25: 11-24. Kronfeld-Schor N, Dayan T (2003) Partitioning of time as an ecological resource. Annu Rev Ecol Syst 34: 153-181. Lewis R, O'Connell TC, Lewis M, Campagna C, Hoelzel AR (2006) Sex-specific foraging strategies and resource partitioning in the southern elephant seal (Mirounga leonina). P Roy Soc B-Biol Sci 273: 2901-2907. Lillywhite HB, Babonis LS, Sheehy CM III, Tu MC (2008) Sea Snakes (Laticauda spp.) Require Fresh Drinking Water: Implication for the Distribution and Persistence of Populations. Physiol Biochem Zool 81: 785–796. Lillywhite HB, Brischoux F, Sheehy CM III, Pfaller JB (2012) Dehydration and Drinking Responses in a Pelagic Sea Snake. Interg Comp Biol 52: 257-273. Lillywhite HB, Menon JG, Menon GK, Sheehy CM, Tu MC (2009) Water exchange and permeability properties of the skin in three species of amphibious sea snakes (Laticauda spp.). J Exp Biol 212: 1921-1929. Lind AJ, Welsh HH Jr. (1994) Ontogenetic changes in foraging behaviour and habitat use by the Oregon garter snake, Thamnophis atratus hydrophilus. Anim Behav 48: 1261-1273. Liu YL, Lillywhite HB, Tu MC (2010) Sea snakes anticipate tropical cyclone. Mar Biol 157: 2369-2373. Lorioux S, Bonnet X, Brischoux F, Crignis MD (2008) Is melanism adaptive in sea kraits? Amphibia-Reptilia 29: 1-5. Luiselli L (2003) Do snakes exhibit shifts in feeding ecology associated with the presence or absence of potential competitors? A case study from tropical Africa. Can J Zool 81: 228-236. Luiselli L (2006) Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns. Oikos 114: 193-211. McCarthy CJ (1987) Adaptations of sea snakes that eat fish eggs; with a note on the throat musculature of Aipysurus eydouxi (Gray, 1849). J Nat Hist 21: 1119-1128. McCullough DR, Hirth DH, Newhouse SJ (1989) Resource partitioning between sexes in white-tailed deer. J Wildlife Manag 53: 277-283. Mokany A, Shine R (2003) Competition between tadpoles and mosquito larvae. Oecologia 135: 615–620. Mori A (1991) Effects of prey size and type on prey-handling behavior in Elaphe quadrivirgata. J Herpetol 25: 160-166. Mushinsky HR, Hebrard JJ (1977) The use of time by sympatric water snakes. Can J Zool 55: 1545-1550. Ota H, Takahashi H, Kamezaki N (1985) On the specimens of yellow lipped sea krait Laticauda colubrina from the Yaeyama Group, Ryukyu Archipelago. The Snake 17: 156-159. Pianka ER (1973) The structure of lizard communities. Annu Rev Ecol Syst 4: 53-74. Polis GA (1984) Age structure component of niche width and intraspecific resource partitioning: Can age groups function as ecological species? Am Nat 123: 541-564. Rasmussen AR, Elmberg J, Gravlund P, Ineich I (2011) Sea snakes (Serpentes: subfamilies Hydrophiinae and Laticaudinae) in Vietnam: A comprehensive checklist and an updated identification key. Zootaxa 2894: 1–20. Ross TS (1986) Resource partitioning in fish assemblages: A review of field studies. Copeia 1986: 352-388. Sala OE, Golluscio RA, Lauenroth WK, Soriano A (1989) Resource partitioning between shrubs and grasses in the Patagonian steppe. Oecologia 81: 501-505. Schoener TW (1965) The evolution of bill size differences among sympatric congeneric species of birds. Evolution 19: 189-213. Schoener TW (1974a) Resource partitioning in ecological communities. Science 185: 27-39. Schoener TW (1974b) The compression hypothesis and temporal resource partitioning. Proc Natl Acad Sci USA 71: 4169-4172. Shetty S, Shine R (2002a) Sexual divergence in diets and morphology in Fijian sea snakes Laticauda colubrina (Laticaudinae). Austral Ecol 27: 77-84. Shetty S, Shine R (2002b) Activity patterns of yellow-lipped sea kraits (Laticauda colubrina) on a Fijian Island. Copeia 2002: 77–85. Shine R (1991) Why do larger snakes eat larger prey items? Funct Ecol 5: 493-502. Shine R, Shetty S (2001) Moving in two worlds: Aquatic and terrestrial locomotion in sea snakes (Laticauda colubrina, Laticaudidae). J Evolution Biol 14: 338-346. Shine R, Shine T, Shine B (2003) Intraspecific habitat partitioning by the sea snake Emydocephalus annulatus effects of sex, body size, and colour pattern. Biol J Linn Soc 80: 1-10. Shine R, Reed RN, Shetty S, Cogger HG (2002) Relationships between sexual dimorphism and niche partitioning within a clade of sea-snakes (Laticaudinae). Oecologia 133: 45–53. Simon CA, Middendorf GA (1976) Resource partitioning by an iguanid lizard: Temporal and microhabitat aspects. Ecology 57: 1317-1320. Su Y, Fong SC, Tu MC (2005) Food habits of the sea snake, Laticauda semifasciata. Zool Stud 44: 403-408. Tanaka K, Ota H (2002) Natural history of two colubrid snakes, Elaphe quadrivirgata and Rhabdophis tigrinus, on Yakushima Island, southwestern Japan. Amphibia-Reptilia 23: 323-331. Toft A (1985) Resource partitioning in amphibians and reptiles. Copeia 1985: 1-21 Toriba M (1994) Sea snakes of Japan. Pages 206-211 in P. Gopalakrishnakone (Ed.), Sea Snake Toxinology. Singapore University Press, Singapore. Tu MC, Su Y (1991) The aggressiveness of the sea snake Laticauda semifasciata In Taiwan. Bull Inst Zool Acad Sinica 30: 55-58. Tu MC, Fong SC, Lue KY (1990) Reproductive biology of the sea snake, Laticauda semifasciata, in Taiwan. J Herpetol 24: 119-126. Walter GH (1991) What is resource partitioning? J Theor Biol 150: 137-143. Vincent SE, Dang PD, HerrelA, Kley NJ (2006a) Morphological integration and adaptation in the snake feeding system: a comparative phylogenetic study. J Evolution Biol 19: 1545-1554. Vincent SE , Moon BR, Shine R, Herrel A (2006b) The functional meaning of ‘‘prey size’’ in water snakes (Nerodia fasciata, Colubridae). Oecologia 147: 204–211. Voris H, Moffett MW (1981) Size and proportion relationship between the beaked sea snake and its prey. Biotropica 13: 15-19. Voris HK, Voris HH (1983) Feeding strategies in marine snakes: An analysis of evolutionary, morphological, behavioral and ecological relationships. Am Zool 23: 411-425. Willson JD, Winne CT, Pilgrim MA, Romanek CS, Gibbons JW (2010) Seasonal variation in terrestrial resource subsidies influences trophic niche width and overlap in two aquatic snake species: a stable isotope approach. Oikos 119: 1161–1171. Winemiller KO (1989) Ontogenetic diet shifts and resource partitioning among piscivorous fishes in the Venezuelan ilanos. Environ Biol Fish 26: 177-199. Winne CT, Ryan TJ, Leiden Y, Dorcas ME (2001) Evaporative water loss in two natricine snakes, Nerodia fasciata and Seminatrix pygaea. J Herpetol 35: 129-133. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62855 | - |
| dc.description.abstract | 闊帶海蛇屬(Laticauda )為爬蟲綱蝙蝠蛇科下的一屬,此屬海蛇無法在海中完成其生活史,需要上岸進行產卵、蛻皮或消化食物等活動,利用此特性,我們可以於夜晚時刻在岸邊發現牠們的蹤跡。本研究以日本沖繩地區只有黑唇青斑海蛇(Laticauda laticaudata)的久高島和黑、黃唇青斑海蛇(L. colubrina)彼此共域的石垣島的海蛇為對象,觀察不同族群的黑唇青斑海蛇活動高峰與食物組成,以了解與競爭者共域是否會使其利用的資源有所區隔。調查時間在2012年的春、夏、秋3季進行,平均每季調查時間約23天,調查期間同時做行為觀察和捕捉,並以催吐方式獲得胃內含物,依地點不同,每次活動觀察歷時連續6-8小時,天數4-5天,捕捉方面則視季節和天氣而定。
活動季節方面,春季為黃唇青斑海蛇的活動高峰,而夏季至秋季期間可見活動個體數則降低,秋季為三季中最不活耀的季節,而在久高島的黑唇青斑海蛇在春季就開始出沒,夏季也可見其蹤跡,秋天才是活動的高峰;石垣島的黑唇青斑海蛇在春季可見量極少,夏季時最多,秋季又開始減少,此活動高峰季節的差異可能與棲地的利用或競爭有關。在單日活動高峰上,黃唇青斑海蛇在三個季節中的活動高峰都是19:00~20:00之間,而黑唇青斑海蛇的單日活動高峰在不同季節間有顯著差異,但是在兩個地點間則沒有差異,春季大約是19:00~20:00為活動高峰,夏季的活動高峰則延遲到22:00,秋季則是19:00過後整夜至0:00都有活動,顯示黑唇青斑海蛇的單日活動不受到競爭者的存在與否而改變,此行為模式可能為生理限制所調控。在食性方面,黃唇青斑海蛇的胃內含物中有大量的裸胸鯙及少量的康吉鰻,而兩地間的黑唇青斑海蛇皆以裸胸鯙為主食,但久高島的族群同時取食少量的非鰻型目的鰻鯰及魚卵,而石垣島的族群則會取食細長的蛇鰻,兩地利用的資源並非為黃唇青斑海蛇所用,顯示食性和競爭並無直接關係,而頭部形質也支持兩地間的食物有分化的可能,石垣島的黑唇青斑海蛇的頭寬比例較久高島的海蛇來的小,因此更適合吃體型較小的蛇鰻。 總結來說,在無競爭者的久高島,黑唇青斑海蛇的活動季節較延長,食物以裸胸鯙為主並伴隨著其他非鰻型目的魚類;在有競爭者共域的石垣島,黑唇青斑海蛇的活動季節集中於夏季,食物同樣以裸胸鯙為主,但會取食蛇鰻。然而,兩地海蛇的單日活動時間則無顯著差異,顯示其主要受到生理的調控。 | zh_TW |
| dc.description.abstract | Laticauda (Reptilia, Eplapidae) is a group of sea kraits that has to lay eggs, molt or digest food on the land. This research focuses on the feeding activities and diet compositions of L. laticaudata and L. colubrina in Kudakajima(with only L. laticaudata exist) and Ishgakijima(with both L. laticaudata and L. colubrina sympatry), Okinawa, Japan. The aim was to investigate possible diversifications of daily and seasonal activity patterns as well as diet compositions of sympatric populations comparing with those of allopatric populations. This study was conducted in Spring, Summer and Autumn in 2012, and the survey time in each season was about 23 days. In each survey, the occurrences of sea kraits at each site was recorded for 6 to 8 hours and lasted for 4 or 5 days. Sea kraits were caught to study their stomach contents.
Seasonal activity pattern of L. colubrina peaked in spring and declined in summer and autumn, but for L. laticaudata, two populations show difference in seasonal activity patterns. Population of L. laticaudata in Kudakajima started to appear in spring, remained active in summer and peaked in autumn. While in Ishigakijima, L. laticaudata was rarely found in spring but peaked in summer and declined in autumn. This shorter activity season in Ishigakijima population may be due to the separation of habitat uses related to sympatric competition. Furthermore, daily activities of L. colubrina peaked around 19:00~20:00 in 3 seasons, while in L. laticaudata daily activities differed among seasons but there was no difference between populations. In spring, L. laticaudata at both sites had their activities peaked around 19:00~20:00. In summer, the peak of activities occurred at 22:00. In autumn, they were active throughout the night after 19:00. The fixed daily activity patterns may be due to physiology constraint to avoid overheat or water loss. Most of the stomach contents from L. colubrina were Gymnothorax with a small portion of Conger. In L. laticaudata, more than half of the stomach contents of L. laticaudata in both populations were Gymnothorax. But the population in Kudakajima ingested other fishes such as Plotosus lineatus and fish eggs, while the populations in Ishigakijima ingested Ophichthidae. The relative head width showed the possibility of diet divergence. Head width of Ishigakijima population was smaller than that of Kudakajima population, this may enable them to consume smaller food items such as Ophichthidae. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:12:35Z (GMT). No. of bitstreams: 1 ntu-102-R99241219-1.pdf: 988970 bytes, checksum: c618952b5f39e93f9e55337b287fa97b (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract III 目錄 V 表目錄 VI 圖目錄 VII 前言 1 材料方法 8 一、實驗地點 8 二、實驗方法 9 三、統計分析 11 結果 12 一、野外觀察與採集結果 12 二、海蛇頭部形質分析 12 三、海蛇活動時間 13 四、胃內含物組成 14 五、溫度及雨量資料 16 討論 18 一、時間 18 二、食物資源區隔 22 三、資源分配的原因 25 結論 26 參考文獻 27 | |
| dc.language.iso | zh-TW | |
| dc.subject | 黑唇青斑海蛇 | zh_TW |
| dc.subject | 黃唇青斑海蛇 | zh_TW |
| dc.subject | 競爭 | zh_TW |
| dc.subject | 生理限制 | zh_TW |
| dc.subject | 資源分配 | zh_TW |
| dc.subject | physical constraint | en |
| dc.subject | Laticauda laticaudata | en |
| dc.subject | Laticauda colubrina | en |
| dc.subject | resource partitioning | en |
| dc.subject | competition | en |
| dc.title | 資源分配因子為競爭或生理限制:以黑唇青斑海蛇為例 | zh_TW |
| dc.title | Resource partitioning by competitions or physiological constraints: Take Laticauda laticaudata for example | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 杜銘章(Ming-Chung Tu) | |
| dc.contributor.oralexamcommittee | 關永才(Yeong-Choy Kam),林思民(Si-Min Lin) | |
| dc.subject.keyword | 黑唇青斑海蛇,黃唇青斑海蛇,競爭,生理限制,資源分配, | zh_TW |
| dc.subject.keyword | Laticauda laticaudata,Laticauda colubrina,competition,physical constraint,resource partitioning, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-18 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 965.79 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
