Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62823
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊雅倩(Ya-Chien Yang)
dc.contributor.authorJing-Xing Leeen
dc.contributor.author李景行zh_TW
dc.date.accessioned2021-06-16T16:11:32Z-
dc.date.available2018-03-04
dc.date.copyright2013-03-04
dc.date.issued2013
dc.date.submitted2013-02-18
dc.identifier.citation1. Jass, J.R. and S.M. Stewart, Evolution of hereditary non-polyposis colorectal cancer. Gut, 1992. 33(6): p. 783-6.
2. Fearon, E.R. and B. Vogelstein, A genetic model for colorectal tumorigenesis. Cell, 1990. 61(5): p. 759-67.
3. Jass, J.R., J. Young, and B.A. Leggett, Evolution of colorectal cancer: change of pace and change of direction. J Gastroenterol Hepatol, 2002. 17(1): p. 17-26.
4. Jass, J.R., et al., Emerging concepts in colorectal neoplasia. Gastroenterology, 2002. 123(3): p. 862-76.
5. Haydon, A.M. and J.R. Jass, Emerging pathways in colorectal-cancer development. Lancet Oncol, 2002. 3(2): p. 83-8.
6. Postma, C., et al., Chromosomal instability in flat adenomas and carcinomas of the colon. J Pathol, 2005. 205(4): p. 514-21.
7. Choi, S.W., et al., Genetic classification of colorectal cancer based on chromosomal loss and microsatellite instability predicts survival. Clin Cancer Res, 2002. 8(7): p. 2311-22.
8. Liu, B., et al., Genetic instability occurs in the majority of young patients with colorectal cancer. Nat Med, 1995. 1(4): p. 348-52.
9. Grady, W.M. and J.M. Carethers, Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology, 2008. 135(4): p. 1079-99.
10. Manavis, J., et al., The immunohistochemical detection of mismatch repair gene proteins (MLH1, MSH2, MSH6, and PMS2): practical aspects in antigen retrieval and biotin blocking protocols. Appl Immunohistochem Mol Morphol, 2003. 11(1): p. 73-7.
11. Nakagawa, H., et al., Mismatch repair gene PMS2: disease-causing germline mutations are frequent in patients whose tumors stain negative for PMS2 protein, but paralogous genes obscure mutation detection and interpretation. Cancer Res, 2004. 64(14): p. 4721-7.
12. Kolodner, R.D., et al., Germ-line msh6 mutations in colorectal cancer families. Cancer Res, 1999. 59(20): p. 5068-74.
13. Savas, S. and H.B. Younghusband, dbCPCO: a database of genetic markers tested for their predictive and prognostic value in colorectal cancer. Hum Mutat, 2010. 31(8): p. 901-7.
14. Walther, A., et al., Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer, 2009. 9(7): p. 489-99.
15. Dahlin, A.M., et al., The role of the CpG island methylator phenotype in colorectal cancer prognosis depends on microsatellite instability screening status. Clin Cancer Res, 2010. 16(6): p. 1845-55.
16. Zlobec, I., et al., The impact of CpG island methylator phenotype and microsatellite instability on tumour budding in colorectal cancer. Histopathology, 2012. 61(5): p. 777-87.
17. Toyota, M., et al., CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A, 1999. 96(15): p. 8681-6.
18. Goel, A., et al., The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology, 2007. 132(1): p. 127-38.
19. Samowitz, W.S., et al., Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Res, 2005. 65(14): p. 6063-9.
20. Knudson, A.G., Jr., Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A, 1971. 68(4): p. 820-3.
21. Fodde, R. and R. Smits, Cancer biology. A matter of dosage. Science, 2002. 298(5594): p. 761-3.
22. Payne, S.R. and C.J. Kemp, Tumor suppressor genetics. Carcinogenesis, 2005. 26(12): p. 2031-45.
23. Kinzler, K.W. and B. Vogelstein, Cancer-susceptibility genes. Gatekeepers and caretakers. Nature, 1997. 386(6627): p. 761, 763.
24. Oliveira, A.M., J.S. Ross, and J.A. Fletcher, Tumor suppressor genes in breast cancer: the gatekeepers and the caretakers. Am J Clin Pathol, 2005. 124 Suppl: p. S16-28.
25. van Heemst, D., P.M. den Reijer, and R.G. Westendorp, Ageing or cancer: a review on the role of caretakers and gatekeepers. Eur J Cancer, 2007. 43(15): p. 2144-52.
26. Miklos, G.L. and B. John, Heterochromatin and satellite DNA in man: properties and prospects. Am J Hum Genet, 1979. 31(3): p. 264-80.
27. Taylor, G., DNA fingerprinting. Nature, 1989. 340(6236): p. 672.
28. Rogers, J., et al., A genetic linkage map of the baboon (Papio hamadryas) genome based on human microsatellite polymorphisms. Genomics, 2000. 67(3): p. 237-47.
29. Weissenbach, J., Microsatellite polymorphisms and the genetic linkage map of the human genome. Curr Opin Genet Dev, 1993. 3(3): p. 414-7.
30. Strand, M., et al., Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature, 1993. 365(6443): p. 274-6.
31. Queller, D.C., J.E. Strassmann, and C.R. Hughes, Microsatellites and kinship. Trends Ecol Evol, 1993. 8(8): p. 285-8.
32. Kovatich, A., et al., Molecular alterations to human chromosome 3p loci in neuroendocrine lung tumors. Cancer, 1998. 83(6): p. 1109-17.
33. Losi, L., et al., Molecular genetic alterations and clinical features in early-onset colorectal carcinomas and their role for the recognition of hereditary cancer syndromes. Am J Gastroenterol, 2005. 100(10): p. 2280-7.
34. Mullis, K.B. and F.A. Faloona, Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol, 1987. 155: p. 335-50.
35. Saiki, R.K., et al., Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature, 1986. 324(6093): p. 163-6.
36. Litt, M. and J.A. Luty, A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet, 1989. 44(3): p. 397-401.
37. De Angelis, P.M., et al., Prognostic significance of recurrent chromosomal aberrations detected by comparative genomic hybridization in sporadic colorectal cancer. Int J Colorectal Dis, 2001. 16(1): p. 38-45.
38. Wildrick, D.M., et al., A study of chromosome 6 allele loss in human colorectal carcinomas. Anticancer Res, 1992. 12(5): p. 1717-9.
39. Bowman, B.M., D.M. Wildrick, and S.R. Alfaro, Chromosome 18 allele loss at the D18S6 locus in human colorectal carcinomas. Biochem Biophys Res Commun, 1988. 155(1): p. 463-9.
40. Solomon, E., et al., Chromosome 5 allele loss in human colorectal carcinomas. Nature, 1987. 328(6131): p. 616-9.
41. Wildrick, D.M. and B.M. Boman, Chromosome 5 allele loss at the glucocorticoid receptor locus in human colorectal carcinomas. Biochem Biophys Res Commun, 1988. 150(2): p. 591-8.
42. Nakao, K., et al., High-resolution analysis of DNA copy number alterations in colorectal cancer by array-based comparative genomic hybridization. Carcinogenesis, 2004. 25(8): p. 1345-57.
43. Paredes-Zaglul, A., et al., Analysis of colorectal cancer by comparative genomic hybridization: evidence for induction of the metastatic phenotype by loss of tumor suppressor genes. Clin Cancer Res, 1998. 4(4): p. 879-86.
44. Helou, K., et al., Comparative genome hybridization reveals specific genomic imbalances during the genesis from benign through borderline to malignant ovarian tumors. Cancer Genet Cytogenet, 2006. 170(1): p. 1-8.
45. Ried, T., et al., Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer, 1996. 15(4): p. 234-45.
46. Perttu, M.C., et al., Altered levels of Smad2 and Smad4 are associated with human prostate carcinogenesis. Prostate Cancer Prostatic Dis, 2006. 9(2): p. 185-9.
47. Bronner, C.E., et al., Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature, 1994. 368(6468): p. 258-61.
48. Tsai, M.H., et al., Mapping of genetic deletions on chromosome 3 in colorectal cancer: loss of 3p25-pter is associated with distant metastasis and poor survival. Ann Surg Oncol, 2011. 18(9): p. 2662-70.
49. Ranscht, B., D.J. Moss, and C. Thomas, A neuronal surface glycoprotein associated with the cytoskeleton. J Cell Biol, 1984. 99(5): p. 1803-13.
50. Ranscht, B., Sequence of contactin, a 130-kD glycoprotein concentrated in areas of interneuronal contact, defines a new member of the immunoglobulin supergene family in the nervous system. J Cell Biol, 1988. 107(4): p. 1561-73.
51. Gennarini, G., et al., The mouse neuronal cell surface protein F3: a phosphatidylinositol-anchored member of the immunoglobulin superfamily related to chicken contactin. J Cell Biol, 1989. 109(2): p. 775-88.
52. Berglund, E.O. and B. Ranscht, Molecular cloning and in situ localization of the human contactin gene (CNTN1) on chromosome 12q11-q12. Genomics, 1994. 21(3): p. 571-82.
53. Shimoda, Y. and K. Watanabe, Contactins: emerging key roles in the development and function of the nervous system. Cell Adh Migr, 2009. 3(1): p. 64-70.
54. Bouyain, S. and D.J. Watkins, The protein tyrosine phosphatases PTPRZ and PTPRG bind to distinct members of the contactin family of neural recognition molecules. Proc Natl Acad Sci U S A, 2010. 107(6): p. 2443-8.
55. Yamagata, M. and J.R. Sanes, Expanding the Ig superfamily code for laminar specificity in retina: expression and role of contactins. J Neurosci, 2012. 32(41): p. 14402-14.
56. Zuko, A., et al., Contactins: structural aspects in relation to developmental functions in brain disease. Adv Protein Chem Struct Biol, 2011. 84: p. 143-80.
57. Yoshihara, Y., et al., Overlapping and differential expression of BIG-2, BIG-1, TAG-1, and F3: four members of an axon-associated cell adhesion molecule subgroup of the immunoglobulin superfamily. J Neurobiol, 1995. 28(1): p. 51-69.
58. Peles, E., et al., Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions. EMBO J, 1997. 16(5): p. 978-88.
59. Hansford, L.M., et al., Cloning and characterization of the human neural cell adhesion molecule, CNTN4 (alias BIG-2). Cytogenet Genome Res, 2003. 101(1): p. 17-23.
60. Dijkhuizen, T., et al., FISH and array-CGH analysis of a complex chromosome 3 aberration suggests that loss of CNTN4 and CRBN contributes to mental retardation in 3pter deletions. Am J Med Genet A, 2006. 140(22): p. 2482-7.
61. Fernandez, T., et al., Disruption of Contactin 4 (CNTN4) results in developmental delay and other features of 3p deletion syndrome. Am J Hum Genet, 2008. 82(6): p. 1385.
62. Tanaka, E., et al., The CNTN4 c.4256C>T mutation is rare in Japanese with inherited spinocerebellar ataxia. J Neurol Sci, 2008. 266(1-2): p. 180-1.
63. Cottrell, C.E., et al., Contactin 4 as an autism susceptibility locus. Autism Res, 2011. 4(3): p. 189-99.
64. Nikpay, M., et al., Genetic mapping of habitual substance use, obesity-related traits, responses to mental and physical stress, and heart rate and blood pressure measurements reveals shared genes that are overrepresented in the neural synapse. Hypertens Res, 2012.
65. Ashktorab, H., et al., Distinct genetic alterations in colorectal cancer. PLoS One, 2010. 5(1): p. e8879.
66. Tavernier, J., et al., A human high affinity interleukin-5 receptor (IL5R) is composed of an IL5-specific alpha chain and a beta chain shared with the receptor for GM-CSF. Cell, 1991. 66(6): p. 1175-84.
67. Simson, L., et al., Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor immune surveillance. J Immunol, 2007. 178(7): p. 4222-9.
68. Takatsu, K., Interleukin-5 and IL-5 receptor in health and diseases. Proc Jpn Acad Ser B Phys Biol Sci, 2011. 87(8): p. 463-85.
69. Wilson, T.M., et al., IL-5 receptor alpha levels in patients with marked eosinophilia or mastocytosis. J Allergy Clin Immunol, 2011. 128(5): p. 1086-92 e1-3.
70. Su, J.L., et al., Knockdown of contactin-1 expression suppresses invasion and metastasis of lung adenocarcinoma. Cancer Res, 2006. 66(5): p. 2553-61.
71. Latif, F., et al., A MspI polymorphism and linkage mapping of the human protein-tyrosine phosphatase G (PTPRG) gene. Hum Mol Genet, 1993. 2(1): p. 91.
72. van Roon, E.H., et al., Tumour-specific methylation of PTPRG intron 1 locus in sporadic and Lynch syndrome colorectal cancer. Eur J Hum Genet, 2011. 19(3): p. 307-12.
73. van Doorn, R., et al., Epigenetic profiling of cutaneous T-cell lymphoma: promoter hypermethylation of multiple tumor suppressor genes including BCL7a, PTPRG, and p73. J Clin Oncol, 2005. 23(17): p. 3886-96.
74. Shu, S.T., et al., Function and regulatory mechanisms of the candidate tumor suppressor receptor protein tyrosine phosphatase gamma (PTPRG) in breast cancer cells. Anticancer Res, 2010. 30(6): p. 1937-46.
75. Nikolaienko, R.M., B. Agyekum, and S. Bouyain, Receptor protein tyrosine phosphatases and cancer: new insights from structural biology. Cell Adh Migr, 2012. 6(4): p. 356-64.
76. Felsenfeld, D.P., et al., TAG-1 can mediate homophilic binding, but neurite outgrowth on TAG-1 requires an L1-like molecule and beta 1 integrins. Neuron, 1994. 12(3): p. 675-90.
77. Guo, F.Q., et al., The Arabidopsis dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) is activated and functions in nascent organ development during vegetative and reproductive growth. Plant Cell, 2001. 13(8): p. 1761-77.
78. Dong, L., et al., Single-chain variable fragment antibodies against the neural adhesion molecule CHL1 (close homolog of L1) enhance neurite outgrowth. J Neurosci Res, 2002. 69(4): p. 437-47.
79. Pratte, M., et al., Mice deficient for the close homologue of the neural adhesion cell L1 (CHL1) display alterations in emotional reactivity and motor coordination. Behav Brain Res, 2003. 147(1-2): p. 31-9.
80. Ho, C.H., et al., CHL1 functions as a nitrate sensor in plants. Cell, 2009. 138(6): p. 1184-94.
81. Huang, X., et al., CHL1 negatively regulates the proliferation and neuronal differentiation of neural progenitor cells through activation of the ERK1/2 MAPK pathway. Mol Cell Neurosci, 2011. 46(1): p. 296-307.
82. Senchenko, V.N., et al., Differential expression of CHL1 gene during development of major human cancers. PLoS One, 2011. 6(3): p. e15612.
83. Sasaki, H., et al., Orthotopic implantation mouse model and cDNA microarray analysis indicates several genes potentially involved in lymph node metastasis of colorectal cancer. Cancer Sci, 2008. 99(4): p. 711-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62823-
dc.description.abstract於實驗室先前研究,利用分布在第三號染色體的23個微衛星標記,分析112對大腸直腸癌檢體,定義3p25.1-p26.3為共同刪除區域I (common deletion region I, CDRI)。並發現CDRI發生刪除與,其癌症患者的年齡顯著較年輕,且與腫瘤發生遠端器官轉移和病人預後較差有顯著相關。因此,本論文研究目的乃於CDRI尋找和大腸直腸癌相關的抑癌基因。首先在CDRI選出6個異合子頻率較高的微衛星標記,其平均間距約2 Mb,分析179對大腸直腸癌檢體之微衛星標記的失異合性。結果顯示D3S2397有最高的刪除頻率,為27.8%。針對至少有一個微衛星標記發生失異合性的56個案例進行統計分析,則D3S2397刪除頻率高達83.3%。結合CDRI之D3S1297,定義出最小刪除區域(minimal deletion region, MDR)為D3S1297-D3S2397之區域(3p25.3-p26.1)。分析6個微衛星標記之失異合性的臨床相關性,其單變項分析結果為:(1) D3S2387之失異合性較發生於男性(p= 0.0462)。 (2) D3S2397之失異合性和病人手術年齡有顯著相關(p= 0.0462),並與遠端器官轉移(p= 0.0069)和Dukes氏分期(代表癌症進展)(p= 0.0176)有相關。 (3) D3S2403之失異合性和年齡有顯著相關(p= 0.0473)。 (4) MDR發生刪除和遠端器官轉移(p= 0.0033)以及Dukes氏分期(p= 0.0139)顯著相關。存活分析結果:病患較差之預後分別與D3S2397之失異合性(p= 0.0397) 和MDR發生刪除(p= 0.0333)顯著相關。於是進一步在MDR尋找可能的抑癌基因,針對9個已知功能的基因,先用RT-PCR於12個大腸癌細胞株和10對腫瘤檢體和正常黏膜組織分析其表現量,而於腫瘤表現量下降的基因包括:CNTN4、IL5RA和LRRN1;接續以即時反轉錄聚合酶連鎖反應,針對52對大腸直腸癌檢體進行定量分析,結果顯示:CNTN4和IL5RA 分別於42.3% (22/52)和44.2% (23/52)的腫瘤案例表現量下降;而52例大腸直腸癌腫瘤,相較於其正常黏膜組織,CNTN4和IL5RA的表現量顯著下降 (p< 0.0001和p= 0.0001),為CDRI的候選抑癌基因(candidate tumor suppressor gene)。綜合本論結果並結合文獻研究,決定優先建構CNTN4的表現載體,以利將來對其抑癌功能的鑑定。zh_TW
dc.description.abstractIn previous studies, we carried out deletion mapping of chromosome 3 in 112 cases of sporadic colorectal cancer (CRC) via loss of heterozygosity (LOH) study with 23 microsatellite markers spanning from 3pter to 3qter, and thus defined the common deletion region I (CDRI) from 3p25.1-p26.3. Furthermore, genetic loss of CDRI was significantly associated with younger age at onset, tumor metastasis, and poorer overall survival. The specific aim of the study is to explore candidate tumor suppressor genes (TSGs) associated with CRC in CDRI. We conducted LOH analysis in 179 sporadic CRC with 6 new microsatellite markers. The highest LOH frequency occurred at D3S2397 locus, which was involved in 27.8% of 179 informative cases and 83.3% of 56 tumors with LOH at one or more microsatellite loci. Combined with previous study, a minimal deletion region (MDR) was defined between D3S1297 and D3S2397 at 3p25.3-p26.1. In addition, the clinical relevance of these genetic losses was assessed via univariate analysis. The results showed that, (1) LOH frequency of D3S2387 was higher in male patients with CRC (p= 0.0462); (2) genetic loss of D3S2397 was significantly associated with younger age at onset (p= 0.0462), distant metastasis (p= 0.0069) and Dukes’ stage (p= 0.0176); (3) genetic loss of D3S2403 locus was significantly associated with younger age at onset (p= 0.0473); (4) genetic loss of MDR was significantly associated with distant metastasis (p= 0.0033) and Dukes’ stage (p= 0.0139). Furthermore, poor prognosis of patients with CRC was significantly associated with genetic loss of D3S2397 or MDR (p= 0.0397 and 0.033, respectively). Accordingly, we proposed that there might be CRC-associated TSGs in the MDR defined. We first screened gene expression of 9 genes with known function in MDR with 12 CRC cell lines and 10 pairs of CRC primary tissues by RT-PCR. The gene expression of CNTN4, IL5RA and LRRN1 were down-regulated in certain CRC cells and tumors. We further validated the down-regulation of 3 candidate genes in 52 pairs of CRC primary tissues by quantitative RT-PCR, and then revealed that CNTN4 and IL5RA RNA transcripts were obviously decreased in 42.3% (22/52) and 44.2% (23/52) of colorectal carcinomas as compared with their matched normal mucosa (p< 0.0001 and p= 0.0001, respectively) Combined with literature review, CNTN4 expression plasmid was constructed for further study to identify tumor suppressor functions of CNTN4 in colorectal tumorigenesis.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:11:32Z (GMT). No. of bitstreams: 1
ntu-102-R99424033-1.pdf: 5333435 bytes, checksum: ca9783030a9085822a7d492476dc27f2 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
致謝 i
摘要 v
英文摘要 vi
縮寫對照表 viii
圖目錄 xiii
表目錄 xv
第一章 緒論 1
第一節 研究背景 1
1. 大腸直腸癌概論 1
2. 大腸直腸癌分期 2
2.1 TNM分期 2
2.2 AJCC/ UICC分期 3
2.3 Dukes氏分期 4
2.4 各分期法之對照表 4
3. 大腸直腸癌之致癌機轉 4
3.1 基因遺傳變異 4
3.2 表觀遺傳變異 5
3.3 抑癌基因 6
第二節 微衛星標記概論 6
1. 微衛星標記之定義 6
2. 微衛星標記之多形性與應用 7
3. 微衛星標記分析 7
第三節 先前相關文獻回顧 8
1. 大腸直腸癌之染色體刪除研究 8
2. 癌症於第三號染色體之相關研究 8
3. 實驗室先前研究 9
4. Contactin家族研究史與CNTN4概論 9
第四節 研究動機與目的 10

第二章 材料與方法 12
第一節 微衛星標記分析 12
1. 正常人之周邊血液單核細胞DNA 12
2. 大腸直腸癌組織DNA 12
3. 聚合酶連鎖反應 14
4. 微衛星標記之螢光聚合酶連鎖反應 14
5. ABI Prism 3100 Genetic Analyzer之電泳分析 15
6. 失異合性之定義 15
7. 微衛星不穩定之定義 16
第二節 RNA表現量分析
1. 大腸直腸癌細胞株RNA 16
2. 大腸直腸癌組織檢體RNA 17
3. 反轉錄合成cDNA 17
4. 半定量聚合酶連鎖反應 18
5. 即時反轉錄聚合酶連鎖反應 18
第三節 共同刪除區域與最小刪除區域之定義 19
第四節 微衛星刪除與臨床資料之統計分析 19
第五節 即時反轉錄聚合酶連鎖反應結果與臨床資料之統計分析 20
第六節 選殖基因CNTN4 20
1. 反轉錄合成cDNA 20
2. 聚合酶連鎖反應 21
3. 純化PCR產物 22
4. 選殖PCR產物 22
5. 定序分析 23
第七節 CNTN4與細胞表現 23

第三章 研究結果 24
第一節 臨床病人資料 24
第二節 微衛星標記之瓊膠電泳分析結果 24
第三節 微衛星標記之分析結果 25
1. 6個微衛星標記之異合子頻率 25
2. 6個微衛星標記之失異合性頻率 25
3. 6個微衛星標記之微衛星不穩定頻率 25
4. 定義最小刪除區域 25
第四節 單變項統計分析 26
1. 微衛星標記失異合性與臨床資料之單變項統計分析 26
2. 最小刪除區域刪除與臨床資料之單變項統計分析 26
第五節 存活分析 26
1. 微衛星標記失異合性與臨床資料之存活分析 26
2. 最小刪除區域刪除與臨床資料之存活分析 27
第六節 多變項分析 27
1. 微衛星標記失異合性與臨床資料之多變項統計分析 27
2. 最小刪除區域刪除與臨床資料之多變項統計分析 27
第七節 基因在大腸直腸癌細胞株與腫瘤組織之表現量 27
1. 半定量反轉錄聚合酶連鎖反應結果 27
2. 即時反轉錄聚合酶連鎖反應結果 28
3. 即時反轉錄聚合酶連鎖反應資料之統計分析 29
第八節 選殖基因CNTN4 29
第九節 CNTN4與細胞表現 30

第四章 討論 31
圖 39
表 71
參考文獻 93
附錄 101
附錄一 附圖 101
附錄二 附表 111
附錄三 Plasmid DNA Data Sheet 115
附錄四 Bacterial Data Sheet 122
附錄五 實驗步驟 123
dc.language.isozh-TW
dc.title尋找染色體3p25.1-p26.3之大腸直腸癌相關的抑癌基因zh_TW
dc.titleSearch for colorectal cancer-associated tumor suppressor genes at chromosome 3p25.1-p26.3en
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee林淑萍,林亮音,蔡明宏
dc.subject.keyword大腸直腸癌,染色體3p,失異合性,抑癌基因,CNTN4,zh_TW
dc.subject.keywordcolorectal cancer,chromosome 3p,loss of heterozygosity,tumor suppressor gene,CNTN4,en
dc.relation.page128
dc.rights.note有償授權
dc.date.accepted2013-02-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
5.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved