請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62820完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光(Chih-Kung LEE) | |
| dc.contributor.author | Yu-Yin Chen | en |
| dc.contributor.author | 陳昱因 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:11:26Z | - |
| dc.date.available | 2018-03-15 | |
| dc.date.copyright | 2013-03-15 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-02-19 | |
| dc.identifier.citation | 1. C.Watkins, et al., 'Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors,' in ICT: 2005 24th International Conference on Thermoelectrics, New York, IEEE, 2005, pp. 250-252.
2. H.A. Sodano, et al., 'Recharging batteries using energy harvested from thermal gradients,' Journal of Intelligent Material Systems and Structures, vol. 18, pp. 3-10, Jan 2007. 3. W. Kuhlbrandt and D. N. Wang, 'Three-dimensional structure of plant light-harvesting complex determined by electron crystallography,' Nature, vol. 350, pp. 130-134, Mar 1991. 4. B. Oregan and M. Gratzel, 'A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,' Nature, vol. 353, pp. 737-740, Oct 1991. 5. S. Priya, et al, 'Piezoelectric Windmill: A Novel Solution to Remote Sensing,' Japanese Journal of Applied Physics, vol. 44, pp. L104-L107, 2005. 6. T. Starner, 'Human-powered wearable computing,' IBM Systems Journal, vol. 35, pp. 618-629, 1996. 7. L. Mateu and F. Moll, 'Optimum Piezoelectric Bending Beam Structures for Energy Harvesting using Shoe Inserts,' Journal of Intelligent Material Systems and Structures, vol. 16, pp. 835-845, Oct 2005. 8. P. D. Mitcheson, et al., 'Energy harvesting from human and machine motion for wireless electronic devices,' in Proceedings of the IEEE, vol. 96, pp. 1457-1486, Sep 2008. 9. S. Pogacian, A. Bot, and D. Zotoiu, 'Acoustic Noise And Pneumatic Wave Vortices Energy Harvesting On Highways,' in Processes in Isotopes and Molecules, Melville, Amer Inst Physics, pp. 77-80, 2012. 10. G. Sebald, D. Guyomar, and A. Agbossou, 'On thermoelectric and pyroelectric energy harvesting,' Smart Materials & Structures, vol. 18, no. 12, 2009. 11. A. Chandrakasan, et al., 'Trends in low power digital signal processing,' in Proceedings of the 1998 IEEE International Symposium on, vol.4, pp. 604-607, 1998. 12. W.R. Davis, et al., 'A design environment for high-throughput low-power dedicated signal processing systems,' IEEE J. Solid-State Circuits, vol. 37, pp. 420-431, Mar 2002. 13. G. W. Taylor, et al., 'The Energy Harvesting Eel: a small subsurface ocean/river power generator,' IEEE J. Ocean. Eng, vol. 26, pp. 539-547, Apr 2001. 14. M. Gratzel, 'Solar energy conversion by dye-sensitized photovoltaic cells,' Inorganic Chemistry, vol. 44, pp. 6841-6851, Oct 2005. 15. N. M. White, P. Glynne-Jones, and S. P. Beeby, 'A novel thick-film piezoelectric micro-generator,' Smart Materials & Structures, vol. 10, pp. 850-852, Aug 2001. 16. H.-S. Yoon, G. Washington, and A. Danak, 'Modeling, Optimization, and Design of Efficient Initially Curved Piezoceramic Unimorphs for Energy Harvesting Applications,' Journal of Intelligent Material Systems and Structures, vol. 16, pp. 877-888, Oct 2005. 17. K. Mossi, et al., 'Harvesting Energy Using a Thin Unimorph Prestressed Bender: Geometrical Effects,' Journal of Intelligent Material Systems and Structures, vol. 16, pp. 249-261, Mar 2005. 18. M. Duffy, D. Carroll, and ieee, 'Electromagnetic generators for power harvesting,' in Pesc 04: 2004 Ieee 35th Annual Power Electronics Specialists Conference, vols 1-6, New York, pp. 2075-2081, 2004. 19. P. Glynne-Jones, et al., 'An electromagnetic, vibration-powered generator for intelligent sensor systems,' Sensors and Actuators a-Physical, vol. 110, pp. 344-349, Feb 2004. 20. E. Sardini and M. Serpelloni, 'An efficient electromagnetic power harvesting device for low-frequency applications,' Sensors and Actuators a-Physical, vol. 172, pp. 475-482, Dec 2011. 21. G. K. Ottman, et al., 'Adaptive piezoelectric energy harvesting circuit for wireless remote power supply,' Power Electronics, IEEE Transactions on, vol. 17, pp. 669-676, 2002. 22. S. Roundy, and P. K. Wright, 'A piezoelectric vibration based generator for wireless electronics,' Smart Materials & Structures, vol. 13, pp. 1131-1142, Oct 2004. 23. D. Guyomar, et al., 'Synchronized switch harvesting applied to selfpowered smart systems: Piezoactive microgenerators for autonomous wireless transmitters,' Sensors and Actuators a-Physical, vol. 138, pp. 151-160, 2007. 24. K. Yuse, et al, 'Self-powered wireless health monitoring supplied by synchronized switch harvesting (SSH) method,' Journal of Intelligent Material Systems and Structures, vol. 19, pp. 387-394, 2008. 25. M. Ferrari, et al., 'An autonomous battery-less sensor module powered by piezoelectric energy harvesting with RF transmission of multiple measurement signals,' Smart Materials & Structures, vol. 18, Aug 2009. 26. S. Roundy, P. K. Wright, and J. Rabaey, 'A study of low level vibrations as a power source for wireless sensor nodes,' Computer Communications, vol. 26, pp. 1131-1144, 2003. 27. J. Paradiso and M. Feldmeier, 'A Compact, Wireless, Self-Powered Pushbutton Controller Ubicomp 2001: Ubiquitous Computing.' Springer Berlin/Heidelberg, 2001, pp. 299-304. 28. L. Tang, Y. Yang, and C. K. Soh, 'Toward Broadband Vibration-based Energy Harvesting,' Journal of Intelligent Material Systems and Structures, vol. 21, pp. 1867-1897, December 1, 2010. 29. A. Khaligh, Z. Peng, and Z. Cong, 'Kinetic Energy Harvesting Using Piezoelectric and Electromagnetic Technologies; State of the Art,' Industrial Electronics, IEEE Transactions on, vol. 57, pp. 850-860, 2010. 30. M. Umeda, K. Nakamura, and S. Ueha, 'Energy storage characteristics of a piezo-generator using impact induced vibration,' Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 36, pp. 3146-3151, 1997. 31. G. K. Ottman, H. F. Hofmann, and G. A. Lesieutre, 'Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode,' IEEE Trans. Power Electron, vol. 18, pp. 696-703, 2003. 32. H. A. Sodano, et al., 'A review of power harvesting from vibration using piezoelectric materials' vol. 36. Thousands Oaks, CA, ETATS-UNIS: Sage, 2004. 33. S. Roundy, 'On the effectiveness of vibration-based energy harvesting,' Journal of Intelligent Material Systems and Structures, vol. 16, pp. 809-823, Oct 2005. 34. E. Lefeuvre, et al., 'Piezoelectric energy harvesting device optimization by synchronous electric charge extraction,' Journal of Intelligent Material Systems and Structures, vol. 16, pp. 865-876, Oct 2005. 35. D. Guyomar, et al., 'Toward energy harvesting using active materials and conversion improvement by nonlinear processing,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, pp. 584-595, 2005. 36. E. Lefeuvre, et al., 'A comparison between several approaches of piezoelectric energy harvesting,' Journal De Physique Iv, vol. 128, pp. 177-186, 2005. 37. M. Lallart, et al, 'Double synchronized switch harvesting (DSSH): A new energy harvesting scheme for efficient energy extraction,' IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, pp. 2119-2130, 2008. 38. Y. Y. Chen, et al., 'A self-powered switching circuit for piezoelectric energy harvesting with velocity control,' European Physical Journal-Applied Physics, vol. 57, Feb 2012. 39. T. H. Ng and W. H. Liao, 'Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor,' Journal of Intelligent Material Systems and Structures, vol. 16, pp. 785-797, Oct 2005. 40. S. Kim, W. W. Clark, and Q.-M. Wang, 'Piezoelectric Energy Harvesting with a Clamped Circular Plate: Analysis,' Journal of Intelligent Material Systems and Structures, vol. 16, pp. 847-854, Oct 2005. 41. S. Kim, W. W. Clark, and Q.-M. Wang, 'Piezoelectric Energy Harvesting with a Clamped Circular Plate: Experimental Study,' Journal of Intelligent Material Systems and Structures, vol. 16, pp. 855-863, Oct 2005. 42. M. Ericka, et al., 'Energy harvesting from vibration using a piezoelectric membrane,' Journal De Physique Iv, vol. 128, pp. 187-193, Sep 2005. 43. M. Goldfarb and L. D. Jones, 'On the efficiency of electric power generation with piezoelectric ceramic,' Journal of Dynamic Systems Measurement and Control-Transactions of the Asme, vol. 121, pp. 566-571, Sep 1999. 44. M. Umeda, K. Nakamura, and S. Ueha, 'Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator,' Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 35, pp. 3267-3273, 1996. 45. C. D. Richards, et al., 'Efficiency of energy conversion for devices containing a piezoelectric component,' Journal of Micromechanics and Microengineering, vol. 14, pp. 717-721, May 2004. 46. G. A. Lesieutre, G. K. Ottman, and H. F. Hofmann, 'Damping as a result of piezoelectric energy harvesting,' Journal of Sound and Vibration, vol. 269, pp. 991-1001, 2004. 47. E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, 'High performance piezoelectric vibration energy reclamation,' Smart Structures and Materials 2004: Smart Structures and Integrated Systems, vol. 5390, pp. 379-387, 2004. 48. A. Badel, et al., 'Piezoelectric energy harvesting using a synchronized switch technique,' Journal of Intelligent Material Systems and Structures, vol. 17, pp. 831-839, 2006. 49. E. Minazara, et al., 'Piezoelectric diaphragm for vibration energy harvesting,' Ultrasonics, vol. 44, pp. E699-E703, Dec 2006. 50. Y. W. Yang and L. H. Tang, 'Equivalent Circuit Modeling of Piezoelectric Energy Harvesters,' Journal of Intelligent Material Systems and Structures, vol. 20, pp. 2223-2235, Dec 2009. 51. Y. C. Shu, I. C. Lien, and W. J. Wu, 'An improved analysis of the SSHI interface in piezoelectric energy harvesting,' Smart Materials & Structures, vol. 16, pp. 2253-2264, Dec 2007. 52. N. S. Shenck and J. A. Paradiso, 'Energy scavenging with shoe-mounted piezoelectrics,' Micro, IEEE, vol. 21, pp. 30-42, 2001. 53. N. G. Elvin, A. A. Elvin, and M. Spector, 'A self-powered mechanical strain energy sensor,' Smart Materials and Structures, vol. 10, p. 293, 2001. 54. N. Elvin, A. Elvin, and D. H. Choi, 'A self-powered damage detection sensor,' Journal of Strain Analysis for Engineering Design, vol. 38, pp. 115-124, Mar 2003. 55. M. Lallart and D. Guyomar, 'An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output,' Smart Materials & Structures, vol. 17, 2008. 56. L. Junrui, and L. Wei-Hsin, 'Improved Design and Analysis of Self-Powered Synchronized Switch Interfacing circuit for Piezoelectric Energy Harvesting Systems,' IEEE Trans. Ind.l Electron, on, vol. 59, pp. 1950-1960, 2012. 57. E. S. Leland, and P. K. Wright, 'Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload,' Smart Materials & Structures, vol. 15, pp. 1413-1420, Oct 2006. 58. D. Zhu, et al., 'Closed loop frequency tuning of a vibration-based micro-generator,' in PowerMEMS 2008+ microEMS2008, 2008. 59. J.-T. Lin, and et al., 'The magnetic coupling of a piezoelectric cantilever for enhanced energy harvesting efficiency,' Smart Materials and Structures, vol. 19, p. 045012, Apr 2010. 60. A. Erturk, J. Hoffmann, and D. J. Inman, 'A piezomagnetoelastic structure for broadband vibration energy harvesting,' Applied Physics Letters, vol. 94, Jun 2009. 61. B. Ando, et al., 'Nonlinear mechanism in MEMS devices for energy harvesting applications,' Journal of Micromechanics and Microengineering, vol. 20, Dec 2010. 62. B. P. Mann, and N. D. Sims, 'Energy harvesting from the nonlinear oscillations of magnetic levitation,' Journal of Sound and Vibration, vol. 319, pp. 515-530, 2009. 63. J. Kymissis, et al., 'Parasitic power harvesting in shoes,' in Wearable Computers, 1998. Digest of Papers. Second International Symposium on, pp. 132-139, 1998. 64. N. W. Hagood, and A. von Flotow, 'Damping of structural vibrations with piezoelectric materials and passive electrical networks,' Journal of Sound and Vibration, vol. 146, pp. 243-268, 1991. 65. C. D. Johnson, 'Design of Passive Damping Systems,' Journal of Mechanical Design, vol. 117, pp. 171-176, 1995. 66. S. O. R. Moheimani, 'A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers,' IEEE Trans. Control Syst. Technol. vol. 11, pp. 482-494, 2003. 67. S. Elliott, I. Stothers, and P. Nelson, 'A multiple error LMS algorithm and its application to the active control of sound and vibration,' IEEE Trans. Acoust., Speech, Signal Process, vol. 35, pp. 1423-1434, 1987. 68. C. R. Fuller, 'Active control of sound transmission/radiation from elastic plates by vibration inputs: I. Analysis,' Journal of Sound and Vibration, vol. 136, pp. 1-15, Jan 1990. 69. C. Richard, et al., 'Semi-passive damping using continuous switching of a piezoelectric device,' Proc. SPIE:Smart Structures and Materials 1999: Passive Damping and Isolation vol. 3672, pp. 104-111, 1999. 70. C. Richard, et al., 'Enhanced semi-passive damping using continuous switching of a piezoelectric device on an inductor,' Proc. SPIE:Smart Structures and Materials 2000: Damping and Isolation, vol. 3989, pp. 288-299, 2000. 71. W. W. Clark, 'Vibration Control with State-Switched Piezoelectric Materials,' Journal of Intelligent Material Systems and Structures, vol. 11, pp. 263-271, Apr, 2000. 72. H. Ji, et al., 'Multi-modal vibration control using a synchronized switch based on a displacement switching threshold,' Smart Materials and Structures, vol. 18, p. 035016, 2009. 73. E. Lefeuvre, et al., 'Semi-passive piezoelectric structural damping by synchronized switching on voltage sources,' Journal of Intelligent Material Systems and Structures, vol. 17, pp. 653-660, 2006. 74. L. Hong, et al., 'Semi-active Vibration Control of a Composite Beam using an Adaptive SSDV Approach,' Journal of Intelligent Material Systems and Structures, Sep 2008. 75. A. Badel, et al., 'Piezoelectric vibration control by synchronized switching on adaptive voltage sources: Towards wideband semi-active damping,' Journal of the Acoustical Society of America, vol. 119, pp. 2815-2825, 2006. 76. 'IEEE Standard on Piezoelectricity,' ANSI/IEEE Std 176-1987, 1988. 77. D. Guyomar, and M. Lallart, 'Energy conversion improvement in ferroelectrics: application to energy harvesting and self-powered systems,' in Ultrasonics Symposium (IUS), 2009 IEEE International, pp. 1-10, 2009. 78. E. Lefeuvre, et al., 'High performance piezoelectric vibration energy reclamation,' Smart Structures and Materials 2004: Smart Structures and Integrated Systems, vol. 5390, pp. 379-387, 2004. 79. E. Lefeuvre, et al., 'A comparison between several vibration-powered piezoelectric generators for standalone systems,' Sensors and Actuators a-Physical, vol. 126, pp. 405-416, 2006. 80. J. Liang, and W.-H. Liao, 'Energy flow in piezoelectric energy harvesting systems,' Smart Materials and Structures, vol. 20, p. 015005, 2011. 81. H. A. Sodano, D. J. Inman, and G. Park, 'Comparison of piezoelectric energy harvesting devices for recharging batteries,' Journal of Intelligent Material Systems and Structures, vol. 16, pp. 799-807, Oct 2005. 82. C. O. Mathuna, et al., 'Energy scavenging for long-term deployable wireless sensor networks,' Talanta, vol. 75, pp. 613-623, May 2008. 83. M. Lallart, et al., 'Synchronized switch harvesting applied to self-powered smart systems: Piezoactive microgenerators for autonomous wireless receivers,' Sensors and Actuators a-Physical, vol. 147, pp. 263-272, 2008. 84. J. A. Paradiso, and T. Starner, 'Energy scavenging for mobile and wireless electronics,' Pervasive Computing, IEEE, vol. 4, pp. 18-27, 2005. 85. S. Meninger, et al., 'Vibration-to-electric energy conversion,' IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 9, pp. 64-76, 2001. 86. R. Amirtharajah, and A. P. Chandrakasan, 'Self-powered signal processing using vibration-based power generation,' Solid-State Circuits, IEEE Journal of, vol. 33, pp. 687-695, 1998. 87. A. Badel, et al., 'Efficiency enhancement of a piezoelectric energy harvesting device in pulsed operation by synchronous charge inversion,' Journal of Intelligent Material Systems and Structures, vol. 16, pp. 889-901, Oct 2005. 88. S. C. Stanton, C. C. McGehee, and B. P. Mann, 'Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator,' Physica D: Nonlinear Phenomena, vol. 239, pp. 640-653, 2010. 89. A. Nayfeh, D. Mook, 'Nonlinear Oscillations.' New York: Wiley, 1979. 90. J. M. T. Thompson, 'Chaotic Phenomena Triggering the Escape from a Potential Well,' Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, vol. 421, pp. 195-225, Feb, 1989. 91. H. B. Stewart, et al., 'Optimal escape from potential wells-patterns of regular and chaotic bifurcation,' Physica D, vol. 85, pp. 259-295, Jul, 1995. 92. E. Garcia, J. Dosch, and D. J. Inman, 'The Application of Smart Structures to the Vibration Suppression Problem,' Journal of Intelligent Material Systems and Structures, vol. 3, pp. 659-667, Oct, 1992. 93. V. Giurgiutiu, 'Review of smart-materials actuation solutions for aeroelastic and vibration control,' Journal of Intelligent Material Systems and Structures, vol. 11, pp. 525-544, Jul 2000. 94. M. J. Konak, et al., 'Self-powered discrete time piezoelectric vibration damper,' in Proc. SPIE ,Smart Materials, Structures, and Integrated Systems, vol. 3241, pp. 270-279, 1997. 95. M. Lallart, et al., 'Self-powered circuit for broadband, multimodal piezoelectric vibration control,' Sensors and Actuators a-Physical, vol. 143, pp. 377-382, Feb 2008. 96. H. Shen, et al., 'A low-power circuit for piezoelectric vibration control by synchronized switching on voltage sources,' Sensors and Actuators a-Physical, vol. 161, pp. 245-255, Jun 2010. 97. D. R. C. D. A. Berlincourt, and H. Jaffe, “Piezoelectric and piezomagnetic materials and their function in transducers,” in Physical Acoustics, W. P. Mason, Ed. New York: , Academic Press: Physical Acoustics, 1964. 98. W. P. Mason, 'Piezoelectric Crystals and Their Application to Ultrason' New York, Van Nostrand, 1950. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62820 | - |
| dc.description.abstract | 現今,能源成為了相當重要的議題,從環境當中獲取能源更是受到高度重視。此論文主軸圍繞在透過各種設計來改進壓電能量擷取裝置,希望可與低耗電裝置與無線監測網路結合,來延長裝置電池壽命與直接提供能量為最終目標。機械結構具有高品質因子,當壓電能量擷取裝置操作在遠離共振頻時,輸出功率會快速下降,本論文提出可調變共振頻率的技術,成功的將共振頻率的頻寬延展,獲取更多的能量,此技術也成功的與無線監測網路結合,可在累積足夠能量後將量測資料無線傳出。為了將可用頻寬延展,本論文提出結合非線性雙穩態懸臂樑結構與切換式介面電路的架構,透過永久磁鐵的設計,使懸臂樑成為非線性系統,成功提升在非共振頻時的輸出功率,透過零速度偵測的技術,使切換式電路成功的使用在非線性振動系統當中,由工作週期的討論顯示出兩種技術結合的成果。在低耦合系統中,同步切換為相當成功之介面電路,不同於以往峰值偵測的方式,本論文提出零速度偵測與三片壓電片分流的架構,成功完成自供電同步切換壓電能量擷取系統。當系統為非低耦合時,同步切換技術可應用在系統減震上,最大優點為犧牲少部分減震能力完成自供電減震系統,自供電減震系統的限制與成果透過理論分析、時域與頻率域的結果被成功驗證,整體系統如同回授控制般,當結構振動高於限制時,自供電減震系統將會啟動,並成功的抑制結構振動。 | zh_TW |
| dc.description.abstract | Nowadays with the world oil price soaring, the energy issue is becoming a significant topic and the possibility of harvesting ambient energy receiving much attention. In this dissertation, the main topic surrounds improving the piezoelectric energy harvesting device in several aspects and the final objective is to integrate it with low power consumption device, for example a wireless sensor network node to extend the battery lifetime and further supply the energy to device directly. Based on the high mechanical quality factor of the structure, the output power of the piezoelectric energy harvesting device will decrease rapidly when the exciting frequency is out of the resonant frequency range. The tunable resonant frequency technique is proposed to broaden the resonant frequency range and to increase the output power effectively. Then this technique is successfully combined with a wireless sensor module to transmit the radio frequency signal. To broaden resonant frequency another method is proposed, based on a bistable vibrating cantilever beam and a switching-type interfacing circuit. It is a new and interesting concept to combine these two techniques. The magnets are used to make mechanical behavior non-linear and increase the output power at non-resonance. The synchronized switching technique through zero-velocity detection can work well when system is driven in non-linear system. The experimental and simulation results through work-cycles discussion show good performance of combining these two techniques. Synchronized switching harvesting on an inductor have been verified to be a successful technique to increase output power in low-coupling system. In order to make use of the synchronized switching technique in the real application, the velocity control self-powered system is proposed. Unlike the conventional peak detector technique, the zero-velocity detection is used to make the switching time more accurate. The energy flow is separated into three paths to construct the above-mentioned velocity control self-powered synchronized switching system and the experimental results show good performance.
When the system is not low-coupled, the synchronized switching harvesting on an inductor technique will damp vibration. This technique is synchronized switching damping on an inductor. Based on the self-powered technique and zero-velocity detection used in energy harvesting, these techniques are further applied in structural damping to construct a self-powered synchronized switching damping system. The major advantage is that it is only necessary to sacrifice a small amount of damping performance to make the system fully self-powered. The theoretical analysis and experimental results of time domain comparison and frequency response testing show the limit and performance of this technique. The self-powered damping system is like a feedback loop system and when the displacement is over the limit the system will effectively damp the vibration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:11:26Z (GMT). No. of bitstreams: 1 ntu-102-F94543034-1.pdf: 9174661 bytes, checksum: 8ef8cb79355eee980a0eb0bfe21d6486 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | CONTENTS
Abstract ii List of the Figures vii List of the Tables xii Chapter1.Introduction 1 1.1 Backgrounds and Motivations 1 1.2 Literatures review 5 1.2.1 Mechanical part: Design of the piezoelectric material and host structure 7 1.2.2 Electrical part: Design of the interfacing circuit and storage part 10 1.2.3 Self-powered energy harvesting system 13 1.2.4 Nonlinear energy harvesting technique 16 1.2.5 Piezoelectric energy harvesting device used in real application 18 1.2.6 Piezoelectric material used in structural damping 20 1.3 Framework of the dissertation and Summary 24 Chapter 2 Review of the electric interfaces for energy harvesting and damping 27 2.1 Basic theory of piezoelectric materials 28 2.2 Model of piezoelectric energy harvester 33 2.3 Standard Interfacing circuit 36 2.3.1 Standard AC approach 36 2.3.2 Standard DC approach 42 2.4 Analysis of the synchronized switching technique 45 2.4.1 Synchronized Switch Harvesting on Inductor in parallel (parallel-SSHI) 47 2.4.2 Synchronized Switch Harvesting on Inductor in Series (Series-SSHI) 52 2.5 Discussion of the energy harvesting interfacing circuits 55 2.5.1 Power output discussion 55 2.5.2 Work-cycle discussion 58 2.6 Theoretical analysis of interfacing circuits of structural damping 63 2.6.1 Synchronized Switching Damping on a Short circuit (SSDS) 63 2.6.2 Synchronized switching damping on an inductor (SSDI) 67 2.6.3 Discussion of the structural damping circuits 71 2.7 Summary of the interfacing circuits 72 Chapter 3 Tunable Resonant Frequency Power Harvesting Devices 74 3.1 Introduction 75 3.2 Theoretical Analysis 77 3.3 Experimental validation and discussion 81 3.3.1 Real bridge frequency measurement 81 3.3.2 Piezoelectric energy harvesting cantilever beam testing 84 3.3.3 Network Analysis 87 3.3.4 Charging the Capacitor with Chirping and Random Frequency Excitations 90 3.3.5 Implement the tunable frequency power harvesting function on a Wireless sensor network transceiver module 96 3.4. Conclusion 101 Chapter 4 A self-powered switching circuit for piezoelectric energy harvesting with velocity control................................. 103 4.1 Introduction 104 4.2 Theoretical Analysis of the self-powered V-SSHI technique 108 4.2.1 Standard DC technique 108 4.2.2 Self-powered V-SSHI technique 109 4.3. Experimental results and discussion 114 4.3.1 Experimental setup 114 4.3.2 Experimental results 117 4.4 Conclusion 121 Chapter 5 Study of a Piezoelectric Switching Circuit for Energy Harvesting with Bistable Broadband Technique by Work-cycle Analysis 122 5.1 Introduction 123 5.2 Electromechanical Linear Model 125 5.3 Switching Control Strategy 127 5.4 Series-SSHI Technique 129 5.5 Bistable Energy Harvester 132 5.6 Simulation, experimental results and discussion 135 5.6.1 Experimental setup 135 5.6.2 Frequency sweeping 140 5.6.3 Work cycles study 144 5.7 Conclusion 147 Chapter 6 Self-Powered Semi-Passive Piezoelectric Structural Damping Based on Zero-Velocity Crossing Detection.. 149 6.1 Introduction 149 6.2 SSDI Technique 152 6.3 Self-powered zero-velocity crossing detection for SSDI Technique 154 6.3.1 Zero-velocity crossing detector (piezoelectric-patch P3) 155 6.3.2 Power supply (piezoelectric-patch P2) 157 6.4 Experimental results and discussion 160 6.4.1 Experimental setup 160 6.4.2 Experimental results 163 6.4.3 Comparison 166 6.5 Conclusion 176 Chapter 7 Summary and Discussion................178 7.1 Summary and conclusion of the major results 179 7.2 Future work 183 Appendix A. 185 A.1 Equivalent circuit of the piezoelectric energy harvester 185 A.2 Electromechanical coupling coefficient 186 A.3 Time interval discussion of Standard DC approach 189 A.4 Time interval discussion of Parallel-SSHI 192 A.5 Time interval discussion of Series-SSHI 194 [Reference] 198 | |
| dc.language.iso | en | |
| dc.subject | 同步切換 | zh_TW |
| dc.subject | 零切換偵測 | zh_TW |
| dc.subject | 自供電 | zh_TW |
| dc.subject | 結構減震 | zh_TW |
| dc.subject | 壓電能量擷取 | zh_TW |
| dc.subject | piezoelectric energy harvesting | en |
| dc.subject | self-powered | en |
| dc.subject | zero-velocity detection | en |
| dc.subject | synchronized switching | en |
| dc.subject | structural damping | en |
| dc.title | 壓電功率轉換器及介面電路在能量擷取及結構減震上的應用 | zh_TW |
| dc.title | Piezoelectric power transducers and its' interfacing circuitry on energy harvesting and structural damping applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 吳文中(Wen-Jong WU),Francois COSTA,Dejan VASIC | |
| dc.contributor.oralexamcommittee | 陳秋麟(Chern-Lin CHEN),舒貽忠(Yi-Chung Shu),馮明惠(Ming-Whei Feng),林志毅(Chih-yi Lin),林法正(Faa-Jeng Lin) | |
| dc.subject.keyword | 壓電能量擷取,自供電,零切換偵測,同步切換,結構減震, | zh_TW |
| dc.subject.keyword | piezoelectric energy harvesting,self-powered,zero-velocity detection,synchronized switching,structural damping, | en |
| dc.relation.page | 206 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-02-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 應用力學研究所 | zh_TW |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 8.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
