Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62810
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏慧
dc.contributor.authorYun-Yuan Taien
dc.contributor.author戴允元zh_TW
dc.date.accessioned2021-06-16T16:11:07Z-
dc.date.available2018-03-04
dc.date.copyright2013-03-04
dc.date.issued2013
dc.date.submitted2013-02-19
dc.identifier.citationReferences
1. Pispa J, Thesleff I (2003) Mechanisms of ectodermal organogenesis. Dev Biol 262:195-205.
2. Millar SE (2002) Molecular mechanisms regulating hair follicle development. J Invest Dermatol 118, 216-225.
3. Thesleff I, Mikkola ML (2002) The role of growth factors in tooth development. Int Rev Cytol 217, 93-135.
4. Veltmaat JM, Mailleux AA, Thiery JP, Bellusci S (2003) Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation 71, 1-17.
5. Tucker AS, Matthews KL, Sharpe PT (1998) Transformation of Tooth Type Induced by Inhibition of BMP Signaling. Science 282, 1136-1138.
6. Vainio S, Karavanova I, Jowett A, Thesleff I (1993) Identification of BMP-4 as a Signal Mediating Secondary Induction between Epithelial and Mesenchymal Tissues during Early Tooth Development. Cell 75, 45-58.
7. Laurikkala J, Kassai Y, Pakkasjarvi L, Thesleff I, Itoh N (2003) Identification of a secreted BMP antagonist, ectodin, integrating BMP, FGF, and SHH signals from the tooth enamel knot. Dev Biol 264, 91-105.
8. Kassai Y, Munne P, Hotta Y, Penttila E, Kavanagh K, Ohbayashi N, Takada S, Thesleff I, Jernvall J, Itoh N (2005) Regulation of Mammalian Tooth Cusp Patterning by Ectodin. Science 309, 2067-2069.
9. Tucker AS, Headon DJ, Courtney JM, Overbeek P, Sharpe PT (2004) The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development. Dev Biol 268, 185-194.
10. Kangas AT, Evans AR, Thesleff I, Jernvall J (2004) Non-independence of mammalian dental characters. Nature 432, 211-214.
11. Pummila M, Fliniaux I, Jaatinen R, James MJ, Laurikkala J, Schneider P, Thesleff I, Mikkola ML (2007) Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression. Development 134, 117-125.
12. Mustonen T, Ilmonen M, Pummila M, Kangas AT, Laurikkala J, Jaatinen R, Pispa J, Gaide O, Schneider P, Thesleff I (2004) Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development 131, 4907-4919.
13. Yu M, Wu P, Widelitz RB, Chuong CM (2002) The morphogenesis of feathers. Nature 420, 308-312.
14. Munne PM, Tummers M, Järvinen E, Thesleff I, Jernvall J (2009) Tinkering with the inductive mesenchyme: Sostdc1 uncovers the role of dental mesenchyme in limiting tooth induction. Development 136, 393-402.
15. Itasaki N, Jones CM, Mercurio S, Rowe A, Domingos PM, Smith JC, Krumlauf R (2003). Wise, a context-dependent activator and inhibitor of Wnt signalling. Development 130, 4295-4305.
16. Miletich I, Buchner G, Sharpe PT (2005) Barx1 and evolutionary changes in feeding. J Anat 207, 619-622.
17. Theodosiou NA, Tabin CJ (2003) Wnt signaling during development of the gastrointestinal tract. Dev Biol 259, 258-271.
18. Kim BM, Buchner G, Miletich I, Sharpe PT, Shivdasani RA (2005) The Stomach Mesenchymal Transcription Factor Barx1 Specifies Gastric Epithelial Identity through Inhibition of Transient Wnt Signaling. Dev Cell 8, 611-622.
19. Thesleff I, Mikkola ML (2002) Death receptor signaling giving life to ectodermal organs. Sci. STKE 131, 22.
20. Mikkola ML, Thesleff I (2003) Ectodysplasin signaling in development. Cytokine Growth Factor Rev 14, 211-224.
21. Mustonen T, Ilmonen M, Pummila,M, Kangas AT, Laurikkala J, Jaatinen R, Pispa J, Gaide O, Schneider P, Thesleff I (2004) Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages. Development 131, 4907-4919.
22. Yan M, Wang LC, Hymowitz SG, Schilbach S, Lee J, Goddard A, de Vos AM, Gao WQ, Dixit VM (2000) Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 290, 523-527.
23. Koppinen P, Pispa J, Laurikkala J, Thesleff I, Mikkola ML (2001) Signalling and subcellular localization of the TNF receptor Edar. Exp Cell Res 269, 180-192.
24. Kumar A, Eby MT, Sinha S, Jasmin A, Chaudhary PM (2001) The ectodermal dysplasia receptor activates the Nuclear factor-κB, JNK, and cell death pathways and binds to ectodysplasin A. J Biol Chem 276, 2668-2677.
25. Schmidt-Ullrich R, Aebischer T, Hülsken J, Birchmeier W, Klemm U, Scheidereit C (2001) Requirement of NF-κB/Rel for the development of hair follicles and other epidermal appendices. Development 128, 3843-3853.
26. Puel A, Picard C, Ku CL, Smahi A, Casanova CL (2004) Inherited disorders of NF-κB-mediated immunity in man. Curr Opin Immunol 16, 34-41.
27. Schmidt-Ullrich R, Tobin DJ, Lenhard D, Schneider P, Paus R, Scheidereit C (2006) NF-κB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development 133, 1045-1057.
28. Perbal B (2004) CCN proteins: multifunctional signaling regulators. Lancet 363, 62-64.
29. Abreu JG, Ketpura NI, Reversade B, De Robertis EM (2002) Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-β. Nat Cell Biol 4, 599-604.
30. Calabretta R, Nolfi S, Parisi D, Wagner GP (2000) Duplication of modules facilitates the evolution of functional specialization. Artificial Life 6, 69-84.
31. Harris MP, Fallon JF, Prum RO (2002) Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers. J Exp Zool 294, 160-176.
32. Jernvall J, Åberg T, Kettunen P, Keränen S, Thesleff I (1998) The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125, 161-169.
33. Mao B, Niehrs C (2003) Kremen2 modulates Dickkopf2 activity during Wnt/lRP6 signaling. Gene 302, 179-183.
34. Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C (2001) LDL-receptor-related protein 6(LRP6) is a receptor for Dickkopf proteins. Nature 411, 321-325.
35. Järvinen E, Salazar-Ciudad I, Birchmeier W, Taketo MM, Jernvall J, Thesleff, I (2006) Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc. Natl. Acad. Sci. USA 103, 18627-18632.
36. Sarkar L, Cobourne M, Naylor S, Smalley M, Dale T, Sharpe PT (2000) Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. PNAS 97, 4520-4524.
37. Cobourne MT, Miletich I, Sharpe PT (2004) Restriction of sonic hedgehog signalling during early tooth development. Development 131, 2875-2885.
38. Ja¨rvinen E, Salazar-Ciudad I, Birchmeier W, Taketo MM, Jernvall J, Thesleff I (2006) Continuous tooth generation in mouse is induced by activated epithelial Wnt/β-catenin signaling. PNAS 103, 18627-18632.
39. Harris MP, Hasso SM, Ferguso MWJ, Fallon J-F (2006) The Development of Archosaurian First-Generation Teeth in a Chicken Mutant. Curr Biol 16, 371-377.
40. Ohazama A, Johnson EB, Ota MS, Choi HJ, Porntaveetus T, Oommen S, Itoh N, Eto K, Gritli-Linde A, Herz J, Sharpe PT (2008) Lrp4 Modulates Extracellular Integration of Cell Signaling Pathways in Development. PLoS One 3(12), e4092.
41. Nykjaer A, Willnow TE (2002) The low-density lipoprotein receptor gene family: a cellular Swiss army knife? Trends Cell Biol 12, 273-280.
42. Herz J, Bock HH (2002) Lipoprotein receptors in the nervous system. Annu Rev Biochem 71, 405-434.
43. Pinson KI, Brennan J, Monkley S, Avery BJ, Skarnes WC (2000) An LDL receptor-related protein mediates Wnt signalling in mice. Nature 407, 535-538.
44. Tamai K, Semenov M, Kato Y, Spokony R, Liu C, et al. (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530-535.
45. Wehrli M, Dougan ST, Caldwell K, O’Keefe L, Schwartz S, et al. (2000) arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527-530.
46. Johnson ML, Harnish K, Nusse R, Van Hul W (2004) LRP5 and Wnt signaling: a union made for bone. J Bone Miner Res 19, 1749-1757.
47. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, et al. (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513-523.
48. Yanagita M, Oka M, Watabe T, Iguchi H, Niida A, et al. (2004) USAG-1: a bone morphogenetic protein antagonist abundantly expressed in the kidney. Biochem Biophys Res Commun 316, 490-500.
49. Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, et al. (2006) Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res 21, 1738-1749.
50. Johnson EB, Hammer RE, Herz J (2005) Abnormal development of the apical ectodermal ridge and polysyndactyly in Megf7-deficient mice. Hum Mol Genet 14, 3523-3538.
51. Gritli-Linde A, Bei M, Maas R, Zhang XM, Linde A, et al. (2002) Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development 129, 5323-5337.
52. Dassule HR, Lewis P, Bei M, Maas R, McMahon AP (2000) Sonic hedgehog regulates growth and morphogenesis of the tooth. Development 127, 4775-4785.
53. Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, Peterka M, Jernvall J, Martin GR (2006) Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 11, 181-190.
54. Jernvall J, Thesleff I (2012) Tooth shape formation and tooth renewal: evolving with the same signals. Development 139, 3487-3497.
55. Tucker AS, Sharpe PT (2004) The cutting-edge of mammalian development: How the embryo makes teeth. Nat Rev Gen 5, 499-508.
56. Kettunen P, Thesleff I (1998) Expression and function of FGFs-4, -8, and −9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn 211, 256-268.
57. Hu B, Nadiri A, Küchler-Bopp S, Perrin-Schmitt F, Lesot H (2005) Dental Epithelial Histomorphogenesis in vitro. J Dent Res 84, 521-525.
58. Hu B, Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Peters H, Lesot H (2006) Tissue engineering of tooth crown, root, and periodontium. Tissue Eng 12, 2069-2075.
59. Honda MJ, Tsuchiya S, Sumita Y, Sagara H, Ueda M (2007) The sequential seeding of epithelial and mesenchymal cells for tissue-engineered tooth regeneration. Biomaterials 28, 680-689.
60. Nakao K, Morita R, Saji Y, Ishida K, Tomita Y, Ogawa M, Saitoh M, Tomooka Y, Tsuji T (2007) The development of a bioengineered organ germ method. Nature Methods 4(3), 227-230.
61. Ikeda E, Morita R, Nakao K, Ishida K, Nakamura T, Takano-Yamamoto T, Ogawa M, Mizuno M, Kasugai S, Tsuji T (2009) Fully functional bioengineered tooth replacement as an organ replacement therapy. PNAS 106, 13475-13480.
62. Oshima O, Ogawa M, Yasukawa M, Tsuji T(2012) Generation of a Bioengineered Tooth by Using a Three-Dimensional Cell Manipulation Method (Organ Germ Method). In Odontogenesis: Methods and Protocols, Methods in Molecular Biology. 887, 149-165. Edited by Kioussi C. New York: Springer Science+Business Media, LLC.
63. Toyoshima K-e, Asakawa K, Ishibashi N, Toki H, Ogawa M, Hasegawa T, Irié T, Tachikawa T, Sato A, Takeda A, Tsuji T (2012) Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches. Nat Commun 17, 1784-1795.
64. Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC (2002) Tissue Engineering of Complex Tooth Structures on Biodegradable Polymer Scaffolds. J Dent Res 81, 695-700.
65. Honda MJ, Shinohara Y, Sumita Y, Tonomura A, Kagami H, Ueda M (2006) Shear stress facilitates tissue-engineered odontogenesis. Bone 39, 125-133.
66. Kollar EJ, Baird G (1969) The influence of the dental papilla on the development of tooth shape in embryonic mouse tooth germs. J Embryol Exp Morphol 21, 131-148.
67. Kollar EJ, Baird G (1970a) Tissue interactions in embryonic mouse tooth germs. I. Reorganization of the dental epithelium during tooth-germ reconstruction. J Embryol Exp Morphol 24, 159-171.
68. Kollar EJ, Baird G (1970b) Tissue interactions in embryonic mouse tooth germs. II. The inductive role of the dental papilla. J Embryol Exp Morphol 24: 159-171.
69. Schmitt R, Lesot H, Vonesch JL, Ruch JV (1999) Mouse odontogenesis in vitro: the cap-stage mesenchyme controls individual molar crown morphogenesis. Int J Dev Biol 43, 255-260.
70. Yamamoto H, Kim EJ, Cho SW, Jung HS (2003) Analysis of tooth formation by reaggregated dental mesenchyme from mouse embryo. Journal of Electron Microscopy 52, 559-566.
71. Hu B, Nadiri A, Kuchler-Bopp S, Perrin-Schmitt F, Wang S, Lesot H (2005) Dental epithelial histo-morphogenesis in the mouse: positional information versus cell history. Arch Oral Biol 50, 131-136.
72. Hata RI (1996) Where am I? How a cell recognize its positional information during morphogenesis. Cell Biol Int 20, 59-65.
73. Salmivirta K, Gullberg D, Hirsch E, Altruda F, Ekblom P (1996) Integrin subunit expression associated with epithelial-mesenchymal interactions during murine tooth development. Dev Dyn 205, 104-113.
74. Ohazama A, Modino SAC, Miletich I, Sharpe PT (2004) Stem-cell-based Tissue Engineering of Murine Teeth. J Dent Res 83, 518-522.
75. Modino SAC, Sharpe PT (2005) Tissue engineering of teeth using adult stem cells. Arch Oral Biol 50, 255-258.
76. Nakagawa E, Itoh T, Yoshie H, Satokata I (2009) Odontogenic potential of post-natal oral mucosal epithelium. J Dent Res 88, 219-223.
77. Honda MJ, Fong H, Iwatsuki S, Sumita Y, Sariyaka M (2008) Tooth-forming potential in embryonic and postnatal tooth bud cells. Med Mol Morphol 41, 183-192.
78. Giaever I, Keese CR (1993) A morphological biosensor for mammalian cells. Nature 366(6455), 591-592.
79. Keese CR, Bhawe K, Wegener J, Giaever I (2002) Real-time impedance assay to follow the invasive activities of metastatic cells in culture. Biotechniques 33, 842-844. 846, 848-850.
80. Ling TY, KuoMD, Li CL, Yu AL, Huang YH,Wu TJ, Lin YC, Chen SH, Yu J (2006) Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS-CoV infection in vitro. Proc Natl Acad Sci USA 103, 9530-9535.
81. Huang YH, Chin CC, Ho HN, Chou CK, Shen CN, Kuo HC, Wu TJ, Wu YC, Hung YC, Chang CC, Ling TY (2009) Pluripotency of mouse spermatogonial stem cells maintained by IGF-1-dependent pathway. FASEB J 23, 2076-2087.
82. Spahr A, Lyngstadaas SP, Slaby I, Haller B, Boeckh C, Tsoulfidou F, Hammarström L (2002) Expression of amelin and trauma-induced dentin formation. Clin Oral Invest 6, 51-57.
83. Fong CD, Cemy R, Hammarstrom L, Salby I (1998) Sequential expression of an amelin gene in mesenchymal and epithelial cells during odontogenesis in rats. Eur J Oral Sci 106, 324-330.
84. Fukumoto S, Yamada A, Nonaka K, Yamada Y (2005) Essential roles of ameloblastin in maintaining ameloblast differentiation and enamel formation. Cells Tissues Organs 18, 189-195.
85. He P, Zhang Y, Kim SO, Radlanski RJ, Butcher K, Schneider RA, DenBesten PK (2010) Ameloblast differentiation in the human developing tooth: Effects of extracellular matrices. Matrix Biol 29, 411-419.
86. Kettunen P, Laurikkala J, Itaranta P, Vainio S, Itoh N, Thesleff I (2000) Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev Dyn 219, 322-332.
87. Iwata J, Tung L, Urata M, Hacia JG, Pelikan R, Suzuki A, Ramenzoni L, Chaudhry O, Parada C, Sanchez-Lara PA, Chai Y (2012) Fibroblast growth factor 9 (FGF9)-pituitary homeobox 2 (PITX2) pathway mediates transforming growth factorβ(TGFβ) signaling to regulate cell proliferation in palatal mesenchyme during mouse palatogenesis. J Biol Chem 287, 2353-2363.
88. Bei M, Maas R (1998) FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development 125, 4325-4333.
89. Mitsiadis TA, Graf D, Luder H, Gridley T, Bluteau G (2010) BMPs and FGFs target Notch signaling via jagged 2 to regulate tooth morphogenesis and cytodifferentiation. Development 137, 3025-3035.
90. Neubüser A, Peters H, Balling R, Martin GR (1997) Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell 90, 247-255.
91. Ishida K, Murofushi M, Nakao K, Morita R, Ogawa, Tsuji T (2011) The regulation of tooth morphogenesis is associated with epithelial cell proliferation and the expression of Sonic hedgehog through epithelial–mesenchymal interactions. Biochem Biophy Res Commun 405, 455-461.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62810-
dc.description.abstract[研究目的]
上皮層增厚並套疊進入間葉層(Epithelial invagination)是外胚層器官發育機轉(Ectodermal Organogenesis)的開始。雖然有許多生長因子被發現可調控外胚層器官,但對於它們即時性(real-time)的作用卻無法提供深入了解。細胞與基質電阻抗偵測系統(Electric cell-substrate impedance sensing, ECIS)是一種不具侵入性、即時偵測細胞或器官變化的系統,可利用細胞在微電極上介面電阻的改變量以即時偵測器官或細胞的厚度改變。過去常用以偵測癌症細胞入侵組織器官的變化。由於上皮細胞向間葉層套疊過程近似入侵,是以極適合用以偵測該現象。本研究目的即建立重組器官電阻抗即時偵測模組(bioengineered organ-ECIS model),藉以即時偵測第九號纖維母細胞成長因子(FGF-9) 加速外胚層器官上皮增厚向間葉套疊(epithelial invagination)進程以誘發外胚層器官發育的機轉。
[研究方法]
吾人利用已知的生物工程外胚層器官重組技術(bioengineered ectodermal organ),將第14天大的老鼠胚胎內第一大臼齒牙胚取出並切開上皮與間葉,利用細胞重組技術再生外胚層器官,將其培養在細胞與基質電阻抗偵測系統(ECIS Z8)微電極上,以即時偵測第九號纖維母細胞成長因子(FGF-9) 在外胚層器官發育過程所扮演的角色。
[研究成果]
實驗證明第九號纖維母細胞成長因子(FGF-9)不僅可在三天內加速再生牙胚上皮增厚向間葉套疊(epithelial invagination)的過程,也同時刺激再生牙胚分泌更多齒釉蛋白(amelogenin)與成釉蛋白(ameloblastin)。由此可見第九號纖維母細胞成長因子(FGF-9)在誘發外胚層器官發育過程中的主導性。亦證明吾人所建構之重組器官電阻抗即時偵測模組(bioengineered organ-ECIS model)可有效達成即時偵測特定成長因子(如FGF-9)對外胚層器官發育過程所造成的影響,進而有利未來深入研究相關器官發育機轉。
[成果討論與總結]
本研究是首次以即時偵測系統證實第九號纖維母細胞成長因子(FGF-9)可藉由促進間葉細胞間交互整合、刺激上皮細胞增生變厚與分化為成齒釉細胞層(ameloblast layer)以加速牙胚上皮增厚向間葉套疊(epithelial invagination)的過程,並進而誘發外胚層器官發育機轉(Ectodermal Organogenesis)。 由此可知纖維母細胞成長因子(FGFs)族群在外胚層器官發育過程中佔有舉足輕重之地位,並可進而用以加速未來外胚層器官再生進程。基於以上研究成果,吾人據此提出纖維母細胞成長因子(FGFs)與骨構型蛋白(BMPs)在外胚層器官發育過程中同樣佔有主導地位。並依據本次研究成果與過去先輩之研究發現,倡議可調控外胚層器官型態之`纖維母細胞成長因子與骨構型蛋白拮抗調控系統'(FGF-BMP Balancing System)。
zh_TW
dc.description.abstract[Introduction]
Epithelial invagination is important for initiation of ectodermal organogenesis. Although many factors regulate ectodermal organogenesis, there is not any report about their functions in real-time study. Electric cell-substrate impedance sensing (ECIS), a non-invasive, real-time surveillance system, had been used to detect changes in organ cell layer thickness through quantitative monitoring of the impedance of a cell-to-microelectrode interface over time. It was shown to be a good method for identifying significant real-time changes of cells. The purpose of this study is to establish a combined bioengineered organ-ECIS model for investigating the real time effects of fibroblast growth factor-9 (FGF-9) on epithelial invagination in bioengineered ectodermal organs.
[Materials and Methods]
We dissected epithelial and mesenchymal cells from stage E14.5 murine molar tooth germs and cultured the regenerated tooth germ with bioengineered organ germ method in the ECIS Z8. We identified the real-time effects of FGF-9 on epithelial-mesenchymal interactions using this combined bioengineered organ-ECIS model. Then we checked the Ameloblastin and Amelogenin expression with 7900HT real-time polymerase chain reaction in different time spots.
[Results]
Measurement of bioengineered ectodermal organ thickness showed that FGF-9 accelerates epithelial invagination in reaggregated mesenchymal cell layer within 3 days. Gene expression analysis revealed that FGF-9 stimulates and sustains early Ameloblastin and Amelogenin expression during odontogenesis.

[Discussion and Conclusions]
This is the first real-time study to show that, FGF-9 plays an important role in epithelial invagination and initiates ectodermal organogenesis—by facilitating cross-talk and reunion between mesenchymal cells and stimulating epithelial cell layer differentiation, creating an ameloblast layer. Based on these findings, we suggest FGF-9 can be applied for further study in ectodermal organ regeneration, and we also proposed that the ‘FGF-BMP balancing system’ is important for manipulating the morphogenesis of ectodermal organs. The combined bioengineered organ-ECIS model is a promising non-invasive real-time method for ectodermal organ engineering and regeneration research.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:11:07Z (GMT). No. of bitstreams: 1
ntu-102-Q96422003-1.pdf: 6168931 bytes, checksum: 5ec8868f0d2a6609520513d6d906767b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目 錄
口試委員會審定書……………………………………………………………… i
誌謝………………………………………………………………………………. ii
中文摘要………………………………………………………………………… iii
英文摘要…………………………………………………………………………. v
Chapter 1. Introduction: Investigating Ectodermal Organogenesis from Tooth Germ Model........................................................................................................................ 1
1.1. Preface: Curiosities about Ectodermal Organogenesis ....................………………. 1
1.2. Significant Research Works about Ectodermal Organogenesis................................... 2
1.2.1. Morphogenesis of Ectodermal Organs…………………………………………… 2
1.2.2. From “Non-dental” to “Dental”!!!......................................................................... 5
1.2.2.1. BMPs—Inducing Diastema Teeth………………………………………………. 6
1.2.2.2. Eda-Edar(TNFs) —Inducing Diastema Teeth…………………………….. 6
1.2.2.3. Shh–BMP ‘Signalling Module’?.................................................................. 8
1.2.2.4. BMPs--Inducing Supernumerary Anterior Teeth…………………………. 9
1.2.2.5. Wnts—Inducing Supernumerary Anterior Teeth………………………….. 10
1.2.3. How to differentiate between “Non-dental” and “Dental” ?............................ 12
1.2.3.1. Wnt-7b Inhibits Shh in the Diastema (Non-dental) Area…………………. 12
1.2.3.2. Wnts—Inducing Diastema Teeth………………………………………….. 13
1.2.3.3. “Fine-Tuning Regulation System” for Shh Expression?!........................... 15
1.2.4. Role of FGFs For Ectodermal Organogenesis.................................................. 17
1.3. Summaries and Mysteries: Possible Fine-Tuning Regulatory System for
Ectodermal Organogenesis......................................................................................... 19
1.4. Target of This Study: FGF-9........................................................................................ 21
Chapter 2. Materials and Methods: The Bioengineered Organ-ECIS Model.................... 22
2.1. Why We Need A New Model?....................................................................................... 22
2.2. Introduction of Electric Cell-substrate Impedance Sensing (ECIS)…………......... 23
2.3. Animals........................................................................................................................... 25
2.4. First Molar Tooth Germ Dissection and Dissociation into Single Cells
through the Non-serum Protocol………………………………………….... 26
2.5. Determine the Optimum Concentration of FGF-9 from MTT Assay…………...... 29
2.6. Bioengineered Organ Culture via Electric Cell-Substrate Impedance
Sensing (Bioengineered Organ-ECIS Model)................................................. 30
2.7. 7900HT Real-time Polymerase Chain Reaction Gene Expression Assay
and Statistical Analysis………………………………………………………. 30
Chapter 3. Results: FGF-9 Accelerates Epithelial Invagination for Ectodermal Organogenesis…………………………………………………………………… 32
3.1. FGF-9 Promotes Tooth Germ Development…..…….…………………………….... 32
3.2. ECIS impedance change reveals FGF-9 stimulates accelerated epithelial invagination……………………………………………………………………... 33
3.3. FGF-9 accelerates and sustains Ameloblastin and Amelogenin expressions.............. 35
Chapter 4. Discussion and Conclusion: FGF-BMP Balancing System................................. 38
4.1. Discussion……………………………………………………………………………… 38
4.2. Conclusion……………………………………………………………………………... 41
Chapter 5. Future Aspects: Regenerating Ectodermal Organs........................................... 43
5.1. Discover sources of ectodermal epithelial cells for new organ(s) regeneration....... 43
5.2. Discover controlling regulatory systems for ectodermal organogenesis.................. 43
5.3. Discover new scaffold(s) for regenerating ectodermal organs.................................. 45
References…………………………………………………………………………………….. 47
Appendix 1: Additional Files from Preliminary Experiments…………………………….. 57
Additional file 1: Preliminary experiment: FGF-9 upregulates Ameloblastin and Amelogenin in cultured mesenchymal cells………………………… 57
Additional file 2: Haematoxylin and eosin staining of ectodermal organ culture.......... 59
Additional file 3: Haematoxylin and eosin staining of ectodermal organ culture.......... 60
Appendix 2: Supplements of Protocols…………………………………………………….... 61
A1. Get E14.5 mouse embryos for study............................................................................ 61
A1.1. Prepare “Zoleteil 50” ........................................................................................ 61
A1.2. Get E14.5embryo from pregnant female mice................................................ 61
A1.3. Special notes for tooth germ dissection and separation of epithelium
and mesenchyme.............................................................................................. 61
A2. Prepare different FGF-9 concentrations.................................................................... 62
A3. Tips for ECIS assay...................................................................................................... 62
A3.1. Change medium during the assay.................................................................... 62
A4. 7900HT real-time PCR................................................................................................. 62
A4.1. RNA Extraction with PurelinkTM RNA Mini Kit + TRIzol Reagent............ 63
A4.2. Reverse Transcription from RNA to c-DNA with High Capacity
RNA-to-cDNA Kit........................................................................................... 64
A4.3. Real-Time PCR with TaqMan ® Gene Expression Assay and Master Mix
in 7900 HT........................................................................................................ 65
A4.4. Materials Prepared for RNA Extraction, Reverse Transcription, and
7900HT Real-Time PCR................................................................................. 66
圖目錄
Summary Graph. A. Possible regulating mechanism during the tooth germ development and ectodermal organogenesis................................................................ 5, 11, 19
Summary Graph. B. Can we enlarge tooth crown size or regenerate extra teeth through p21 overexpression and suppression of Ectodin?........................................7, 11, 19
Summary Graph. C. The dental and nondental border might be determined by the antagonistic expression of Wnt and Shh..................................................................... 16, 20
Fig. 1. Tooth germ dissection and dissociation…………..……………………………….….. 23
Fig. 2. Mechanism of ECIS assay………………..………..……………………………….….. 24
Fig. 3. The combined bioengineered organ-ECIS model for analysis of epithelial invagination 25
Fig. 4. Check the pregnancy of female mouse………………..………..…………………..….. 26
Fig. 5. The stereomicroscope and E14.5 embryos taken for further microsurgery…………... 26
Fig. 6. E14.5 embryo and the dissected first molar tooth germ………………………………. 27
Fig. 7. H & E stain of E14.5 first molar tooth germ………………………………………….. 27
Fig. 8. Multiphoton picture of E14.5 first molar tooth germ…………………………………. 28
Fig. 9. Three steps of dissecting the first molar tooth germ to separate the epithelium and mesenchyme………………………………………………………………………….. 28
Fig. 10. Protocol of Non-Serum Dissociation Method………………………………………. 29
Fig. 11. MTT assay…………………………………………………………………………... 33
Fig. 12. ECIS Assay………………………………………………………………………….. 35
Fig. 13. Real-time PCR measurement of Ameloblastin and Amelogenin gene expression….. 37
Fig. 14. FGF-BMP Balancing System regulates morphogenesis of ectodermal organs…... 42
Fig. 15. Regenerative Medicine can be started from the Bioengineered Organ Model.......... 45
Additional file 1. Preliminary experiment: Fibroblast growth factor-9 (FGF-9) upregulates Ameloblastin and Amelogenin in cultured mesenchymal cells.................... 57
Additional file 2. Haematoxylin and eosin staining of ectodermal organ culture. Day-1....... 59
Additional file 3. Haematoxyliin and eosin staining of ectodermal organ culture. Day-10.... 60
dc.language.isoen
dc.subject外胚層器官發育機轉zh_TW
dc.subject纖維母細胞成長因子與骨構型蛋白拮抗調控系統zh_TW
dc.subject第九號纖維母細胞成長因子zh_TW
dc.subject上皮層向間葉層套疊zh_TW
dc.subject重組器官電阻抗即時偵測模組zh_TW
dc.subjectFGF-9en
dc.subjectEpithelial invaginationen
dc.subjectEctodermal organogenesisen
dc.subjectCombined bioengineered organ-ECIS modelen
dc.subjectFGF-BMP balancing systemen
dc.title第九號纖維母細胞成長因子加速上皮套疊入間葉層以誘發外胚層器官發育機轉zh_TW
dc.titleFGF-9 Accelerates Epithelial Invagination For Ectodermal Organogenesisen
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree博士
dc.contributor.oralexamcommittee張富雄,林泰元,劉宏輝,王志龍,賴泰廷
dc.subject.keyword第九號纖維母細胞成長因子,上皮層向間葉層套疊,外胚層器官發育機轉,重組器官電阻抗即時偵測模組,纖維母細胞成長因子與骨構型蛋白拮抗調控系統,zh_TW
dc.subject.keywordFGF-9,Epithelial invagination,Ectodermal organogenesis,Combined bioengineered organ-ECIS model,FGF-BMP balancing system,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2013-02-19
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
6.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved