Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62785
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張森林
dc.contributor.authorPo-Tso Linen
dc.contributor.author林柏佐zh_TW
dc.date.accessioned2021-06-16T16:10:22Z-
dc.date.available2013-03-15
dc.date.copyright2013-03-15
dc.date.issued2012
dc.date.submitted2013-02-25
dc.identifier.citationBjork, T. (2009). Arbitrage theory in continuous time (3rd ed.). New York: Oxford.
Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal
of Political Economy, 81, 637-654.
Bowie, J., & Carr, P. (1994). Static simplicity. Risk Magazine, 7, 45-49.
Carr, P., & Chou, A. (1997). Breaking barriers: Static hedging of barrier securities. Risk
Magazine, 10, 139-145.
Carr, P., Ellis, K., & Gupta, V. (1998). Static hedging of exotic options. Journal of
Finance, 3, 1165-1190.
Chou, A., & Georgiev, G. (1998). A uniform approach to static replication. Journal of
Risk, 1, 73-87.
Chung, S.-L., & Shih, P.-T. (2009). Static hedging and pricing American options. Journal
of Banking and Finance, 33, 2140-2149.
Chung, S.-L., & Shih, P.-T., Tsai, W.-C. (2010). A modi ed static hedging method for
continuous barrier options. Journal of Future Markets, 30, 1150-1166.
Derman, E., Ergener, D., & Kani, I. (1995). Static options replication. Journal of Deriva-
tives, 2, 78-95.
Evans. L. (2002). Partial di erential equations. Rhode Island: American Mathematical
Society.
Etheridge, A. (2002). A course in nancial calculus. United Kingdom: Cambridge.
Fink, J. (2003). An examination of the e ectiveness of static hedging in the presence of
stochastic volatility. Journal of Futures Markets, 23, 859-890.
Hull, J. (2009). Options, futures, and other derivatives (7th ed.). New Jersey: Pearson.
Karatzas, I., & Shreve, S., E. (1998). Brownian motion and stochastic calculus (2nd ed.).
New York: Springer.
Maruhn, J. H., & Sachs, E. W. (2009). Robust static hedging of barrier options in sto-
chastic volatility models. Mathematical Methods of Operations Research, 70, 405-433.
Nalholm, M., & Poulsen, R. (2006a). Static hedging of barrier options under general asset
dynamics: Uni cation and application. Journal of Derivatives, 13, 46-60.
30
Nalholm, M., & Poulsen, R. (2006b). Static hedging and model risk for barrier options.
Journal of Futures Markets, 26, 149-163.
Thomesen, H. (1998). Barrier options-Evaluation and hedging. Unpublished doctoral
dissertation, University of Aarhus, Aarhus, Denmark.
Tompkins, R. (2002). Static versus dynamic hedging of exotic options: An evaluation of
hedge performance via simulation. Journal of Risk Finance, 3, 6-34.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62785-
dc.description.abstractThis paper further adjusts the static replication method of Derman, Ergenger,and Kani. (1995, DEK) and modi ed DEK method of Chung, Shin, and Tsai. (2010,modi ed DEK) to reduce hedging errors. Chung et al. hedge continuous barrier
options under the Black and Scholes (1973) model. In those previous methods, the value of the static replication portfolio, consisting of many options with varying
maturities, matches the boundary value of the barrier option at n evenly time-spaced points when the stock price equals to the barrier (and zero theta in modi ed DEK). We need to calculate the rst passage time density under risk-neutral probability measure when we want to derive the fair price of the barrier option (closed-form). The mathching points by using the quantile are more intuitive than those by even space. In the modi ed single PDEK method we construct a portfolio of standard options with uneven maturities (time points) and one binary option at last time
point to match the boundary value, and we just match the theta at the last point on the barrier. Our numerical results indicate that the modi ed single PDEK approach improves the performance of static hedges.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:10:22Z (GMT). No. of bitstreams: 1
ntu-101-R98723025-1.pdf: 1156370 bytes, checksum: 6c186e3943a76671658cb869dcb748c4 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsThe Authorization of Oral Members for Research Dissertation i
Acknowledgements ii
Abstract (in Chinese) iii
Abstract (in English) iv
1 Introduction 1
2 Overview of Derman et al. (1995) and Chung et al. (2010) 5
2.1 Overview of Derman et al. (1995) . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Overview of Chung et al. (2010) . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Implementing the PDEK Method and Modied (Single) PDEK Method 9
4 Numerical Analysis and Discussions 14
5 Conclusion 28
Bibliography 30
Appendix 32
A Mathematical Background 32
A.1 Distribution of the Maximal Process . . . . . . . . . . . . . . . . . . . . . 32
A.2 First Passage Time Probability . . . . . . . . . . . . . . . . . . . . . . . . 36
B Parameter Sets Description 37
dc.language.isoen
dc.subject布朗運動zh_TW
dc.subject靜態避險zh_TW
dc.subject穿時密度zh_TW
dc.subjectStatic Hedgingen
dc.subjectBrownian Motionen
dc.subjectFirst Passage Time Densityen
dc.title一個利用等分機率的改良式靜態避險方法zh_TW
dc.titleA Modified Equally Probability-spaced Static Hedging Methoden
dc.typeThesis
dc.date.schoolyear101-1
dc.description.degree碩士
dc.contributor.oralexamcommittee王耀輝,謬維中
dc.subject.keyword布朗運動,靜態避險,穿時密度,zh_TW
dc.subject.keywordBrownian Motion,Static Hedging,First Passage Time Density,en
dc.relation.page37
dc.rights.note有償授權
dc.date.accepted2013-02-25
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved