Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62770
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂勝春
dc.contributor.authorFu-Chia Yangen
dc.contributor.author楊馥嘉zh_TW
dc.date.accessioned2021-06-16T16:09:55Z-
dc.date.available2015-04-25
dc.date.copyright2013-04-25
dc.date.issued2013
dc.date.submitted2013-03-18
dc.identifier.citationREFERENCES
Ahmed AA, Lu Z, Jennings NB, Etemadmoghadam D, Capalbo L, Jacamo RO, Barbosa-Morais N, Le XF, Vivas-Mejia P, Lopez-Berestein G, Grandjean G, Bartholomeusz G, Liao W, Andreeff M, Bowtell D, Glover DM, Sood AK, Bast RC, Jr. (2010) SIK2 is a centrosome kinase required for bipolar mitotic spindle formation that provides a potential target for therapy in ovarian cancer. Cancer Cell 18(2): 109-121
Al-Hakim AK, Goransson O, Deak M, Toth R, Campbell DG, Morrice NA, Prescott AR, Alessi DR (2005) 14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK. J Cell Sci 118: 5661-5673
Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R, Graff-Radford NR, Hutton ML, Dickson DW (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. Ann Neurol 61(5): 435-445
Araki K, Nagata K (2012) Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol 4(8): a015438
Bricambert J, Miranda J, Benhamed F, Girard J, Postic C, Dentin R (2010) Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest 120(12): 4316-4331
Burman C, Ktistakis NT (2010) Autophagosome formation in mammalian cells. Semin Immunopathol 32(4): 397-413
Chen WH (2007) Functional interaction between Salt-inducible kinase 2 and p97/VCP regulates ER-associated degradation and application of nanodiamond in proteomic research. Institute of Molecular Medicine College of Medicine, National Taiwan University Doctoral Dissertation
Chin JY, Knowles RB, Schneider A, Drewes G, Mandelkow EM, Hyman BT (2000) Microtubule-affinity regulating kinase (MARK) is tightly associated with neurofibrillary tangles in Alzheimer brain: a fluorescence resonance energy transfer study. J Neuropathol Exp Neurol 59(11): 966-971
Chondrogianni N, Gonos ES (2012) Structure and function of the ubiquitin-proteasome system: modulation of components. Prog Mol Biol Transl Sci 109: 41-74
Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, Ferguson DJ, Campbell BJ, Jewell D, Simmons A (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16(1): 90-97
Coppola D, Khalil F, Eschrich SA, Boulware D, Yeatman T, Wang HG (2008a) Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer 113(10): 2665-2670
Coppola D, Oliveri C, Sayegh Z, Boulware D, Takahashi Y, Pow-Sang J, Djeu JY, Wang HG (2008b) Bax-interacting factor-1 expression in prostate cancer. Clin Genitourin Cancer 6(2): 117-121
Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, Hansen L, Adame A, Galasko D, Masliah E (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One 5(2): e9313
Dentin R, Liu Y, Koo SH, Hedrick S, Vargas T, Heredia J, Yates J, 3rd, Montminy M (2007) Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449(7160): 366-369
Doi J, Takemori H, Lin XZ, Horike N, Katoh Y, M. O (2002) Salt-inducible kinase represses PKA-mediated activation of human cholesterol side chain cleavage cytochrome promoter through the CREB basic leucine zipper domain. J Biol Chem 277: 15629-15637
Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E (1997) MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89(2): 297-308
Drewes G, Trinczek B, Illenberger S, Biernat J, Schmitt-Ulms G, Meyer HE, Mandelkow EM, Mandelkow E (1995) Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J Biol Chem 270(13): 7679-7688
Ebneth A, Drewes G, Mandelkow EM, Mandelkow E (1999) Phosphorylation of MAP2c and MAP4 by MARK kinases leads to the destabilization of microtubules in cells. Cell Motil Cytoskeleton 44(3): 209-224
Eckermann K, Mocanu MM, Khlistunova I, Biernat J, Nissen A, Hofmann A, Schonig K, Bujard H, Haemisch A, Mandelkow E, Zhou L, Rune G, Mandelkow EM (2007) The beta-propensity of Tau determines aggregation and synaptic loss in inducible mouse models of tauopathy. J Biol Chem 282(43): 31755-31765
Eskelinen EL (2005) Maturation of autophagic vacuoles in Mammalian cells. Autophagy 1(1): 1-10
Fader CM, Sanchez D, Furlan M, Colombo MI (2008) Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic 9(2): 230-250
Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447(7148): 1121-1125
Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78: 477-513
Geng J, Klionsky DJ (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep 9(9): 859-864
Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82: 373-428
Goldstein B, Macara IG (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13(5): 609-622
Gutierrez MG, Munafo DB, Beron W, Colombo MI (2004) Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 117(Pt 13): 2687-2697
Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141(4): 656-667
Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095): 885-889
Hardie DG (2007) AMP-activated protein kinase as a drug target. Annu Rev Pharmacol Toxicol 47: 185-210
Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11(12): 1433-1437
Hegde RS, Ploegh HL (2010) Quality and quantity control at the endoplasmic reticulum. Curr Opin Cell Biol 22(4): 437-446
Henriksson E, Jones HA, Patel K, Peggie M, Morrice N, Sakamoto K, Goransson O (2012) The AMPK-related kinase SIK2 is regulated by cAMP via phosphorylation at Ser358 in adipocytes. The Biochemical journal 444(3): 503-514
Horike N, Kumagai A, Shimono Y, Onishi T, Itoh Y, Sasaki T, Kitagawa K, Hatano O, Takagi H, Susumu T, Teraoka H, Kusano K, Nagaoka Y, Kawahara H, Takemori H (2010) Downregulation of SIK2 expression promotes the melanogenic program in mice. Pigment Cell Melanoma Res 23(6): 809-819
Horike N, Takemori H, Katoh Y, Doi J, Min L, Asano T, Sun XJ, Yamamoto H, Kasayama S, Muraoka M, Nonaka Y, Okamoto M (2003) Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem 278(20): 18440-18447
Huang JY, Chen WH, Chang YL, Wang HT, Chuang WT, Lee SC (2006) Modulation of nucleosome-binding activity of FACT by poly(ADP-ribosyl)ation. Nucleic Acids Res 34(8): 2398-2407
Hurov JB, Watkins JL, Piwnica-Worms H (2004) Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol 14(8): 736-741
Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109(3): 275-282
Ionov Y, Nowak N, Perucho M, Markowitz S, Cowell JK (2004) Manipulation of nonsense mediated decay identifies gene mutations in colon cancer Cells with microsatellite instability. Oncogene 23(3): 639-645
Jager S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, Eskelinen EL (2004) Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117(Pt 20): 4837-4848
Jaleel M, Villa F, Deak M, Toth R, Prescott AR, Van Aalten DM, Alessi DR (2006) The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation. Biochem J 394(Pt 3): 545-555
Johnson LN, Noble ME, Owen DJ (1996) Active and inactive protein kinases: structural basis for regulation. Cell 85(2): 149-158
Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, Weihl CC (2009) Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol 187(6): 875-888
Ju JS, Miller SE, Hanson PI, Weihl CC (2008) Impaired protein aggregate handling and clearance underlie the pathogenesis of p97/VCP-associated disease. J Biol Chem 283(44): 30289-30299
Ju JS, Weihl CC (2010) p97/VCP at the intersection of the autophagy and the ubiquitin proteasome system. Autophagy 6: 283-285
Katoh Y, Takemori H, Horike N, Doi J, Muraoka M, Min L, Okamoto M (2004) Salt-inducible kinase (SIK) isoforms: their involvement in steroidogenesis and adipogenesis. Mol Cell Endocrinol 217: 109-112
Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115(6): 727-738
Kim MS, Jeong EG, Ahn CH, Kim SS, Lee SH, Yoo NJ (2008a) Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability. Hum Pathol 39(7): 1059-1063
Kim SY, Oh YL, Kim KM, Jeong EG, Kim MS, Yoo NJ, Lee SH (2008b) Decreased expression of Bax-interacting factor-1 (Bif-1) in invasive urinary bladder and gallbladder cancers. Pathology 40(6): 553-557
Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118(Pt 1): 7-18
Knaevelsrud H, Ahlquist T, Merok MA, Nesbakken A, Stenmark H, Lothe RA, Simonsen A (2010) UVRAG mutations associated with microsatellite unstable colon cancer do not affect autophagy. Autophagy 6(7): 863-870
Knaevelsrud H, Simonsen A (2010) Fighting disease by selective autophagy of aggregate-prone proteins. FEBS Lett 584(12): 2635-2645
Koneri K, Goi T, Hirono Y, Katayama K, Yamaguchi A (2007) Beclin 1 gene inhibits tumor growth in colon cancer cell lines. Anticancer Res 27(3B): 1453-1457
Krainc D (2010) Clearance of mutant proteins as a therapeutic target in neurodegenerative diseases. Arch Neurol 67(4): 388-392
Kumagai A, Horike N, Satoh Y, Uebi T, Sasaki T, Itoh Y, Hirata Y, Uchio-Yamada K, Kitagawa K, Uesato S, Kawahara H, Takemori H, Nagaoka Y (2011) A potent inhibitor of SIK2, 3, 3', 7-trihydroxy-4'-methoxyflavon (4'-O-methylfisetin), promotes melanogenesis in B16F10 melanoma cells. PLoS One 6(10): e26148
Lee EB, Lee VM, Trojanowski JQ (2012) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13(1): 38-50
Lee IH, Finkel T (2009) Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 284(10): 6322-6328
Lee JA, Beigneux A, Ahmad ST, Young SG, Gao FB (2007) ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol 17(18): 1561-1567
Lee JW, Jeong EG, Soung YH, Nam SW, Lee JY, Yoo NJ, Lee SH (2006) Decreased expression of tumour suppressor Bax-interacting factor-1 (Bif-1), a Bax activator, in gastric carcinomas. Pathology 38(4): 312-315
Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, Taylor JP, Cuervo AM, Yao TP (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29(5): 969-980
Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4): 463-477
Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8(7): 688-699
Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, Vergne I, Deretic V, Feng P, Akazawa C, Jung JU (2008) Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10(7): 776-787
Lin YH (2009) The Role of SIK2 in Aggresome Processing. Institute of Molecular Medicine College of Medicine, National Taiwan University Master Thesis
Liu Y, Poon V, Sanchez-Watts G, Watts AG, Takemori H, Aguilera G (2012) Salt-inducible kinase is involved in the regulation of corticotropin-releasing hormone transcription in hypothalamic neurons in rats. Endocrinology 153(1): 223-233
Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Makela TP, Hardie DG, Alessi DR (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23(4): 833-843
Lu H, Murata-Kamiya N, Saito Y, Hatakeyama M (2009) Role of partitioning-defective 1/microtubule affinity-regulating kinases in the morphogenetic activity of Helicobacter pylori CagA. J Biol Chem 284(34): 23024-23036
Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, Settembre C, Gavina M, Pulze L, Giardino I, Pettoello-Mantovani M, D'Apolito M, Guido S, Masliah E, Spencer B, Quaratino S, Raia V, Ballabio A, Maiuri L (2010) Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol 12(9): 863-875
Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6(4): 352-361
Marx A, Nugoor C, Muller J, Panneerselvam S, Timm T, Bilang M, Mylonas E, Svergun DI, Mandelkow EM, Mandelkow E (2006) Structural variations in the catalytic and ubiquitin-associated domains of microtubule-associated protein/microtubule affinity regulating kinase (MARK) 1 and MARK2. J Biol Chem 281(37): 27586-27599
Marx A, Nugoor C, Panneerselvam S, Mandelkow E (2010) Structure and function of polarity-inducing kinase family MARK/Par-1 within the branch of AMPK/Snf1-related kinases. FASEB J 24: 1637-1648
Massey A, Zhang C, Cuervo A (2006) Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol 73: 205-235
Matenia D, Griesshaber B, Li XY, Thiessen A, Johne C, Jiao J, Mandelkow E, Mandelkow EM (2005) PAK5 kinase is an inhibitor of MARK/Par-1, which leads to stable microtubules and dynamic actin. Mol Biol Cell 16(9): 4410-4422
Matenia D, Mandelkow EM (2009) The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem Sci 34(7): 332-342
Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11(4): 385-396
Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7(4): 278-294
Miracco C, Cosci E, Oliveri G, Luzi P, Pacenti L, Monciatti I, Mannucci S, De Nisi MC, Toscano M, Malagnino V, Falzarano SM, Pirtoli L, Tosi P (2007) Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int J Oncol 30(2): 429-436
Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22): 2861-2873
Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395(6700): 395-398
Mocanu MM, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D, Petrova O, Schonig K, Bujard H, Mandelkow E, Zhou L, Rune G, Mandelkow EM (2008a) The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J Neurosci 28: 737-748
Mocanu MM, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D, Petrova O, Schonig K, Bujard H, Mandelkow E, Zhou L, Rune G, Mandelkow EM (2008b) The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J Neurosci 28(3): 737-748
Muraoka M, Fukushima A, Viengchareun S, Lombes M, Kishi F, Miyauchi A, Kanematsu M, Doi J, Kajimura J, Nakai R, Uebi T, Okamoto M, Takemori H (2009) Involvement of SIK2/TORC2 signaling cascade in the regulation of insulin-induced PGC-1alpha and UCP-1 gene expression in brown adipocytes. Am J Physiol Endocrinol Metab 296(6): E1430-1439
Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796): 130-133
Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2): 113-122
Noda T, Fujita N, Yoshimori T (2009) The late stages of autophagy: how does the end begin? Cell Death Differ 16(7): 984-990
Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33): 24131-24145
Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6): 927-939
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12): 1809-1820
Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z, Vacher C, O'Kane CJ, Brown SD, Rubinsztein DC (2005) Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet 37(7): 771-776
Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11(9): 1107-1117
Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12(8): 747-757
Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6): 585-595
Rohn TT (2008) Caspase-cleaved TAR DNA-binding protein-43 is a major pathological finding in Alzheimer's disease. Brain Res 1228: 189-198
Ross CA, Poirier MA (2005) Opinion: What is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6(11): 891-898
Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6(4): 304-312
Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, Potolicchio I, Nieves E, Cuervo AM, Santambrogio L (2011) Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20(1): 131-139
Sasaki T, Takemori H, Yagita Y, Terasaki Y, Uebi T, Horike N, Takagi H, Susumu T, Teraoka H, Kusano K, Hatano O, Oyama N, Sugiyama Y, Sakoda S, Kitagawa K (2011) SIK2 is a key regulator for neuronal survival after ischemia via TORC1-CREB. Neuron 69(1): 106-119
Schaar BT, Kinoshita K, McConnell SK (2004) Doublecortin microtubule affinity is regulated by a balance of kinase and phosphatase activity at the leading edge of migrating neurons. Neuron 41(2): 203-213
Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR, 3rd, Takemori H, Okamoto M, Montminy M (2004) The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119(1): 61-74
Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306(5698): 990-995
Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T, Masliah E (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases. J Neurosci 29(43): 13578-13588
Sun HY (2007) Regulation of SIK2 activity by acetylation. Institute of Molecular Medicine College of Medicine, National Taiwan University Master Thesis
Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q (2008) Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 105: 19211-19216
Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mule JJ, Pledger WJ, Wang HG (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9(10): 1142-1151
Timm T, Balusamy K, Li X, Biernat J, Mandelkow E, Mandelkow EM (2008a) Glycogen synthase kinase (GSK) 3beta directly phosphorylates Serine 212 in the regulatory loop and inhibits microtubule affinity-regulating kinase (MARK) 2. J Biol Chem 283(27): 18873-18882
Timm T, Li XY, Biernat J, Jiao J, Mandelkow E, Vandekerckhove J, Mandelkow EM (2003) MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. EMBO J 22(19): 5090-5101
Timm T, Marx A, Panneerselvam S, Mandelkow E, Mandelkow EM (2008b) Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein. BMC Neurosci 9 Suppl 2: S9
Tochio N, Koshiba S, Kobayashi N, Inoue M, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Motoda Y, Kobayashi A, Tanaka A, Hayashizaki Y, Terada T, Shirouzu M, Kigawa T, Yokoyama S (2006) Solution structure of the kinase-associated domain 1 of mouse microtubule-associated protein/microtubule affinity-regulating kinase 3. Protein Sci 15(11): 2534-2543
Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, Yuan L, Soares F, Chea E, Le Bourhis L, Boneca IG, Allaoui A, Jones NL, Nunez G, Girardin SE, Philpott DJ (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11(1): 55-62
Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, Yao TP, Dantuma NP, Taylor JP (2010) VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6(2): 217-227
Uboha NV, Flajolet M, Nairn AC, Picciotto MR (2007) A calcium- and calmodulin-dependent kinase Ialpha/microtubule affinity regulating kinase 2 signaling cascade mediates calcium-dependent neurite outgrowth. J Neurosci 27(16): 4413-4423
Uebi T, Itoh Y, Hatano O, Kumagai A, Sanosaka M, Sasaki T, Sasagawa S, Doi J, Tatsumi K, K. M, Morii E, Aozasa K, Kawamura T, Okumura M, Nakae J, Takikawa H, Fukusato T, Koura M, Nish M, Hamsten A, Silveira A, Bertorello AM, Kitagawa K, Nagaoka Y, Kawahara H, Tomonaga T, Naka T, Ikegawa S, Tsumaki N, Matsuda J, Takemori H (2012) Involvement of SIK3 in glucose and lipid homeostasis in mice. PLoS One 7: e37803
van der Vaart A, Reggiori F (2010) The Golgi complex as a source for yeast autophagosomal membranes. Autophagy 6(6): 800-801
Wang CW, Klionsky DJ (2003) The molecular mechanism of autophagy. Mol Med 9(3-4): 65-76
Wang IF, Wu LS, Shen CK (2008) TDP-43: an emerging new player in neurodegenerative diseases. Trends Mol Med 14(11): 479-485
Wang Z, Takemori H, Halder SK, Nonaka Y, Okamoto M (1999) Cloning of a novel kinase (SIK) of the SNF1/AMPK family from high salt-diet-treated rat adrenal. FEBS Lett 453: 135-139
Wong AS, Cheung ZH, Ip NY (2011) Molecular machinery of macroautophagy and its deregulation in diseases. Biochim Biophys Acta 1812(11): 1490-1497
Yang Z, Klionsky D (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22: 124-131
Yi C, Ma M, Ran L, Zheng J, Tong J, Zhu J, Ma C, Sun Y, Zhang S, Feng W, Zhu L, Le Y, Gong X, Yan X, Hong B, Jiang FJ, Xie Z, Miao D, Deng H, Yu L (2012) Function and molecular mechanism of acetylation in autophagy regulation. Science 336(6080): 474-477
Yi C, Yu L (2012) How does acetylation regulate autophagy? Autophagy 8: 1529-1530
Zhang YJ, Xu YF, Dickey CA, Buratti E, Baralle F, Bailey R, Pickering-Brown S, Dickson D, Petrucelli L (2007) Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci 27(39): 10530-10534
Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11(4): 468-476
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62770-
dc.description.abstractSIK2是屬於AMPK家族的絲胺酸/蘇胺酸蛋白激酶(serine/threonine protein kinase)。過去的研究顯示,SIK2在脂肪細胞分化過程中具有調控早期胰島素訊息傳遞的功能,並可透過CREB調節反應賀爾蒙或營養狀態的基因表現。然而,SIK2活性的調控機制尚待研究釐清。在本研究中,我們發現當SIK2在第53位置的賴胺酸(Lys53)被p300/CBP乙醯化,會導致SIK2激酶活性受到抑制;而HDAC6可將SIK2的Lys53去乙醯化,並恢復其活性。此外,過量表現以麩醯胺酸取代Lys53(K53Q)的乙醯化擬態突變型(acetylation-mimetic mutant),會造成SIK2聚集在自噬體(autophagosome)內;反之,以精胺酸取代Lys53(K53R)的抗乙醯化突變型(non-acetylatable mutant)則不會造成此現象。再者,我觀察到SIK2基因剔除(knockdown)會癱瘓自噬體和溶酶體的融合,更證實了SIK2及其活性為清除TDP-43Δ包涵體(inclusion body)所必需。值得注意的是在MG132處理的細胞中,內生(endogenous)SIK2聚集在自噬體內,且伴隨著SIK2乙醯化的上升;然而,同樣的現象並沒有發生在無血清培養的細胞中(serum-starved cells)。此結果說明蛋白酶體功能障礙(proteasome dysfunction)可能引發SIK2的乙醯化,並藉此清除隨之而生的蛋白質堆積。另一方面,我發現內質網蛋白質降解路徑的受質(ERAD substrate)由內質網到細胞質的逆向轉傳(retrotranslocation),依然需要SIK2的激酶活性才能完成。不只SIK2,另一個SIK蛋白家族成員SIK3也同樣可被CBP和HDAC6所控制的乙醯化修飾。除了SIK家族的激酶,我更進一步地觀察到MARK1的活性如同SIK2一般,受控於由CBP和HDAC6所調節的乙醯化修飾。此現象暗示著MARK1在神經退化疾病中可能也受到類似的機制所調控。總結上述,本研究證明SIK2為調控內質網蛋白質降解路徑和自噬作用的關鍵因子,並可透過激酶與去乙醯酶(deacetylase)的交互作用共同調節細胞內蛋白質的平衡。zh_TW
dc.description.abstractSalt-inducible kinase 2 (SIK2) is a serine/threonine protein kinase belonging to the AMP-activated protein kinase (AMPK) family. SIK2 has been shown to function in the insulin-signaling pathway during adipocyte differentiation and to modulate CREB-mediated gene expression in response to hormones and nutrients. However, molecular mechanism underlying the regulation of SIK2 kinase activity remains largely elusive. In this study, I report a dynamic, post-translational regulation of its kinase activity that is coordinated by an acetylation-deaceytlation switch – p300/CBP-mediated Lys53-acetylation inhibits SIK2 kinase activity, while HDAC6-mediated deacetylation restores the activity. Interestingly, overexpression of acetylation-mimetic mutant of SIK2 (SIK2-K53Q), but not the non-acetylatable K53R variant, resulted in sequestration of SIK2 in autophagosomes. Further consistent with a role in autophagy, knockdown of SIK2 abrogated autophagosome and lysosome fusion. Consequently, SIK2 and its kinase activity are indispensable for the removal of TDP-43Δ inclusion bodies. Remarkably, the accumulation of endogenous SIK2 in autophagosomes and the corresponding elevation of its acetylation were also observed in cells treated with MG132, yet not in serum-starved cells, revealing that this acetylation-based regulation may be induced by proteasome dysfunction and required for disposal of the resultant protein aggregates. Moreover, the requirement of SIK2 activity for retrotranslocation of ERAD substrate from ER to cytosol was evident. On the other hand, another SIK subfamily member, SIK3, was also modified reciprocally by CBP and HDAC6. In addition to SIK subfamily, the activity of MARK1 was under the control of CBP and HDAC6-mediated acetylation, implying its possible regulation in neurodegeneration diseases. Collectively, our findings uncover the critical roles of SIK2 in ERAD as well as autophagy progression and further suggest a mechanism in which the interplay among kinase and deacetylase activities coordinates cellular protein homeostasis.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:09:55Z (GMT). No. of bitstreams: 1
ntu-102-D96b46018-1.pdf: 6895370 bytes, checksum: e9cef250728ca3975ca909718ddfa68f (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
Chapter 1. Literature Review 1
1.1 Protein homeostasis 1
1.1.1 ERAD and UPS 1
1.1.2 Autophagy 3
1.1.2.1 Overview of macroautophagy 4
Autophagosome formation 5
Autophagosome maturation 6
1.1.2.2 Deregulation of autophagy in diseases 8
Cancer 8
Inflammatory disorders 9
Neurodegeneration 9
1.2 Salt-inducible kinase 2 (SIK2) 10
1.2.1 SIK subfamily 10
1.2.2 The functions of SIK2 11
1.2.3 The regulations of SIK2 12
1.3 MAP/microtubule affinity regulating kinase 1 (MARK1) 13
1.3.1 The structure of MARK1 13
1.3.2 The functions of MARK1 15
1.3.3 The regulations of MARK1 15
1.4 Rationale 16
Chapter 2. Reversible Acetylation Regulates Salt-Inducible Kinase (SIK2) and Its Function in Autophagy 18
2.1 Introduction 18
2.2 Materials and methods 21
2.2.1 DNA constructs and mutagenesis 21
2.2.2 Antibodies 22
2.2.3 Cell culture and transfection 23
2.2.4 Immunoprecipitation and Western blot analysis 23
2.2.5 [γ-35S]ATP binding assay 24
2.2.6 Generation of 3D structure 24
2.2.7 CRE-reporter assay 25
2.2.8 Statistical analysis 25
2.2.9 Immunofluorescence staining and confocal microscopy 25
2.2.10 Electron microscopy 26
2.2.11 Preparation of soluble/insoluble fractions and slot blot analysis 27
2.2.12 Mass spectrometry analysis 27
2.2.13 In vitro deacetylation assay 28
2.2.14 In vitro kinase assay 28
2.3 Results 30
2.3.1 The ATP binding and kinase activity of SIK2 are impaired by K53-acetylation which is reciprocally regulated by p300/CBP and HDAC6 30
2.3.2 K53-acetylation-inactivated kinase activity of SIK2 is restored upon HDAC6-mediated deacetylation 32
2.3.3 Acetylation elicits SIK2 sequestration to autophagosomes 33
2.3.4 SIK2 is indispensible for the processing of autophagosomes 34
2.3.5 SIK2 activity is required for the clearance of TDP-43Δ inclusion bodies 35
2.3.6 Proteasome inhibition induces SIK2 acetylation and sequestration of SIK2 to autophagosomes 36
2.3.7 SIK3 and MARK1 are also under the control of CBP and HDAC6-mediated acetylation 38
2.4 Discussion 41
REFERENCES 47
FIGURES 66
Figure 1. Lys53 is 4 residues away from the critical residue for ATP-binding, Lys49 66
Figure 2. K53Q inhibits the ATP binding ability of SIK2 67
Figure 3. Structural alteration of SIK2 by K53-acetylation 68
Figure 4. The kinase activity of SIK2 K53Q is deficient 69
Figure 5. Kinase-deficient mutants recover SIK2-mediated inhibition of CRE activity 70
Figure 6. Inactivated SIK2 by CBP-mediated K53-acetylation is restored by HDAC6-mediated deacetylation 71
Figure 7. Kinase-deficient SIK2 is sequestrated in autophagosomes 72
Figure 8. Acetylation elicits SIK2 sequestration to autophagosomes 73
Figure 9. SIK2 is essential for autophagosome processing 74
Figure 10. SIK2 knockdown results in abnormal accumulation of multilamellar autophagosomes 75
Figure 11. SIK2 activity is required for the processing/removal of TDP-43Δ inclusion bodies 76
Figure 12. SIK2 is required for the retrotranslocation of ERAD substrate 78
Figure 13. SIK2-KD induces aggresome accumulation 80
Figure 14. Sequestration of endogenous SIK2 in autophagosome upon proteasome inhibition 81
Figure 15. SIK2 acetylation is elevated when proteasome function is blocked 82
Figure 16. MARK1 activity is also regulated by CBP and HDAC6-mediated acetylation 83
Figure 17. Lys37 is identified as an acetylation site on SIK3 by mass spectrometry 84
Figure 18. The acetylation on Lys41 of SIK3, the residue corresponding to SIK2-K53, is also regulated by CBP and HDAC6 85
Figure 19. Both Lys89 and Lys93 on MARK1 are acetylated and modulated by CBP and HDAC6 86
Figure 20. SIK2 kinase activity, controlled by an acetylation-based regulatory switch, contributes to the progression of autophagy 87
Figure 21. A hypothesized model suggests the possible role of SIK2 in the coordination of ERAD and autophagy 88
APPENDIX 1 89
FIGURE A1. The kinase activity of SIK2 is impaired by Lys53-acetylation (Chen, 2007) 90
FIGURE A2. SIK2 and p97/VCP colocalizes the TDP-43Δ inclusion bodies (Lin, 2009) 91
FIGURE A3. SIK2 is essential for the processing/removal of TDP-43Δ inclusion bodies (Lin, 2009) 92
FIGURE A4. Proteasome inhibition leads to SIK2 accumulation in insoluble fraction with ubiquitinated proteins (Lin, 2009) 93
FIGURE A5. SIK2 is deacetylated by HDAC6 in vitro (Sun, 2007) 94
FIGURE A6. Hsp90 is an important chaperone for SIK2 (Y. H. Lin, unpublished data) 95
FIGURE A7. SIK2 is activated under stress conditions (C. T. Chuang, unpublished data) 96
FIGURE A8. JNK-mediated activation of SIK2 under MG132 inhibition of proteasome (C. T. Chuang, unpublished data) 96
APPENDIX 2 97
dc.language.isoen
dc.subjectTDP-43zh_TW
dc.subjectHDAC6zh_TW
dc.subjectp300/CBPzh_TW
dc.subject自噬zh_TW
dc.subject乙醯化zh_TW
dc.subjectSIK2zh_TW
dc.subjectTDP-43en
dc.subjectacetylationen
dc.subjectautophagyen
dc.subjectp300/CBPen
dc.subjectHDAC6en
dc.subjectSIK2en
dc.title蛋白激酶SIK2的調控及其功能之研究zh_TW
dc.titleRegulation and Function of Protein Kinase SIK2en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.coadvisor蔡明道
dc.contributor.oralexamcommittee陳瑞華,譚賢明,吳君泰
dc.subject.keywordSIK2,乙醯化,自噬,p300/CBP,HDAC6,TDP-43,zh_TW
dc.subject.keywordSIK2,acetylation,autophagy,p300/CBP,HDAC6,TDP-43,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2013-03-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
6.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved