請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62770完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂勝春 | |
| dc.contributor.author | Fu-Chia Yang | en |
| dc.contributor.author | 楊馥嘉 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:09:55Z | - |
| dc.date.available | 2015-04-25 | |
| dc.date.copyright | 2013-04-25 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-03-18 | |
| dc.identifier.citation | REFERENCES
Ahmed AA, Lu Z, Jennings NB, Etemadmoghadam D, Capalbo L, Jacamo RO, Barbosa-Morais N, Le XF, Vivas-Mejia P, Lopez-Berestein G, Grandjean G, Bartholomeusz G, Liao W, Andreeff M, Bowtell D, Glover DM, Sood AK, Bast RC, Jr. (2010) SIK2 is a centrosome kinase required for bipolar mitotic spindle formation that provides a potential target for therapy in ovarian cancer. Cancer Cell 18(2): 109-121 Al-Hakim AK, Goransson O, Deak M, Toth R, Campbell DG, Morrice NA, Prescott AR, Alessi DR (2005) 14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK. J Cell Sci 118: 5661-5673 Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R, Graff-Radford NR, Hutton ML, Dickson DW (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer's disease. Ann Neurol 61(5): 435-445 Araki K, Nagata K (2012) Protein folding and quality control in the ER. Cold Spring Harb Perspect Biol 4(8): a015438 Bricambert J, Miranda J, Benhamed F, Girard J, Postic C, Dentin R (2010) Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest 120(12): 4316-4331 Burman C, Ktistakis NT (2010) Autophagosome formation in mammalian cells. Semin Immunopathol 32(4): 397-413 Chen WH (2007) Functional interaction between Salt-inducible kinase 2 and p97/VCP regulates ER-associated degradation and application of nanodiamond in proteomic research. Institute of Molecular Medicine College of Medicine, National Taiwan University Doctoral Dissertation Chin JY, Knowles RB, Schneider A, Drewes G, Mandelkow EM, Hyman BT (2000) Microtubule-affinity regulating kinase (MARK) is tightly associated with neurofibrillary tangles in Alzheimer brain: a fluorescence resonance energy transfer study. J Neuropathol Exp Neurol 59(11): 966-971 Chondrogianni N, Gonos ES (2012) Structure and function of the ubiquitin-proteasome system: modulation of components. Prog Mol Biol Transl Sci 109: 41-74 Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, Ferguson DJ, Campbell BJ, Jewell D, Simmons A (2010) NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med 16(1): 90-97 Coppola D, Khalil F, Eschrich SA, Boulware D, Yeatman T, Wang HG (2008a) Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer 113(10): 2665-2670 Coppola D, Oliveri C, Sayegh Z, Boulware D, Takahashi Y, Pow-Sang J, Djeu JY, Wang HG (2008b) Bax-interacting factor-1 expression in prostate cancer. Clin Genitourin Cancer 6(2): 117-121 Crews L, Spencer B, Desplats P, Patrick C, Paulino A, Rockenstein E, Hansen L, Adame A, Galasko D, Masliah E (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One 5(2): e9313 Dentin R, Liu Y, Koo SH, Hedrick S, Vargas T, Heredia J, Yates J, 3rd, Montminy M (2007) Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449(7160): 366-369 Doi J, Takemori H, Lin XZ, Horike N, Katoh Y, M. O (2002) Salt-inducible kinase represses PKA-mediated activation of human cholesterol side chain cleavage cytochrome promoter through the CREB basic leucine zipper domain. J Biol Chem 277: 15629-15637 Drewes G, Ebneth A, Preuss U, Mandelkow EM, Mandelkow E (1997) MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger microtubule disruption. Cell 89(2): 297-308 Drewes G, Trinczek B, Illenberger S, Biernat J, Schmitt-Ulms G, Meyer HE, Mandelkow EM, Mandelkow E (1995) Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J Biol Chem 270(13): 7679-7688 Ebneth A, Drewes G, Mandelkow EM, Mandelkow E (1999) Phosphorylation of MAP2c and MAP4 by MARK kinases leads to the destabilization of microtubules in cells. Cell Motil Cytoskeleton 44(3): 209-224 Eckermann K, Mocanu MM, Khlistunova I, Biernat J, Nissen A, Hofmann A, Schonig K, Bujard H, Haemisch A, Mandelkow E, Zhou L, Rune G, Mandelkow EM (2007) The beta-propensity of Tau determines aggregation and synaptic loss in inducible mouse models of tauopathy. J Biol Chem 282(43): 31755-31765 Eskelinen EL (2005) Maturation of autophagic vacuoles in Mammalian cells. Autophagy 1(1): 1-10 Fader CM, Sanchez D, Furlan M, Colombo MI (2008) Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic 9(2): 230-250 Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447(7148): 1121-1125 Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78: 477-513 Geng J, Klionsky DJ (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep 9(9): 859-864 Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82: 373-428 Goldstein B, Macara IG (2007) The PAR proteins: fundamental players in animal cell polarization. Dev Cell 13(5): 609-622 Gutierrez MG, Munafo DB, Beron W, Colombo MI (2004) Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci 117(Pt 13): 2687-2697 Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J (2010) Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141(4): 656-667 Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095): 885-889 Hardie DG (2007) AMP-activated protein kinase as a drug target. Annu Rev Pharmacol Toxicol 47: 185-210 Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11(12): 1433-1437 Hegde RS, Ploegh HL (2010) Quality and quantity control at the endoplasmic reticulum. Curr Opin Cell Biol 22(4): 437-446 Henriksson E, Jones HA, Patel K, Peggie M, Morrice N, Sakamoto K, Goransson O (2012) The AMPK-related kinase SIK2 is regulated by cAMP via phosphorylation at Ser358 in adipocytes. The Biochemical journal 444(3): 503-514 Horike N, Kumagai A, Shimono Y, Onishi T, Itoh Y, Sasaki T, Kitagawa K, Hatano O, Takagi H, Susumu T, Teraoka H, Kusano K, Nagaoka Y, Kawahara H, Takemori H (2010) Downregulation of SIK2 expression promotes the melanogenic program in mice. Pigment Cell Melanoma Res 23(6): 809-819 Horike N, Takemori H, Katoh Y, Doi J, Min L, Asano T, Sun XJ, Yamamoto H, Kasayama S, Muraoka M, Nonaka Y, Okamoto M (2003) Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem 278(20): 18440-18447 Huang JY, Chen WH, Chang YL, Wang HT, Chuang WT, Lee SC (2006) Modulation of nucleosome-binding activity of FACT by poly(ADP-ribosyl)ation. Nucleic Acids Res 34(8): 2398-2407 Hurov JB, Watkins JL, Piwnica-Worms H (2004) Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr Biol 14(8): 736-741 Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109(3): 275-282 Ionov Y, Nowak N, Perucho M, Markowitz S, Cowell JK (2004) Manipulation of nonsense mediated decay identifies gene mutations in colon cancer Cells with microsatellite instability. Oncogene 23(3): 639-645 Jager S, Bucci C, Tanida I, Ueno T, Kominami E, Saftig P, Eskelinen EL (2004) Role for Rab7 in maturation of late autophagic vacuoles. J Cell Sci 117(Pt 20): 4837-4848 Jaleel M, Villa F, Deak M, Toth R, Prescott AR, Van Aalten DM, Alessi DR (2006) The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation. Biochem J 394(Pt 3): 545-555 Johnson LN, Noble ME, Owen DJ (1996) Active and inactive protein kinases: structural basis for regulation. Cell 85(2): 149-158 Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, Weihl CC (2009) Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol 187(6): 875-888 Ju JS, Miller SE, Hanson PI, Weihl CC (2008) Impaired protein aggregate handling and clearance underlie the pathogenesis of p97/VCP-associated disease. J Biol Chem 283(44): 30289-30299 Ju JS, Weihl CC (2010) p97/VCP at the intersection of the autophagy and the ubiquitin proteasome system. Autophagy 6: 283-285 Katoh Y, Takemori H, Horike N, Doi J, Muraoka M, Min L, Okamoto M (2004) Salt-inducible kinase (SIK) isoforms: their involvement in steroidogenesis and adipogenesis. Mol Cell Endocrinol 217: 109-112 Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115(6): 727-738 Kim MS, Jeong EG, Ahn CH, Kim SS, Lee SH, Yoo NJ (2008a) Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability. Hum Pathol 39(7): 1059-1063 Kim SY, Oh YL, Kim KM, Jeong EG, Kim MS, Yoo NJ, Lee SH (2008b) Decreased expression of Bax-interacting factor-1 (Bif-1) in invasive urinary bladder and gallbladder cancers. Pathology 40(6): 553-557 Klionsky DJ (2005) The molecular machinery of autophagy: unanswered questions. J Cell Sci 118(Pt 1): 7-18 Knaevelsrud H, Ahlquist T, Merok MA, Nesbakken A, Stenmark H, Lothe RA, Simonsen A (2010) UVRAG mutations associated with microsatellite unstable colon cancer do not affect autophagy. Autophagy 6(7): 863-870 Knaevelsrud H, Simonsen A (2010) Fighting disease by selective autophagy of aggregate-prone proteins. FEBS Lett 584(12): 2635-2645 Koneri K, Goi T, Hirono Y, Katayama K, Yamaguchi A (2007) Beclin 1 gene inhibits tumor growth in colon cancer cell lines. Anticancer Res 27(3B): 1453-1457 Krainc D (2010) Clearance of mutant proteins as a therapeutic target in neurodegenerative diseases. Arch Neurol 67(4): 388-392 Kumagai A, Horike N, Satoh Y, Uebi T, Sasaki T, Itoh Y, Hirata Y, Uchio-Yamada K, Kitagawa K, Uesato S, Kawahara H, Takemori H, Nagaoka Y (2011) A potent inhibitor of SIK2, 3, 3', 7-trihydroxy-4'-methoxyflavon (4'-O-methylfisetin), promotes melanogenesis in B16F10 melanoma cells. PLoS One 6(10): e26148 Lee EB, Lee VM, Trojanowski JQ (2012) Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 13(1): 38-50 Lee IH, Finkel T (2009) Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 284(10): 6322-6328 Lee JA, Beigneux A, Ahmad ST, Young SG, Gao FB (2007) ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol 17(18): 1561-1567 Lee JW, Jeong EG, Soung YH, Nam SW, Lee JY, Yoo NJ, Lee SH (2006) Decreased expression of tumour suppressor Bax-interacting factor-1 (Bif-1), a Bax activator, in gastric carcinomas. Pathology 38(4): 312-315 Lee JY, Koga H, Kawaguchi Y, Tang W, Wong E, Gao YS, Pandey UB, Kaushik S, Tresse E, Lu J, Taylor JP, Cuervo AM, Yao TP (2010) HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J 29(5): 969-980 Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4): 463-477 Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8(7): 688-699 Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, Vergne I, Deretic V, Feng P, Akazawa C, Jung JU (2008) Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10(7): 776-787 Lin YH (2009) The Role of SIK2 in Aggresome Processing. Institute of Molecular Medicine College of Medicine, National Taiwan University Master Thesis Liu Y, Poon V, Sanchez-Watts G, Watts AG, Takemori H, Aguilera G (2012) Salt-inducible kinase is involved in the regulation of corticotropin-releasing hormone transcription in hypothalamic neurons in rats. Endocrinology 153(1): 223-233 Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Makela TP, Hardie DG, Alessi DR (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23(4): 833-843 Lu H, Murata-Kamiya N, Saito Y, Hatakeyama M (2009) Role of partitioning-defective 1/microtubule affinity-regulating kinases in the morphogenetic activity of Helicobacter pylori CagA. J Biol Chem 284(34): 23024-23036 Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, Settembre C, Gavina M, Pulze L, Giardino I, Pettoello-Mantovani M, D'Apolito M, Guido S, Masliah E, Spencer B, Quaratino S, Raia V, Ballabio A, Maiuri L (2010) Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol 12(9): 863-875 Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6(4): 352-361 Marx A, Nugoor C, Muller J, Panneerselvam S, Timm T, Bilang M, Mylonas E, Svergun DI, Mandelkow EM, Mandelkow E (2006) Structural variations in the catalytic and ubiquitin-associated domains of microtubule-associated protein/microtubule affinity regulating kinase (MARK) 1 and MARK2. J Biol Chem 281(37): 27586-27599 Marx A, Nugoor C, Panneerselvam S, Mandelkow E (2010) Structure and function of polarity-inducing kinase family MARK/Par-1 within the branch of AMPK/Snf1-related kinases. FASEB J 24: 1637-1648 Massey A, Zhang C, Cuervo A (2006) Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol 73: 205-235 Matenia D, Griesshaber B, Li XY, Thiessen A, Johne C, Jiao J, Mandelkow E, Mandelkow EM (2005) PAK5 kinase is an inhibitor of MARK/Par-1, which leads to stable microtubules and dynamic actin. Mol Biol Cell 16(9): 4410-4422 Matenia D, Mandelkow EM (2009) The tau of MARK: a polarized view of the cytoskeleton. Trends Biochem Sci 34(7): 332-342 Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009) Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11(4): 385-396 Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7(4): 278-294 Miracco C, Cosci E, Oliveri G, Luzi P, Pacenti L, Monciatti I, Mannucci S, De Nisi MC, Toscano M, Malagnino V, Falzarano SM, Pirtoli L, Tosi P (2007) Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int J Oncol 30(2): 429-436 Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22): 2861-2873 Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395(6700): 395-398 Mocanu MM, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D, Petrova O, Schonig K, Bujard H, Mandelkow E, Zhou L, Rune G, Mandelkow EM (2008a) The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J Neurosci 28: 737-748 Mocanu MM, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D, Petrova O, Schonig K, Bujard H, Mandelkow E, Zhou L, Rune G, Mandelkow EM (2008b) The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J Neurosci 28(3): 737-748 Muraoka M, Fukushima A, Viengchareun S, Lombes M, Kishi F, Miyauchi A, Kanematsu M, Doi J, Kajimura J, Nakai R, Uebi T, Okamoto M, Takemori H (2009) Involvement of SIK2/TORC2 signaling cascade in the regulation of insulin-induced PGC-1alpha and UCP-1 gene expression in brown adipocytes. Am J Physiol Endocrinol Metab 296(6): E1430-1439 Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796): 130-133 Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2): 113-122 Noda T, Fujita N, Yoshimori T (2009) The late stages of autophagy: how does the end begin? Cell Death Differ 16(7): 984-990 Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33): 24131-24145 Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6): 927-939 Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y, Cattoretti G, Levine B (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12): 1809-1820 Ravikumar B, Acevedo-Arozena A, Imarisio S, Berger Z, Vacher C, O'Kane CJ, Brown SD, Rubinsztein DC (2005) Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat Genet 37(7): 771-776 Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11(9): 1107-1117 Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC (2010) Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12(8): 747-757 Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6): 585-595 Rohn TT (2008) Caspase-cleaved TAR DNA-binding protein-43 is a major pathological finding in Alzheimer's disease. Brain Res 1228: 189-198 Ross CA, Poirier MA (2005) Opinion: What is the role of protein aggregation in neurodegeneration? Nat Rev Mol Cell Biol 6(11): 891-898 Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6(4): 304-312 Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, Potolicchio I, Nieves E, Cuervo AM, Santambrogio L (2011) Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20(1): 131-139 Sasaki T, Takemori H, Yagita Y, Terasaki Y, Uebi T, Horike N, Takagi H, Susumu T, Teraoka H, Kusano K, Hatano O, Oyama N, Sugiyama Y, Sakoda S, Kitagawa K (2011) SIK2 is a key regulator for neuronal survival after ischemia via TORC1-CREB. Neuron 69(1): 106-119 Schaar BT, Kinoshita K, McConnell SK (2004) Doublecortin microtubule affinity is regulated by a balance of kinase and phosphatase activity at the leading edge of migrating neurons. Neuron 41(2): 203-213 Screaton RA, Conkright MD, Katoh Y, Best JL, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates JR, 3rd, Takemori H, Okamoto M, Montminy M (2004) The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119(1): 61-74 Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306(5698): 990-995 Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T, Masliah E (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases. J Neurosci 29(43): 13578-13588 Sun HY (2007) Regulation of SIK2 activity by acetylation. Institute of Molecular Medicine College of Medicine, National Taiwan University Master Thesis Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q (2008) Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 105: 19211-19216 Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mule JJ, Pledger WJ, Wang HG (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9(10): 1142-1151 Timm T, Balusamy K, Li X, Biernat J, Mandelkow E, Mandelkow EM (2008a) Glycogen synthase kinase (GSK) 3beta directly phosphorylates Serine 212 in the regulatory loop and inhibits microtubule affinity-regulating kinase (MARK) 2. J Biol Chem 283(27): 18873-18882 Timm T, Li XY, Biernat J, Jiao J, Mandelkow E, Vandekerckhove J, Mandelkow EM (2003) MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. EMBO J 22(19): 5090-5101 Timm T, Marx A, Panneerselvam S, Mandelkow E, Mandelkow EM (2008b) Structure and regulation of MARK, a kinase involved in abnormal phosphorylation of Tau protein. BMC Neurosci 9 Suppl 2: S9 Tochio N, Koshiba S, Kobayashi N, Inoue M, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Motoda Y, Kobayashi A, Tanaka A, Hayashizaki Y, Terada T, Shirouzu M, Kigawa T, Yokoyama S (2006) Solution structure of the kinase-associated domain 1 of mouse microtubule-associated protein/microtubule affinity-regulating kinase 3. Protein Sci 15(11): 2534-2543 Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim YG, Magalhaes JG, Yuan L, Soares F, Chea E, Le Bourhis L, Boneca IG, Allaoui A, Jones NL, Nunez G, Girardin SE, Philpott DJ (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11(1): 55-62 Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, Yao TP, Dantuma NP, Taylor JP (2010) VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6(2): 217-227 Uboha NV, Flajolet M, Nairn AC, Picciotto MR (2007) A calcium- and calmodulin-dependent kinase Ialpha/microtubule affinity regulating kinase 2 signaling cascade mediates calcium-dependent neurite outgrowth. J Neurosci 27(16): 4413-4423 Uebi T, Itoh Y, Hatano O, Kumagai A, Sanosaka M, Sasaki T, Sasagawa S, Doi J, Tatsumi K, K. M, Morii E, Aozasa K, Kawamura T, Okumura M, Nakae J, Takikawa H, Fukusato T, Koura M, Nish M, Hamsten A, Silveira A, Bertorello AM, Kitagawa K, Nagaoka Y, Kawahara H, Tomonaga T, Naka T, Ikegawa S, Tsumaki N, Matsuda J, Takemori H (2012) Involvement of SIK3 in glucose and lipid homeostasis in mice. PLoS One 7: e37803 van der Vaart A, Reggiori F (2010) The Golgi complex as a source for yeast autophagosomal membranes. Autophagy 6(6): 800-801 Wang CW, Klionsky DJ (2003) The molecular mechanism of autophagy. Mol Med 9(3-4): 65-76 Wang IF, Wu LS, Shen CK (2008) TDP-43: an emerging new player in neurodegenerative diseases. Trends Mol Med 14(11): 479-485 Wang Z, Takemori H, Halder SK, Nonaka Y, Okamoto M (1999) Cloning of a novel kinase (SIK) of the SNF1/AMPK family from high salt-diet-treated rat adrenal. FEBS Lett 453: 135-139 Wong AS, Cheung ZH, Ip NY (2011) Molecular machinery of macroautophagy and its deregulation in diseases. Biochim Biophys Acta 1812(11): 1490-1497 Yang Z, Klionsky D (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22: 124-131 Yi C, Ma M, Ran L, Zheng J, Tong J, Zhu J, Ma C, Sun Y, Zhang S, Feng W, Zhu L, Le Y, Gong X, Yan X, Hong B, Jiang FJ, Xie Z, Miao D, Deng H, Yu L (2012) Function and molecular mechanism of acetylation in autophagy regulation. Science 336(6080): 474-477 Yi C, Yu L (2012) How does acetylation regulate autophagy? Autophagy 8: 1529-1530 Zhang YJ, Xu YF, Dickey CA, Buratti E, Baralle F, Bailey R, Pickering-Brown S, Dickson D, Petrucelli L (2007) Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci 27(39): 10530-10534 Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, Heintz N, Yue Z (2009) Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 11(4): 468-476 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62770 | - |
| dc.description.abstract | SIK2是屬於AMPK家族的絲胺酸/蘇胺酸蛋白激酶(serine/threonine protein kinase)。過去的研究顯示,SIK2在脂肪細胞分化過程中具有調控早期胰島素訊息傳遞的功能,並可透過CREB調節反應賀爾蒙或營養狀態的基因表現。然而,SIK2活性的調控機制尚待研究釐清。在本研究中,我們發現當SIK2在第53位置的賴胺酸(Lys53)被p300/CBP乙醯化,會導致SIK2激酶活性受到抑制;而HDAC6可將SIK2的Lys53去乙醯化,並恢復其活性。此外,過量表現以麩醯胺酸取代Lys53(K53Q)的乙醯化擬態突變型(acetylation-mimetic mutant),會造成SIK2聚集在自噬體(autophagosome)內;反之,以精胺酸取代Lys53(K53R)的抗乙醯化突變型(non-acetylatable mutant)則不會造成此現象。再者,我觀察到SIK2基因剔除(knockdown)會癱瘓自噬體和溶酶體的融合,更證實了SIK2及其活性為清除TDP-43Δ包涵體(inclusion body)所必需。值得注意的是在MG132處理的細胞中,內生(endogenous)SIK2聚集在自噬體內,且伴隨著SIK2乙醯化的上升;然而,同樣的現象並沒有發生在無血清培養的細胞中(serum-starved cells)。此結果說明蛋白酶體功能障礙(proteasome dysfunction)可能引發SIK2的乙醯化,並藉此清除隨之而生的蛋白質堆積。另一方面,我發現內質網蛋白質降解路徑的受質(ERAD substrate)由內質網到細胞質的逆向轉傳(retrotranslocation),依然需要SIK2的激酶活性才能完成。不只SIK2,另一個SIK蛋白家族成員SIK3也同樣可被CBP和HDAC6所控制的乙醯化修飾。除了SIK家族的激酶,我更進一步地觀察到MARK1的活性如同SIK2一般,受控於由CBP和HDAC6所調節的乙醯化修飾。此現象暗示著MARK1在神經退化疾病中可能也受到類似的機制所調控。總結上述,本研究證明SIK2為調控內質網蛋白質降解路徑和自噬作用的關鍵因子,並可透過激酶與去乙醯酶(deacetylase)的交互作用共同調節細胞內蛋白質的平衡。 | zh_TW |
| dc.description.abstract | Salt-inducible kinase 2 (SIK2) is a serine/threonine protein kinase belonging to the AMP-activated protein kinase (AMPK) family. SIK2 has been shown to function in the insulin-signaling pathway during adipocyte differentiation and to modulate CREB-mediated gene expression in response to hormones and nutrients. However, molecular mechanism underlying the regulation of SIK2 kinase activity remains largely elusive. In this study, I report a dynamic, post-translational regulation of its kinase activity that is coordinated by an acetylation-deaceytlation switch – p300/CBP-mediated Lys53-acetylation inhibits SIK2 kinase activity, while HDAC6-mediated deacetylation restores the activity. Interestingly, overexpression of acetylation-mimetic mutant of SIK2 (SIK2-K53Q), but not the non-acetylatable K53R variant, resulted in sequestration of SIK2 in autophagosomes. Further consistent with a role in autophagy, knockdown of SIK2 abrogated autophagosome and lysosome fusion. Consequently, SIK2 and its kinase activity are indispensable for the removal of TDP-43Δ inclusion bodies. Remarkably, the accumulation of endogenous SIK2 in autophagosomes and the corresponding elevation of its acetylation were also observed in cells treated with MG132, yet not in serum-starved cells, revealing that this acetylation-based regulation may be induced by proteasome dysfunction and required for disposal of the resultant protein aggregates. Moreover, the requirement of SIK2 activity for retrotranslocation of ERAD substrate from ER to cytosol was evident. On the other hand, another SIK subfamily member, SIK3, was also modified reciprocally by CBP and HDAC6. In addition to SIK subfamily, the activity of MARK1 was under the control of CBP and HDAC6-mediated acetylation, implying its possible regulation in neurodegeneration diseases. Collectively, our findings uncover the critical roles of SIK2 in ERAD as well as autophagy progression and further suggest a mechanism in which the interplay among kinase and deacetylase activities coordinates cellular protein homeostasis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:09:55Z (GMT). No. of bitstreams: 1 ntu-102-D96b46018-1.pdf: 6895370 bytes, checksum: e9cef250728ca3975ca909718ddfa68f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 i 誌謝 ii 中文摘要 iii ABSTRACT iv Chapter 1. Literature Review 1 1.1 Protein homeostasis 1 1.1.1 ERAD and UPS 1 1.1.2 Autophagy 3 1.1.2.1 Overview of macroautophagy 4 Autophagosome formation 5 Autophagosome maturation 6 1.1.2.2 Deregulation of autophagy in diseases 8 Cancer 8 Inflammatory disorders 9 Neurodegeneration 9 1.2 Salt-inducible kinase 2 (SIK2) 10 1.2.1 SIK subfamily 10 1.2.2 The functions of SIK2 11 1.2.3 The regulations of SIK2 12 1.3 MAP/microtubule affinity regulating kinase 1 (MARK1) 13 1.3.1 The structure of MARK1 13 1.3.2 The functions of MARK1 15 1.3.3 The regulations of MARK1 15 1.4 Rationale 16 Chapter 2. Reversible Acetylation Regulates Salt-Inducible Kinase (SIK2) and Its Function in Autophagy 18 2.1 Introduction 18 2.2 Materials and methods 21 2.2.1 DNA constructs and mutagenesis 21 2.2.2 Antibodies 22 2.2.3 Cell culture and transfection 23 2.2.4 Immunoprecipitation and Western blot analysis 23 2.2.5 [γ-35S]ATP binding assay 24 2.2.6 Generation of 3D structure 24 2.2.7 CRE-reporter assay 25 2.2.8 Statistical analysis 25 2.2.9 Immunofluorescence staining and confocal microscopy 25 2.2.10 Electron microscopy 26 2.2.11 Preparation of soluble/insoluble fractions and slot blot analysis 27 2.2.12 Mass spectrometry analysis 27 2.2.13 In vitro deacetylation assay 28 2.2.14 In vitro kinase assay 28 2.3 Results 30 2.3.1 The ATP binding and kinase activity of SIK2 are impaired by K53-acetylation which is reciprocally regulated by p300/CBP and HDAC6 30 2.3.2 K53-acetylation-inactivated kinase activity of SIK2 is restored upon HDAC6-mediated deacetylation 32 2.3.3 Acetylation elicits SIK2 sequestration to autophagosomes 33 2.3.4 SIK2 is indispensible for the processing of autophagosomes 34 2.3.5 SIK2 activity is required for the clearance of TDP-43Δ inclusion bodies 35 2.3.6 Proteasome inhibition induces SIK2 acetylation and sequestration of SIK2 to autophagosomes 36 2.3.7 SIK3 and MARK1 are also under the control of CBP and HDAC6-mediated acetylation 38 2.4 Discussion 41 REFERENCES 47 FIGURES 66 Figure 1. Lys53 is 4 residues away from the critical residue for ATP-binding, Lys49 66 Figure 2. K53Q inhibits the ATP binding ability of SIK2 67 Figure 3. Structural alteration of SIK2 by K53-acetylation 68 Figure 4. The kinase activity of SIK2 K53Q is deficient 69 Figure 5. Kinase-deficient mutants recover SIK2-mediated inhibition of CRE activity 70 Figure 6. Inactivated SIK2 by CBP-mediated K53-acetylation is restored by HDAC6-mediated deacetylation 71 Figure 7. Kinase-deficient SIK2 is sequestrated in autophagosomes 72 Figure 8. Acetylation elicits SIK2 sequestration to autophagosomes 73 Figure 9. SIK2 is essential for autophagosome processing 74 Figure 10. SIK2 knockdown results in abnormal accumulation of multilamellar autophagosomes 75 Figure 11. SIK2 activity is required for the processing/removal of TDP-43Δ inclusion bodies 76 Figure 12. SIK2 is required for the retrotranslocation of ERAD substrate 78 Figure 13. SIK2-KD induces aggresome accumulation 80 Figure 14. Sequestration of endogenous SIK2 in autophagosome upon proteasome inhibition 81 Figure 15. SIK2 acetylation is elevated when proteasome function is blocked 82 Figure 16. MARK1 activity is also regulated by CBP and HDAC6-mediated acetylation 83 Figure 17. Lys37 is identified as an acetylation site on SIK3 by mass spectrometry 84 Figure 18. The acetylation on Lys41 of SIK3, the residue corresponding to SIK2-K53, is also regulated by CBP and HDAC6 85 Figure 19. Both Lys89 and Lys93 on MARK1 are acetylated and modulated by CBP and HDAC6 86 Figure 20. SIK2 kinase activity, controlled by an acetylation-based regulatory switch, contributes to the progression of autophagy 87 Figure 21. A hypothesized model suggests the possible role of SIK2 in the coordination of ERAD and autophagy 88 APPENDIX 1 89 FIGURE A1. The kinase activity of SIK2 is impaired by Lys53-acetylation (Chen, 2007) 90 FIGURE A2. SIK2 and p97/VCP colocalizes the TDP-43Δ inclusion bodies (Lin, 2009) 91 FIGURE A3. SIK2 is essential for the processing/removal of TDP-43Δ inclusion bodies (Lin, 2009) 92 FIGURE A4. Proteasome inhibition leads to SIK2 accumulation in insoluble fraction with ubiquitinated proteins (Lin, 2009) 93 FIGURE A5. SIK2 is deacetylated by HDAC6 in vitro (Sun, 2007) 94 FIGURE A6. Hsp90 is an important chaperone for SIK2 (Y. H. Lin, unpublished data) 95 FIGURE A7. SIK2 is activated under stress conditions (C. T. Chuang, unpublished data) 96 FIGURE A8. JNK-mediated activation of SIK2 under MG132 inhibition of proteasome (C. T. Chuang, unpublished data) 96 APPENDIX 2 97 | |
| dc.language.iso | en | |
| dc.subject | TDP-43 | zh_TW |
| dc.subject | HDAC6 | zh_TW |
| dc.subject | p300/CBP | zh_TW |
| dc.subject | 自噬 | zh_TW |
| dc.subject | 乙醯化 | zh_TW |
| dc.subject | SIK2 | zh_TW |
| dc.subject | TDP-43 | en |
| dc.subject | acetylation | en |
| dc.subject | autophagy | en |
| dc.subject | p300/CBP | en |
| dc.subject | HDAC6 | en |
| dc.subject | SIK2 | en |
| dc.title | 蛋白激酶SIK2的調控及其功能之研究 | zh_TW |
| dc.title | Regulation and Function of Protein Kinase SIK2 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 蔡明道 | |
| dc.contributor.oralexamcommittee | 陳瑞華,譚賢明,吳君泰 | |
| dc.subject.keyword | SIK2,乙醯化,自噬,p300/CBP,HDAC6,TDP-43, | zh_TW |
| dc.subject.keyword | SIK2,acetylation,autophagy,p300/CBP,HDAC6,TDP-43, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-03-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 6.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
