Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62764
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉秀慧(Shiou-Hwei Yeh)
dc.contributor.authorWei-Hsiang Linen
dc.contributor.author林煒翔zh_TW
dc.date.accessioned2021-06-16T16:09:44Z-
dc.date.available2018-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-03-20
dc.identifier.citation1. Mazzaferro, V., et al. Liver transplantation for hepatocellular carcinoma. Annals of surgical oncology 15, 1001-1007 (2008).
2. Parkin, D.M., et al. Estimating the world cancer burden: Globocan 2000. International journal of cancer. Journal international du cancer 94, 153-156 (2001).
3. Bosch, F.X., et al. Epidemiology of hepatocellular carcinoma. Clinics in liver disease 9, 191-211, v (2005).
4. Gomaa, A.I., et al. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World journal of gastroenterology : WJG 14, 4300-4308 (2008).
5. El-Serag, H.B., et al. The role of diabetes in hepatocellular carcinoma: a case-control study among United States Veterans. The American journal of gastroenterology 96, 2462-2467 (2001).
6. El-Serag, H.B., et al. The continuing increase in the incidence of hepatocellular carcinoma in the United States: an update. Annals of internal medicine 139, 817-823 (2003).
7. Forner, A., et al. Hepatocellular carcinoma. Lancet 379, 1245-1255 (2012).
8. Sandhu, D.S., et al. Treatment options for hepatocellular carcinoma. Expert review of gastroenterology & hepatology 2, 81-92 (2008).
9. Duffy, J.P., et al. Surgical resection of hepatocellular carcinoma. Cancer journal (Sudbury, Mass.) 14, 100-110 (2008).
10. Wu, L., et al. Hepatic artery injection of (1)(3)(1)I-labelled metuximab combined with chemoembolization for intermediate hepatocellular carcinoma: a prospective nonrandomized study. European journal of nuclear medicine and molecular imaging 39, 1306-1315 (2012).
11. Tazi el, M., et al. Systemic treatment and targeted therapy in patients with advanced hepatocellular carcinoma. North American journal of medical sciences 3, 167-175 (2011).
12. Lencioni, R., et al. Treatment of intermediate/advanced hepatocellular carcinoma in the clinic: how can outcomes be improved? The oncologist 15 Suppl 4, 42-52 (2010).
13. Li, Y., et al. Hepatocellular carcinoma: insight from animal models. Nature reviews. Gastroenterology & hepatology 9, 32-43 (2012).
14. Heindryckx, F., et al. Experimental mouse models for hepatocellular carcinoma research. International journal of experimental pathology 90, 367-386 (2009).
15. Wu, B.K., et al. Blocking of G1/S transition and cell death in the regenerating liver of Hepatitis B virus X protein transgenic mice. Biochemical and biophysical research communications 340, 916-928 (2006).
16. Lu, J.W., et al. Identification of the common regulators for hepatocellular carcinoma induced by hepatitis B virus X antigen in a mouse model. Carcinogenesis 33, 209-219 (2012).
17. Choi, J.W., et al. Evolution of oncolytic adenovirus for cancer treatment. Advanced drug delivery reviews 64, 720-729 (2012).
18. Zeyaullah, M., et al. Oncolytic viruses in the treatment of cancer: a review of current strategies. Pathology oncology research : POR 18, 771-781 (2012).
19. Park, B.H., et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. The lancet oncology 9, 533-542 (2008).
20. Russell, S.J., et al. Oncolytic virotherapy. Nature biotechnology 30, 658-670 (2012).
21. Kawashima, T., et al. Telomerase-specific replication-selective virotherapy for human cancer. Clinical cancer research : an official journal of the American association for cancer research 10, 285-292 (2004).
22. Wirth, T., et al. A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer research 63, 3181-3188 (2003).
23. Huang, T.G., et al. Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene therapy 10, 1241-1247 (2003).
24. Nemunaitis, J., et al. A phase I study of telomerase-specific replication competent oncolytic adenovirus (telomelysin) for various solid tumors. Molecular therapy : the journal of the American society of gene therapy 18, 429-434 (2010).
25. Kawakami, Y., et al. Immuno-histochemical detection of human telomerase reverse transcriptase in human liver tissues. Oncogene 19, 3888-3893 (2000).
26. Huang, P., et al. Direct and distant antitumor effects of a telomerase-selective oncolytic adenoviral agent, OBP-301, in a mouse prostate cancer model. Cancer gene therapy 15, 315-322 (2008).
27. Hioki, M., et al. Combination of oncolytic adenovirotherapy and Bax gene therapy in human cancer xenografted models. Potential merits and hurdles for combination therapy. International journal of cancer. Journal international du cancer 122, 2628-2633 (2008).
28. Steel, J.C., et al. Immunocompetent syngeneic cotton rat tumor models for the assessment of replication-competent oncolytic adenovirus. Virology 369, 131-142 (2007).
29. Robinson, M., et al. Novel immunocompetent murine tumor model for evaluation of conditionally replication-competent (oncolytic) murine adenoviral vectors. Journal of virology 83, 3450-3462 (2009).
30. Liu, T.C., et al. The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma. Molecular therapy : the journal of the American society of gene therapy 16, 1637-1642 (2008).
31. Kishimoto, H., et al. In vivo imaging of lymph node metastasis with telomerase-specific replication-selective adenovirus. Nature medicine 12, 1213-1219 (2006).
32. Yeh, S.H., et al. Allelic loss of chromosome 4q21 approximately 23 associates with hepatitis B virus-related hepatocarcinogenesis and elevated alpha-fetoprotein. Hepatology (Baltimore, Md.) 40, 847-854 (2004).
33. Silverstein, G., et al. Restricted replication of adenovirus type 2 in mouse Balb/3T3 cells. Archives of virology 87, 241-264 (1986).
34. Eggerding, F.A., et al. Molecular biology of adenovirus type 2 semipermissive infections. I. Viral growth and expression of viral replicative functions during restricted adenovirus infection. Virology 148, 97-113 (1986).
35. Li, Y.M., et al. Telomerase-specific oncolytic virotherapy for human hepatocellular carcinoma. World journal of gastroenterology : WJG 14, 1274-1279 (2008).
36. Raper, S.E., et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Molecular genetics and metabolism 80, 148-158 (2003).
37. Waddington, S.N., et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 132, 397-409 (2008).
38. Kalyuzhniy, O., et al. Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proceedings of the National Academy of Sciences of the United States of America 105, 5483-5488 (2008).
39. Doronin, K., et al. Coagulation factor X activates innate immunity to human species C adenovirus. Science (New York, N.Y.) 338, 795-798 (2012).
40. Gurlevik, E., et al. Selectivity of oncolytic viral replication prevents antiviral immune response and toxicity, but does not improve antitumoral immunity. Molecular therapy : the journal of the American society of gene therapy 18, 1972-1982 (2010).
41. Lin, W.W., et al. A cytokine-mediated link between innate immunity, inflammation, and cancer. The Journal of clinical investigation 117, 1175-1183 (2007).
42. Rampone, B., et al. Current management strategy of hepatocellular carcinoma. World journal of gastroenterology : WJG 15, 3210-3216 (2009).
43. Dodd, G.D., et al. Minimally invasive treatment of malignant hepatic tumors: at the threshold of a major breakthrough. Radiographics : a review publication of the Radiological Society of North America, Inc 20, 9-27 (2000).
44. Lopez, P.M., et al. Systematic review: evidence-based management of hepatocellular carcinoma--an updated analysis of randomized controlled trials. Alimentary pharmacology & therapeutics 23, 1535-1547 (2006).
45. Varela, M., et al. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. Journal of hepatology 46, 474-481 (2007).
46. Varotti, G., et al. Anatomic variations in right liver living donors. Journal of the American College of Surgeons 198, 577-582 (2004).
47. Kuroda, C., et al. Limitation of transcatheter arterial chemoembolization using iodized oil for small hepatocellular carcinoma. A study in resected cases. Cancer 67, 81-86 (1991).
48. Chung, J.W., et al. Transcatheter arterial chemoembolization of hepatocellular carcinoma: prevalence and causative factors of extrahepatic collateral arteries in 479 patients. Korean journal of radiology : official journal of the Korean Radiological Society 7, 257-266 (2006).
49. Kim, H.C., et al. Recognizing extrahepatic collateral vessels that supply hepatocellular carcinoma to avoid complications of transcatheter arterial chemoembolization. Radiographics : a review publication of the Radiological Society of North America, Inc 25 Suppl 1, S25-39 (2005).
50. Sueyoshi, E., et al. Vascular complications of hepatic artery after transcatheter arterial chemoembolization in patients with hepatocellular carcinoma. AJR. American journal of roentgenology 195, 245-251 (2010).
51. Saunders, M.P., et al. NADPH:cytochrome c (P450) reductase activates tirapazamine (SR4233) to restore hypoxic and oxic cytotoxicity in an aerobic resistant derivative of the A549 lung cancer cell line. British journal of cancer 82, 651-656 (2000).
52. Chinje, E.C., et al. Non-nuclear localized human NOSII enhances the bioactivation and toxicity of tirapazamine (SR4233) in vitro. Molecular pharmacology 63, 1248-1255 (2003).
53. Zeman, E.M., et al. SR-4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. International journal of radiation oncology, biology, physics 12, 1239-1242 (1986).
54. Reddy, S.B., et al. Tirapazamine: a novel agent targeting hypoxic tumor cells. Expert opinion on investigational drugs 18, 77-87 (2009).
55. Rischin, D., et al. Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28, 2989-2995 (2010).
56. Wilson, W.R., et al. Targeting hypoxia in cancer therapy. Nature reviews. Cancer 11, 393-410 (2011).
57. Plock, J., et al. Activation of non-ischemic, hypoxia-inducible signalling pathways up-regulate cytoprotective genes in the murine liver. Journal of hepatology 47, 538-545 (2007).
58. Sonoda, A., et al. Enhanced antitumor effect of tirapazamine delivered intraperitoneally to VX2 liver tumor-bearing rabbits subjected to transarterial hepatic embolization. Cardiovascular and interventional radiology 34, 1272-1277 (2011).
59. Ramirez, L.H., et al. Stimulation of tumor growth in vitro and in vivo by suramin on the VX2 model. Investigational new drugs 13, 51-53 (1995).
60. Brader, P., et al. Imaging of hypoxia-driven gene expression in an orthotopic liver tumor model. Molecular cancer therapeutics 6, 2900-2908 (2007).
61. Yang, R., et al. A reproducible rat liver cancer model for experimental therapy: introducing a technique of intrahepatic tumor implantation. The Journal of surgical research 52, 193-198 (1992).
62. Liu, L., et al. Influence of hepatic artery occlusion on tumor growth and metastatic potential in a human orthotopic hepatoma nude mouse model: relevance of epithelial-mesenchymal transition. Cancer science 101, 120-128 (2010).
63. Graham, M.A., et al. Pharmacokinetics of the hypoxic cell cytotoxic agent tirapazamine and its major bioreductive metabolites in mice and humans: retrospective analysis of a pharmacokinetically guided dose-escalation strategy in a phase I trial. Cancer chemotherapy and pharmacology 40, 1-10 (1997).
64. Bodey, G.P., et al. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Annals of internal medicine 64, 328-340 (1966).
65. Plengvanit, U., et al. Collateral arterial blood supply of the liver after hepatic artery ligation, angiographic study of twenty patients. Annals of surgery 175, 105-110 (1972).
66. Kudo, M., et al. Phase III study of sorafenib after transarterial chemoembolisation in Japanese and Korean patients with unresectable hepatocellular carcinoma. European journal of cancer (Oxford, England : 1990) 47, 2117-2127 (2011).
67. Park, J.W., et al. Phase II study of concurrent transarterial chemoembolization and sorafenib in patients with unresectable hepatocellular carcinoma. Journal of hepatology 56, 1336-1342 (2012).
68. Sieghart, W., et al. Conventional transarterial chemoembolisation in combination with sorafenib for patients with hepatocellular carcinoma: a pilot study. European radiology 22, 1214-1223 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62764-
dc.description.abstract肝癌是全世界造成死亡的癌症第三名,且盛行率近年來在歐、美國家呈倍數成長,因此發展新的預防及治療肝癌的方法,是迫切需要的。本研究的目的為利用一種具免疫力的原位肝癌模式-B型肝炎病毒x蛋白基因轉殖肝癌小鼠模式,其自發性生成肝癌、病理和基因變化相似於人類的肝癌,於臨床前測試評估兩種新的治療藥物,包括需要仰賴癌細胞中的端粒酶活性,才能進行病毒複製的溶瘤腺病毒(Telomelysin)和生物還原藥物Tirapazamine (TPZ)。
第一個治療肝癌的藥物是溶瘤腺病毒-Telomelysin,它具有能特別導致腫瘤細胞死亡的溶瘤效力。它的鑑別能力來自於利用人類端粒酶逆轉錄酶(hTERT)啟動子來驅動病毒的複製,而肝癌組織中有很高量的端粒酶表現,正常細胞則無。在原位肝癌模式中,Telomelysin對肝癌表現出強有力的溶瘤作用,卻不影響正常肝組織,且其安全劑量為1.25×108 PFU。從多次腫瘤注射Telomelysin後也發現,病毒能複製於具免疫活性的肝癌模式中。這個臨床前研究顯示,適當劑量的Telomelysin可應用於治療人類的肝癌,且其溶瘤效力於多次注射後依舊存在。
第二種的治療肝癌的藥物為生物還原藥物-TPZ。在缺氧的情況下,TPZ可以被活化並導致DNA斷裂,故能有效地殺死缺氧環境下的細胞,而不影響正常氧氣環境的細胞。而肝臟中肝癌的血液供應特色,使得肝癌成為TACE結合TPZ組合療法的理想目標,因為TACE可以有效地阻塞肝癌的動脈供血,而非腫瘤的肝組織依然可以接受肝門靜脈的血供,這使得肝癌能缺氧並活化TPZ的細胞殺能力。在HBx基因轉殖小鼠肝癌模式中,其肝癌能經肝動脈結紮動脈產生缺氧,並於結合TPZ劑量為3 mg/kg的治療下,可以實現90%以上的肝腫瘤壞死。這樣的結果支持TPZ與TACE能結合應用,對肝腫瘤產生高度的治療成效。而臨床上的開發計劃,若能基於此臨床前研究,將使TPZ和TACE成為有效治療肝癌的方法。
總結而論,我們成功應用了具免疫能力的原位HBx基因轉殖小鼠肝癌模式,來驗證兩種藥物對於新的肝癌治療方式之可行性。結果支持此兩種方法對於未來人類肝癌治療的效用。
zh_TW
dc.description.abstractHCC (hepatocellular carcinoma) is the third leading cause of cancer deaths worldwide, and the incidence of HCC remains high in Asian and is increasing in USA and European. The development of new treatments for effective therapies of HCC is urgently needed. The current study aims to preclinically evaluate two new treatment reagents, including the telomerase-specific replication-competent oncolytic adenovirus (Telomelysin) and the biological reductive drugs-Tirapazamine (TPZ), in the HBx transgenic HCC mouse model. This is an immunocompetent in situ orthotopic HCC model, with HCC developed spontaneously and pathologically and genetically similar to human HCC.
The first anti-HCC strategy is the oncolytic adenovirus, Telomelysin, which was developed for virus-mediated preferential lysis of tumor cells. Its selectivity derived from a human telomerase reverse transcriptase (hTERT) promoter-driven active viral replication, which occurs in HCC with high telomerase activity but not in normal cells lacking such activity. In the orthotopic HCC model, Telomelysin showed a potent oncolytic effect on HCC but spared normal liver tissue. Dose escalation analysis identified a safety dose of 1.25 x 108 PFU for this model. The effect of multiple injections of Telomelysin was also evaluated in this immunocompetent HCC model. We found that the virus replicates in HCC after a second intratumoral injection despite an immune response induced by the previous injection. This preclinical study shows that Telomelysin can be used for treatment of human HCC at an appropriate dosage and that its tumor-killing activity persists after multiple injections.
The second anti-HCC strategy is a bioreductive agent, TPZ. In the absence of oxygen TPZ can be activated and induces DNA breaks and effectively kill the hypoxia cells but spare the normoxia cells. In this aspect, the HCC growing in the liver becomes an ideal target for testing the combinational therapy by TACE (transarterial chemoembolization) and TPZ. TACE can effectively choke the arterial blood supply to HCC but the non-tumor liver tissues can still receive the portal vein supply, which makes the hypoxia and also the TPZ induced cytotoxic effect specific for HCC. We have tested this hypothesis for HCC in HBx transgenic mice, which is mainly supplied by arteries with hypoxia induced by hepatic artery ligation. Combination of TPZ and hepatic artery ligation clearly increases the toxicity of TPZ against liver. Most of our efficacy study can achieve over 90% tumor necrosis at 3 mg/kg. The results supported that the anti-tumor activities of TPZ and TAE are highly synergistic to each other. A clinical development program based on this preclinical work will follow to examine if TPZ and TAE would be an effective therapy for HCC.
In summary, we have successfully applied the immunocompentent orthotopic HCC model of HBx transgenic mice to test the feasibility of two novel new reagents for treatment of HCC. The restuls provided critical information for their future application to human HCC.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:09:44Z (GMT). No. of bitstreams: 1
ntu-102-D95445003-1.pdf: 35815004 bytes, checksum: b7773144a6570b84f53adb0a42a91b62 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents博士論文口試委員會審定書.....ii
誌謝.....iii
中文摘要.....iv
摘要(英文).....vi
目錄.....viii
圖次.....xi
常用縮寫對照表.....1
論文前言.....2
1. 肝癌.....2
2. 臨床上的治療方式與存活率.....2
3. 肝癌動物模式及優缺點比較.....3
4. 發展新型肝癌治療研究.....4
第一部份研究.....5
第一部份研究前言.....6
1. 溶瘤病毒原理.....6
2. 肝癌與溶瘤病毒療法.....6
3. 溶瘤腺病毒–Telomelysin與臨床應用.....6
4. 研究動機與假說.....7
5. 研究模式與目的.....7
材料與方法.....8
1. 重組腺病毒.....8
2. 細胞株與細胞培養.....8
3. 實驗動物及檢體採集.....8
4. 細胞株存活率分析.....9
5. TelomeScan感染細胞後之螢光偵測.....9
6. TelomeScan感染動物後之螢光偵測.....10
7. TelomeScan安全性劑量測試.....10
8. 單次及多次注射Telomelysin對肝腫瘤的長期影響.....10
9. TERT mRNA定量.....11
10. 病毒DNA定量.....13
11. 西方墨點法.....15
12. 統計.....16
結果.....17
1. Telomelysin可感染人類腫瘤細胞株.....17
2. 溶瘤腺病毒可感染老鼠肝腫瘤細胞株.....17
3. 溶瘤腺病毒可感染老鼠活體肝腫瘤.....18
4. Telomelysin的安全性劑量.....18
5. 溶瘤腺病毒可有效進行二次施打於免疫建全的老鼠.....19
6. 單次及多次注射Telomelysin對肝腫瘤治療的長期影響.....20
討論.....21
第二部份研究.....38
第二部份研究前言.....39
1. 肝動脈(化學)栓塞療法治療原理與限制.....39
2. TPZ原理與臨床應用.....39
3. 研究動機與假說.....40
4. 研究模式與目的.....40
材料與方法....41
1. 臨床藥品來源與配製.....41
2. 細胞株與細胞培養.....41
3. 實驗動物與檢體採集.....41
4. 肝動脈結紮法(hepatic artery ligation/HAL)與肝門靜脈結紮法(portal vein ligation/PVL).....41
5. 活體肝臟氧氣與血流測量.....42
6. HAL曁TPZ安全性劑量測試.....42
7. HAL曁TPZ治療對肝腫瘤短時間的影響.....43
8. HAL曁TPZ治療對肝腫瘤長時間的影響.....43
9. EPO mRNA定量.....44
10. 西方墨點法.....44
11. 定量肝腫瘤組織切片中的壞死範圍.....44
結果.....45
1. HAL造成HBx基因轉殖小鼠的肝癌產生缺氧環境.....45
2. 永久性HAL造成HBx基因轉殖小鼠的肝癌形成腫瘤壞死.....45
3. 結合短暫性HAL時TPZ的安全性劑量.....46
4. TPZ結合短暫性HAL處理後對鼠肝癌治療的效果.....46
5. TPZ結合短暫性肝總動脈結紮處理對治療鼠肝癌的效果.....47
討論.....49
結論.....68
參考文獻.....69
附錄.....80
dc.language.isozh-TW
dc.subject免疫活性zh_TW
dc.subjectTirapazaminezh_TW
dc.subject缺氧zh_TW
dc.subjectB型肝炎病毒x蛋白基因轉殖小鼠zh_TW
dc.subject肝癌zh_TW
dc.subjectTelomelysinzh_TW
dc.subjecthypoxiaen
dc.subjectHBx transgenic mouse modelen
dc.subjectTelomelysinen
dc.subjectTirapazamineen
dc.subjectimmunocompetenten
dc.subjectHCCen
dc.title利用B型肝炎病毒x蛋白基因轉殖肝癌小鼠模式評估新型的肝癌治療策略之研究zh_TW
dc.titleApplication of hepatitis B virus X protein transgenic mouse model for evaluating the novel therapeutic strategies for liver canceren
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳培哲,鄭劍廷,黃凱文,楊宏志
dc.subject.keyword肝癌,B型肝炎病毒x蛋白基因轉殖小鼠,Telomelysin,Tirapazamine,免疫活性,缺氧,zh_TW
dc.subject.keywordHCC,HBx transgenic mouse model,Telomelysin,Tirapazamine,immunocompetent,hypoxia,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2013-03-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
34.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved