Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62758
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡克銓(Keh-Chyuan Tsai)
dc.contributor.authorPei-Ching Chenen
dc.contributor.author陳沛清zh_TW
dc.date.accessioned2021-06-16T16:09:34Z-
dc.date.available2014-03-28
dc.date.copyright2013-04-25
dc.date.issued2013
dc.date.submitted2013-04-01
dc.identifier.citation1. Abel-Rohm M, Quintana VH, Leipholz HH. Optimal control of civil engineering structures. Journal of Engineering Mechanics (ASCE)1980; 106(6): 57–73.
2. Ahmadizadeh M, Mosqueda G, Reinhorn AM. Compensation of actuator delay and dynamics for real-time hybrid structural simulation. Earthquake Engineering and Structural Dynamics 2008; 37:21-42.
3. Alli H, Yakut O. Fuzzy sliding-mode control of structures. Engineering Structures 2005; 27:277-284.
4. Battaini M, Casciati F, Faravelli L. Fuzzy control of structural vibration and active mass system driven by a fuzzy controller. Earthquake Engineering and Structural Dynamics 1998; 27: 1267-1276.
5. Battaini M, Casciati F, Faravelli L. Controlling wind response through a fuzzy controller. Journal of Engineering Mechanics (ASCE) 2004; 130(4): 486-491.
6. Bhardwaj MK, Datta TK. Semiactive fuzzy control of the seismic response of building frames. Journal of Structural Engineering (ASCE) 2006; 132(5): 791-799.
7. Bonnet PA, Lim CN, Williams MS, Blakeborough A, Neild SA, Stoten DP, Taylor CA. Real-time hybrid experiments with Newmark integration, MCSmd outer-loop control and multi-tasking strategies. Earthquake Engineering and Structural Dynamics 2007; 36:119-141.
8. Bonnet PA, Williams MS, Blakeborough A. Compensation of actuator dynamics in real-time hybrid tests. Proc. IMechE Part I: J. Systems and Control Engineering 2006; 220: 251-264.
9. Bonnet PA, Williams MS, Blakeborough A. Evaluation of numerical time-integration schemes for real-time hybrid testing. Earthquake Engineering and Structural Dynamics 2008; 37:1467–1490.
10. Bryson AE. Ho YC. Applied Optimal Control, John Wiley and Sons, New York, NY, 1975.
11. Bursi OS, Gonzalez-Buelga A, Vulcan L, Neild SA and Wagg DJ. Novel coupling Rosenbrock-based algorithms for real-time dynamic substructure testing. Earthquake Engineering and Structural Dynamics 2008; 37:339-360.
12. Bursi OS, Jia C, Vulcan L, Neild SA, Wagg DJ. Rosenbrock-based algorithms and subcycling strategies for real-time nonlinear substructure testing. Earthquake Engineering and Structural Dynamics 2010; DOI: 10.1002/eqe.1017.
13. Bursi OS, Stoten DP, Tondini N, Vulcan L. Stability and accuracy analysis of a discrete model reference adaptive controller without and with time delay. Earthquake Engineering and Structural Dynamics 2010; 82: 1158-1179.
14. Carrion JE, Spencer Jr. BF. Model-based strategies for real-time hybrid testing. Newmark Structural Engineering Laboratory Report Series, University of Illinois at Urbana-Champaign, Urbana, IL, No. 6, 2007.
15. Chang SY. Explicit pseudodynamic algorithm with unconditional stability. Journal of Engineering Mechanics 2002; 128:935-947.
16. Chassiakos AG, Masri SF, Smyth AW, Caughey TK. On-line identification of hysteretic systems. Transactions of the ASME 1998; 65: 194–203.
17. Chen C. Development and numerical simulation of hybrid effective force testing method. Ph.D. Dissertation, Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA, 2007.
18. Chen C, Ricles JM. Stability analysis of SDOF real-time hybrid testing systems with explicit integration algorithms and actuator delay. Earthquake Engineering and Structural Dynamics 2008; 37:597-613.
19. Chen C, Ricles JM. Improving the inverse compensation method for real-time hybrid simulation through a dual compensation scheme. Earthquake Engineering and Structural Dynamics 2009; 38:1237-1255.
20. Chen C, Ricles JM. Analysis of actuator delay compensation methods for real-time testing. Engineering Structures 2009; 31: 2643-2655.
21. Chen C, Ricles JM. Tracking error-based servohydraulic actuator adaptive compensation for real-time hybrid simulation. Journal of Structural Engineering (ASCE) 2010; 136:432-440.
22. Chen C, Ricles JM. Analysis of implicit HHT-α integration algorithm for real-time hybrid simulation. Earthquake Engineering and Structural Dynamics 2012; 41:1021-1041.
23. Chen C, Ricles JM. Large‐scale real‐time hybrid simulation involving multiple experimental substructures and adaptive actuator delay compensation. Earthquake Engineering and Structural Dynamics DOI: 10.1002/eqe.1144
24. Chen C, Ricles JM, Marullo TM, Oya Mercan. Real-time hybrid testing using the unconditionally stable explicit CR integration algorithm. Earthquake Engineering and Structural Dynamics 2009; 38:23-44.
25. Chen CH, Cordova P, Lai WC, Deierlein GG, Tsai KC. Pseudo-dynamic test of a full-scale RCS frame: part 1- design, construction and testing,” Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004.
26. Chen CH, Hsiao PC, Lai JW, Lin ML, Weng YT, Tsai KC. Pseudo-dynamic test of a full-scale CFT/BRB frame: part 2- construction and testing,” Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, 2004.
27. Chen CT. Linear System Theory and Design. Oxford University Press, USA, 1998.
28. Chen PC, Tsai KC. Dual compensation strategy for real-time hybrid testing. Earthquake Engineering and Structural Dynamics 2013; 42(1): 1-23.
29. Chen PC, Tsai KC, Chen JC, Lin TH. Advanced seismic experiments using SCRAMNet: an example on the cyclic test of a coupled-SPSW substructure. Proceedings of the 22nd KKCNN Symposium on Civil Engineering, Chiang Mai, Thailand, 2009.
30. Christenson R, Lin YZ, Emmons A, Bass B. Large-scale experimental verification of semiactive control through real-time hybrid simulation. Journal of Structural Engineering (ASCE) 2008; 134(4), 522-534.
31. Chu SY, Lo SC, Li MH. Application of ScramNet system in real-time pseudodynamic test and simulation. Proceedings of the 4th International Conference on Earthquake Engineering, Taipei, Taiwan, 2006.
32. Darby AP, Blakeborough A, Williams MS. Real-time substructure tests using hydraulic actuator. Journal of Engineering Mechanics (ASCE) 1999; 125(10), 1133-1139.
33. Darby AP, Blakeborough A, Williams MS. Improved control algorithm for real-time substructure testing. Earthquake Engineering and Structural Dynamics 2001; 30:431-448.
34. Darby AP, Williams MS, Blakeborough A. Stability and delay compensation for real-time substructure testing. Journal of Engineering Mechanics (ASCE) 2002; 128 (12):1276–1284.
35. Doyle JC. Lecture Notes in Advances in Multivariable Control. ONR/Honeywell Workshop, Minneapolis, MN, 1984.
36. Dyke SJ, Spencer Jr. BF, Quast P, Sain MK. Role of control-structure interaction in protective system design. Journal of Engineering Mechanics 1995; 121(2): 322-338.
37. Dyke SJ, Spencer Jr. BF, Sain M K, Carlson JD. Modeling and control of magnetorheological dampers for seismic response reduction. Smart Materials and Structures 1996; 5(5): 565-575.
38. Gu K, Kharitonov VL, Chen J. Stability of Time-delay Systems. Birkhauser: Boston, MA, 2003.
39. Hall JF. Discussion of the role of damping in seismic isolation. Earthquake Engineering and Structural Dynamics 1999; 28: 1717-1720.
40. Hall JF, Heaton TH, Halling MW, Wald DJ. Near source ground motion and its effects on flexible buildings. Earthquake Spectra 1995; 11(4): 569-605.
41. Ho MT, Datta A, Bhattacharyya SP. An elementary derivation of the Routh-Hurwitz criterion. IEEE Transactions on Automatic Control 1998; 43(3): 405-409.
42. Horiuchi T, Inoue M, Konno T, Namita Y. Real-time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber. Earthquake Engineering and Structural Dynamics 1999; 28(10):1121–1141.
43. Horiuchi T, Konno T. A new method for compensating actuator delay in real-time hybrid experiments. Philosophical Transactions of the Royal Society of London Series A—Mathematical Physical and Engineering Sciences 2001; 359:1786–1893.
44. Hung CC, EI-Tawil S. A method for estimating specimen tangent stiffness for hybrid simulation. Earthquake Engineering and Structural Dynamics 2009; 38:115-134.
45. Hung CC, EI-Tawil S. Full operator algorithm for hybrid simulation. Earthquake Engineering and Structural Dynamics 2009; 38:1545-1561.
46. Ioannou PA, Fidan Barış. Adaptive Control Tutorial. Society for Industrial and Applied Mathematics, Philadelphia 2006
47. Jung RY, Shing PSB. Performance evaluation of a real-time pseudodynamic test system. Earthquake Engineering and Structural Dynamics 2006; 35:789-810.
48. Jung RY, Shing PSB, Stauffer E, Thoen B. Performance of a real-time pseudodynamic test system considering nonlinear structural response. Earthquake Engineering and Structural Dynamics 2007; 36:1785-1809.
49. Kim SJ, Christenson RE, Wojtkiewicz SF, Johnson EA. Real-time hybrid simulation using the convolution integral method. Smart Material and Structures 2011; 20 025024.
50. Kim SB, Spencer Jr. BF, Yun CB. Frequency domain identification of multi-input, multi-output systems considering physical relationships between measured variables. Journal of Engineering Mechanics 2005; 131(5): 461-473.
51. Lamarche CP, Bonelli A, Bursi OS, Tremblay R. A Rosenbrock-W method for real-time dynamic substructuring and pseudo-dynamic testing. Earthquake Engineering and Structural Dynamics 2009; 38:1071–1092.
52. Li CH, Tsai KC, Chang CT, Lin CH, Chen JC, Lin TH, Chen PC. Cyclic Test of A Coupled Steel Plate Shear Wall Substructure. Earthquake Engineering and Structural Dynamics 2012; 41:1277-1299.
53. Lim CN, Neild SA, Stoten DP, Drury D, Taylor CA. Adaptive control strategy for dynamic substructuring tests. Journal of Engineering Mechanics (ASCE) 2007; 133(8), 864-873.
54. Lin PY. Application of system identification and structural control to the mitigation of earthquake induced structural response. Ph.D. Dissertation, National Taiwan University, Taiwan, 2000.
55. Lin PY, Chung LL, Loh CH. Semiactive control of building structures with semiactive tuned mass damper. Computer-Aided Civil and Infrastructure Engineering 2005; 20: 35–51.
56. Loh CH, Lin PY, Chung NH. Experimental verification of building control using active bracing system. Earthquake Engineering and Structure Dynamics 1999; 28: 1099-1119.
57. Loh CH, Lin PY, Wu JC, Yang JN. Experimental verification of static-output-feedback control for a seismic-excited full scale building. Proceedings of the 2nd World Conference on Structural Control, Kyoto, Japan, 1998.
58. Lyapunov AM. The General Problem of the Stability of Motion. Doctoral dissertation, University of Kharkov, 1892 (In Russian).
59. Mahin SA, Shing PSB. Pseudodynamic method for seismic testing. Journal of Structural Engineering (ASCE)1985; 111(7):1482-1503.
60. Mahin SA, Shing PSB, Thewalt CR, Hanson RD. Pseudodynamic test method—current status and future directions. Journal of Structural Engineering (ASCE) 1989; 115(8):2113-2128.
61. McFarlane D. A loop shaping design procedure using H∞ synthesis. IEEE Transactions on Automatic Control 1992; 37(6): 759-769.
62. Mercan O. Analytical and experimental studies on large scale, real-time pseudodynamic testing. Ph.D. Dissertation, Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA, 2007.
63. Mercan O, Ricles JM. Stability and accuracy analysis of outer loop dynamics in real-time pseudodynamic testing of SDOF systems. Earthquake Engineering and Structural Dynamics 2007; 36:1523-1543.
64. Mercan O, Ricles JM. Stability analysis for real-time pseudodynamic and hybrid pseudodynamic testing with multiple sources of delay. Earthquake Engineering and Structural Dynamics 2008; 37:1269-1293.
65. Mercan O, Ricles JM. Experimental studies on real-time testing of structures with elastomeric dampers. Journal of Structural Engineering (ASCE) 2009; 135(9): 1124-1133
66. Mercan O, Ricles JM, Sause R, Marullo T. Kinematic transformations for planar multi-directional pseudodynamic testing. Earthquake Engineering and Structural Dynamics 2009; 38:1093–1119.
67. MTS Real-Time Civil Hybrid Simulation, MTS Systems Corporation, 2011.
68. Nakashima M, Kato H, Takaoka E. Development of real-time pseudo dynamic testing. Earthquake Engineering and Structural Dynamics 1992; 21:79-92.
69. Nakashima M, Masaoka N. Real-time on-line test for MDOF systems. Earthquake Engineering and Structural Dynamics 1999; 28:393-420.
70. Neild SA, Stoten DP, Drury D, Wagg DJ. Control issues relating to real-time substructuring experiments using a shaking table. Earthquake Engineering and Structural Dynamics 2005; 34:1171-1192.
71. Phillips BM, Spencer BF. Model-based feedforward-feedback tracking control for real-time hybrid simulation. NSEL Report Series Report No. NSEL-028, 2011.
72. Ramallo JC, Johnson EA, Spencer BF. Smart base isolation systems. Journal of Engineering Mechanic 2002; 128(10): 1088-1099.
73. Rekasius ZV. A stability test for systems with delay. Proceedings of the Joint Automatic Control Conference, San Francisco, U.S.A., 1980.
74. Sajeeb R, Roy D, Manohar CS. Numerical aspects of a real-time sub-structuring technique in structural dynamics. International Journal for Numerical Methods in Engineering 2007; 72:1261-1313.
75. Samali B, Al-Dawod M, Kwok KCS, Naghdy F. Active control of cross wind response of 76-story tall building using a fuzzy controller. Journal of Engineering Mechanics (ASCE) 2004; 130(4): 492-498.
76. Shing PSB, Mahin SA. Cumulative experimental errors in pseudodynamic tests. Earthquake Engineering and Structural Dynamics 1987; 15:405-424.
77. Shing PSB, Mahin SA. Experimental error effects in pseudodynamic testing. Journal of Engineering Mechanics (ASCE) 1990; 116:805-821.
78. Shing PB, Wei X, Jung RY, Stauffer E. NEES fast hybrid test system at the university of Colorado. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, 2004.
79. Shook DA, Roschke PN, Lin PY, Loh CH. GA-optimized fuzzy logic control of a large-scale building for seismic loads. Engineering Structures 2008; 30: 436-449.
80. Sivaselvan MV. A unified view of hybrid seismic simulation algorithms. Proceedings of the 8th U. S. National Conference on Earthquake Engineering, San Francisco, U.S.A., 2006.
81. Sivaselvan MV, Reinhorn AM, Shao X, Weinreber S. Dynamic force control with hydraulic actuators using added compliance and displacement compensation. Earthquake Engineering and Structural Dynamics 2008; 37:1785-1800.
82. Spencer BF, Johnson EA, Ramallo JC. Smart isolation for seismic control. Japan Society Mechanical Engineering International Journal 2000; 43(3): 704-711.
83. Stoten DP, and Benchoubane, H. Robustness of a minimal controller synthesis algorithm. International Journal of Control 1990; 51(4): 851-861.
84. Stoten DP, Lim CN, Neild SA. Assessment of controller strategies for real-time dynamic substructuring of a lightly damped system. Proc. IMechE Part I: J. Systems and Control Engineering 2007; 221: 235-250.
85. Stoten DP, Tu JY, Li G. Synthesis and control of generalized dynamically substructured systems. Proc. IMechE Part I: J. Systems and Control Engineering 2009; 223: 371-392.
86. The MathWorks, Inc. Robust Control Toolbox™. 2008.
87. Tsai KC, Lin KC, Lin TH. Analysis and design of the Multi-Axis Testing System (MATS). National Center for Research on Earthquake Engineering Report No. NCREE 08-024, 2008 (in Chinese).
88. Tu JY, Lin PY, Stoten DP, Li G. Testing of dynamically substructured, base-isolated systems using adaptive control techniques. Earthquake Engineering and Structural Dynamics 2010; 39: 661-681.
89. Wagg DJ, Stoten DP. Substructuring of dynamical systems via the adaptive minimal control synthesis algorithm. Earthquake Engineering and Structural Dynamics 2001; 30:865-877.
90. Wallace MI, Sieber J, Neild SA, Wagg DJ, Krauskopf B. Stability analysis of real-time dynamic substructuring using delay differential equation models. Earthquake Engineering and Structural Dynamics 2005; 34:1817-1832.
91. Wang KJ. A software framework for quasi-static structural testing. Ph.D. Dissertation, National Taiwan University, Taiwan, 2010.
92. Wang KJ, Tsai KC, Wang SJ, Cheng WC, Yang YS. ISEE: internet-based simulation for earthquake engineering- part 2: application protocol approach. Earthquake Engineering and Structural Dynamics 2007; 36(15): 2307-2323.
93. Wen YK. Method for random vibration of hysteretic systems. Journal of Engineering Mechanics (ASCE) 1976; 102(2): 249-263.
94. Wu B, Bao H, Ou J, Tian S. Stability and accuracy analysis of the central difference method for real-time substructure testing. Earthquake Engineering and Structural Dynamics 2005; 34:705-718.
95. Wu B, Deng L, Yang X. Stability of central difference method for dynamic real-time substructure testing. Earthquake Engineering and Structural Dynamics 2009; 38:1649-1663.
96. Wu B, Wang A, Shing PB, Ou J. Equivalent force control method for generalized real-time substructure testing with implicit integration. Earthquake Engineering and Structural Dynamics 2007; 36:1127-1149.
97. Wu B, Xu G, Wang Q, Williams MS. Operator-splitting method for real-time substructure testing. Earthquake Engineering and Structural Dynamics 2006; 35: 293-314.
98. Yang TY, Schellenberg A. Using nonlinear control algorithms to improve the quality of shaking table tests. Proceedings of The 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
99. Yang YS, Hsieh SH, Tsai KC, Wang SJ, Wang KJ, Cheng WC, Hsu CW. ISEE: internet-based simulation for earthquake engineering- part 1: database approach. Earthquake Engineering and Structural Dynamics 2007; 36(15): 2291-2306.
100. Zadeh LA. Fuzzy sets. Information and Control 1965; 8: 338-353.
101. Zhang Y, Sause R, Ricles JM, Naito CJ. Modified predictor-connector numerical scheme for real-time pseudo dynamic tests using state-space formulation. Earthquake Engineering and Structural Dynamics 2005; 34: 271-288.
102. Zhao J, French C, Shield C, Posbergh T. Considerations for the development of real-time dynamic testing using servo-hydraulic actuation. Earthquake Engineering and Structural Dynamics 2003; 32: 1773–1794.
103. Ziegler JG, Nichols NB. Optimum settings for automatic controllers. Transactions of the ASME 1942; 64:759-768.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62758-
dc.description.abstract即時複合試驗結合了數值模擬與結構試驗兩種方法,其中結構的慣性力與阻尼力常以數值模型模擬,試體的恢復力則由試體反應量測而得。基本原理與擬動態試驗相同,唯一不同的地方為此方法並不放慢實驗速度,試體在即時的狀態下運動,在數值模型取得試體反應後即運算出下一個步階位移,並驅動致動器施加目標位移於試體上,反覆進行至試驗結束。此方法可真實反應速度相依型構件在全結構下的真實受震行為。然而系統的時間延遲、致動器控制的精確度、試體與數值模型傳遞資料所需的時間,以及數值方法的運算速度與收斂性能等,皆為影響試驗結果的正確性,亦為相關研究人員極欲解決的問題。
為了能解決因延遲與控制誤差所導致即時複合試驗結果的正確性與穩定性問題,本研究使用系統控制理論,藉由加入外迴圈控制器的方法以改善系統的穩定性,並以兩個實例驗證外迴圈控制器的可行性。第一個為鋼板剪力牆反覆載重實驗,藉由設計的外迴圈PID控制器,成功地完成彎矩控制的實驗需求;另一個為一興建中的振動台位移控制,數值模擬結果顯示外迴圈控制器能有效降低因系統變異及量測噪音所造成控制精度的影響。
在近期的研究發現,在即時複合試驗誤差因素中,時間延遲造成的效應最為關鍵,甚至於影響一個複合試驗的收斂性。本研究使用擬延遲分析法,以Rekasius替代法轉換系統延遲微分方程至多項函式,並以魯茲穩定性法則分析系統的穩定性,可得到單自由度穩定之臨界延遲。此外由波德圖分析可知,在延遲系統中,致動器施加過大的位移將減少系統的臨界延遲。
為了精確控制油壓致動器,以得到正確的受震反應模擬,本研究發展二階相位補償器以補償系統延遲。考慮實驗過程中系統延遲並非保持不變,本研究使用了適性控制理論,使此二階補償器能在實驗過程中自動調整其延遲常數,達成有效且即時的延遲補償。此外,為了修正量測位移與目標位移造成的誤差所導致的系統不平衡等效外力,本研究提出了補償恢復力器將此外力於下一個積分步進行修正。此方法需求得試體的切線勁度,本研究以移動平均方法於實驗過程中求取切線勁度,即時地以運算出對應的補償力加入動力方程式中,以求得較精確的試驗結果。
為了驗證所提出補償方法的可行性,本研究進行了數個即時複合試驗。對於速度不相依型的試體,本研究使用一個單自由度的結構,此結構既有阻尼比設定為2%,是十分嚴峻且具挑戰性的實驗,其數值模型包含了質量與阻尼係數,而彈性恢復力則由真實試體進行試驗量測而得。實驗結果發現,本研究所提出的雙補償方法,皆能夠穩定並準確地執行一個低阻尼速度不相依型的即時複合試驗。
為了驗證所提出的補償方法適用於速度相依型試體,本研究使用一雙自由度的智慧型隔震結構,其提供隔震層阻尼力的磁流變阻尼器由實驗即時控制並量測所得。實驗結果證明,本研究所提出的二階相位補償器,能夠得到穩定且準確的即時複合試驗結果。
為了更進一步改善致動器控制的精確度,本研究將適性控制理論應用於前饋與回饋控制器方法上。此外,本研究導入了參數投影演算法,並配合魯茲穩定性法則,以確保此應用的穩定性與安全性。最後,以一個九層樓的抗彎構架進行即時複合試驗,其控制各樓層加速度反應的磁流變阻尼器由實驗即時控制並量測所得。實驗結果證明適性控制理論的應用,改善了既有的前饋與回饋控制器方法,並提升了即時複合試驗結果的正確性。
此研究所開發的即時複合試驗技術,除了可提供國內研究人員進行地震工程研究的一種新方法,更可節省試體製作的成本,對於節能減碳與永續發展,有莫大的助益。
zh_TW
dc.description.abstractReal-time hybrid testing is an innovative experimental technique for evaluating the dynamic responses of structural systems under seismic loading. It separates a structure into two substructures: numerical model and physical specimen that is difficult to simulate analytically. Servo-hydraulic actuators, however, have complex dynamics and induce inevitable time lag or delay and magnitude reduction between the command and the achieved displacements. This delay produces a negative damping effect and adds energy into a hybrid test which would result in inaccurate test results or even destabilize the overall structural system. In addition, the accumulative measurement error would result in inaccurate test results. Therefore, real-time hybrid testing requires high quality measurements, accurate control of actuators, and refined signal processing to perform versatile and reliable experiments.
To improve the performance of an existing control system, an outer-loop control scheme has been investigated. Two experiments have been studied, including a cyclic loading test of a coupled steel plate shear wall, and a tracking control of a constructing shaking table. It has been shown that the additional outer-loop controller accomplishes the control target and the test requirements without changing the existing control system.

To realize the effects of actuator delay and control error on the real-time hybrid testing, the stability margin has been discussed by introducing a pseudo-delay technique. The critical time delay has been shown to depend on the test structural parameters. The structures with high damping or long period have a large critical time delay. In addition, a system with an undershoot amplitude error has a longer critical time delay than that with an overshoot amplitude error. The combined effects of time delay and amplitude error has been also investigated by Bode magnitude plots.
To achieve good tracking performance of servo-hydraulic systems, a second order discrete adaptive phase lead compensator (PLC) has been proposed. It has been proved unconditionally stable as long as the selected weightings are located in the stable regions. In addition, an adaptive delay estimator based on the gradient adaptive law has been adopted to estimate the delay during the test. Numerical simulations have shown that the PLC compensates the system well regardless of that the servo-hydraulic system is modeled as a pure time delay system or a first-order transfer function.
To reduce the effect of error propagation, a restoring force compensator has been proposed to correct the unbalanced force due to the displacement error. The compensation force is calculated by applying the proposed moving-averaged tangent stiffness method. Both the upper and lower bounds of the tangent stiffness have been specified to avoid unreasonable compensation. Furthermore, the sampling number used for computing the tangent stiffness of each step has been studied through the experimental validation.
For rate-independent specimens, real-time hybrid testing on a portal frame has been conducted. The stiffness term is represented by a steel plate. Experimental results have indicated that the dual-compensation scheme can be applied on tests containing rate-independent components stably and accurately.

For rate-dependent specimens, real-time hybrid testing on a smart base-isolation system has been performed. The physical specimen is a magneto-rheological (MR) damper which is semi-actively controlled by different control methods. Experimental results have demonstrated that the adaptive second-order PLC can lead to fair test results for rate-dependent components.
To further improve the tracking performance of servo-hydraulic systems, an adaptive model-based feedforward-feedback control strategy has been proposed. The accuracy and stability of this control scheme are validated through tracking performance testing and real-time hybrid testing of a nine-story shear building controlled by MR dampers. Experimental results have shown that the proposed adaptive model-based control achieves excellent displacement tracking for the real-time hybrid testing.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:09:34Z (GMT). No. of bitstreams: 1
ntu-102-D96521014-1.pdf: 5335546 bytes, checksum: 685e1c64388bb61cb5f45ba514c9c725 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 i
ACKNOWLEDGEMENTS ii
ABSTRACT iii
中文摘要 v
TABLE OF CONTENTS vii
LIST OF TABLES xi
LIST OF FIGURES xi
CHAPTER 1 1
INTRODUCTION 1
1.1 Structural Testing Methods 1
1.2 Motivation 4
1.3 Research Objectives 5
1.4 Organization of Dissertation 6
CHAPTER 2 9
LITERATURE REVIEW OF REAL-TIME HYBRID TESTING 9
2.1 Researches on Integration Algorithm 9
2.1.1 Nakashima and Masaoka 9
2.1.2 Wu et al. 10
2.1.3 Bonnet et al. 10
2.1.4 Zhang et al. 11
2.1.5 Chen and Ricles 11
2.1.6 Bursi et al. 11
2.1.7 Other Researches 12
2.2 Researches on Actuator Compensation 12
2.2.1 Horiuchi et al. 13
2.2.2 Stoten et al. 13
2.2.3 Ahmadizadeh et al. 13
2.2.4 Chen and Ricles 14
2.2.5 Other Researches 14
2.3 Researches on Stability Analysis 15
2.3.1 Wallace et al. 15
2.3.2 Mercan and Ricles 15
CHAPTER 3 17
FUNDAMENTALS OF CONTROL THEORY 17
3.1 Classical Control 17
3.1.1 Transfer Function 18
3.1.2 Bode Plot 19
3.1.3 Poles and Zeros 19
3.1.4 Stability Criteria 20
3.1.4.1 Routh Criterion 20
3.1.4.2 Root Locus 20
3.1.4.3 Nyquist Stability Criterion 21
3.1.5 PID Control 21
3.2 Modern Control 24
3.2.1 State-Space Representation 24
3.2.2 Lyapunov Stability Theorem 25
3.2.3. State Feedback Control 26
3.2.4 Gain Scheduling Control 27
3.2.5 Sliding Mode Control 28
3.2.6 Adaptive Control 29
3.2.7 Robust Control 29
CHAPTER 4 37
OUTER-LOOP CONTROL OF THE TEST SYSTEMS 37
4.1 Hardware Facilities at NCREE 37
4.2 Case Study 1: Cyclic Test of a Coupled Steel Plate Shear Wall Substructure 38
4.3 Case Study 2: Design and Control of a Uni-axial Shaking Table 41
CHAPTER 5 69
REAL-TIME HYBRID TESTING FOR RATE-INDEPENDENT SPECIMENS 69
5.1 Critical Time Delay 69
5.1.1 Pseudodelay Technique 70
5.1.2 Effect of Time Delay and Amplitude Error 72
5.2. Phase Lead Compensator 73
5.2.1. Dynamics of Servo-Hydraulic Systems 74
5.2.2 Simplified Model for Servo-Hydraulic Systems 75
5.2.3 Inverse Model 77
5.2.4 Delay Estimator 79
5.2.4.1 Static Parametric Model (SPM) 80
5.2.4.2 Parameter Identification 81
5.2.4.3 Stability and Parameter Convergence 82
5.2.4.4 Discrete Time Representation 84
5.2.5 Numerical Simulation 84
5.3 Restoring Force Compensator 86
5.3.1 Error Propagation 87
5.3.2 Force Compensation 88
5.3.3 Moving-Averaged Tangent Stiffness 89
5.3.4 Numerical Simulation 90
5.3.4.1 Elastic Structures 90
5.3.4.2 Inelastic Structures 91
5.4 Experimental Validation 93
5.4.1 Experimental Setup 93
5.4.2 Design of PLC 94
5.4.3 Real-time Hybrid Testing 95
CHAPTER 6 111
REAL-TIME HYBRID TESTING FOR RATE-DEPENDENT SPECIMENS 111
6.1 Smart Base-isolated Building 111
6.1.1 System Identification 112
6.1.2 MR Damper Control Algorithms 114
6.1.2.1 Linear-quadratic Control 115
6.1.2.2 Fuzzy-logic Control 118
6.1.3 Numerical Simulation 120
6.1.4 Experimental Validation 121
6.2 Adaptive Model-based Tracking Control 127
6.2.1 Feedforward and Feedback Controllers 128
6.2.2 Adaptive Control Implementation 130
6.2.2.1 Stability Constraint 130
6.2.2.2 Gradient Adaptive Law 131
6.2.2.3 Parameter Projection 132
6.2.3 Numerical Simulation 132
6.3 Experimental Validation 135
6.3.1 Hardware Facilities 136
6.3.2 System Identification Tests 137
6.3.3 Tracking Performance Testing 138
6.3.4 Real-time Hybrid Testing 139
CHAPTER 7 165
SUMMARY AND CONCLUSIONS 165
7.1 Summary 165
7.2 Conclusions 168
7.3 Future Works 171
REFERENCE 173
dc.language.isoen
dc.subject即時複合試驗zh_TW
dc.subject外迴圈控制zh_TW
dc.subject相位補償器zh_TW
dc.subject恢復力補償器zh_TW
dc.subject適性控制zh_TW
dc.subject隔震結構zh_TW
dc.subject磁流變阻尼器zh_TW
dc.subjectMR damperen
dc.subjectreal-time hybrid testingen
dc.subjectouter-loop controlen
dc.subjectdual-compensationen
dc.subjectadaptive controlen
dc.subjectbase-isolation systemen
dc.subjectmodel-based controlen
dc.title地震工程即時複合試驗技術之研究zh_TW
dc.titleA Study on Real-time Hybrid Testing Method for Earthquake Engineeringen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee張國鎮(Kuo-Chun Chang),羅俊雄(Chin-Hsiung Loh),鍾立來(Lap-Loi Chung),林其璋(Chi-Chang Lin),朱世禹(Shih-Yu Chu)
dc.subject.keyword即時複合試驗,外迴圈控制,相位補償器,恢復力補償器,適性控制,隔震結構,磁流變阻尼器,zh_TW
dc.subject.keywordreal-time hybrid testing,outer-loop control,dual-compensation,adaptive control,base-isolation system,MR damper,model-based control,en
dc.relation.page180
dc.rights.note有償授權
dc.date.accepted2013-04-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved