Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62735
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林金福
dc.contributor.authorYou-Chun Chengen
dc.contributor.author程宥鈞zh_TW
dc.date.accessioned2021-06-16T16:08:50Z-
dc.date.available2013-06-21
dc.date.copyright2013-06-21
dc.date.issued2013
dc.date.submitted2013-04-29
dc.identifier.citation[1] Edelstein A.S., Cammarata R.C. Nanamaterials; Institute of Physics Publishing: Bristol, London, 1996.
[2] http://en.wikipedia.org/wiki/Composite_material
[3] http://zh.wikipedia.org/wiki/纳米科技
[4] Giannelis E.P. Adv. Mater., 1996, 8, 29.
[5] Tu C. W., Liu K. Y., Chien A. T., Yen M. H., Weng T. H., Ho K. C., Lin K. F. J. Polym. Sci. Part A: Polym. Chem., 2007, 46, 47.
[6] Aguzzi C., Cerezo P., Viseras C., Caramella C. Appl. Clay Sci. ,2007, 36, 22.
[7] Schaefer D. W., Mark J. E. Polymer based molecular composites; MRS Symposium Proceedings: Pittsburgh, 1990, 171, 45.
[8] 徐志宇, 幾丁聚醣/蒙脫石複合材料之支架備製, 國立台灣大學材料與工程學研究所, 碩士論文, 2003
[9] http://www.chemtech.com.tw/Column.php?mode=detail&id=38
[10] Chu C. C., Chiang M. L., Tsai C. M., Lin J. J. Macromolecules , 2005, 38, 6240.
[11] Lin J. J., Cheng I. J., Wang R., Lee R. J. Macromolecules , 2001, 34, 8832.
[12] Lin J. J., Lin S. F. J. Colloid Interface Sci., 2003, 258, 155.
[13] Lin J. J., Speranza G. P., Waddill H. G. J. Appl. Polym. Sci., 1997, 66, 2339.
[14] Tseng F. P., Chang F. C., Lin S. F., Lin J. J. J. Appl. Polym. Sci., 1999, 71, 2129.
[15] Lin J. J., Chen I. J., Chou C. C. Macromol. Rapid Commun. , 2003, 24, 492.
[16] Chou C. C., Shieu F. S., Lin J. J. Macromolecules , 2003, 36, 2187.
[17] Lee C.H., Chien A.T., Yen M.H., Lin K.F. J. Polym. Res., 2008, 331.
[18] Edelstein A.S., Cammarata R.C. Nanamaterials; Institute of Physics Publishing: Bristol, London, 1996.
[19] 蔡宗燕. 強塑廣用新知. 1998, 76, 58.
[20] 徐國財、張立德. 奈米複合材料. 五南出版社2004, 324.
[21] Lee D. C., Jang L. W. Journal of Applied Polymer Science, 1996, 61, 1117.
[22] Fudala A., Palinko I., Kiricsi I. Inorganic Chemistry, 1999, 38, 4653.
[23] Lin K. F., Lin S. C., Chien A. T., Hsieh C. C., Yen M. H., Lee C. H. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44, 5572.
[24] http://www.aero.fcu.edu.tw/media/nero-composites.htm
[25] Naidja A., Huang P. M. Applied Clay Science , 1994, 9, 265.
[26] http://en.wikipedia.org/wiki/Bjerrum_length
[27] 鄭玉慧,“NaPSS聚電解質溶液行為之探討”,國立臺灣大學材料科學與工程學研究所,碩士論文,1999.
[28] Lin K. J., Dai C. A., Lin K. F. Journal of Poly. Sci. Part A: Poly. Chem., 2009, 47, 459.
[29] 林上強,PMMA 奈米複合材料與奈米級蒙脫石溶液之製備及性質分析,國立臺灣大學材料科學與工程學研究所碩士論文;2005.
[30] Lin K. F., Lin S. C., Chien A. T., Hsieh C. C., Yen M. H., Lin C. S., Chiu W. Y., Lee Y. H. J. Polym. Sci., Part A: Polym. Chem., 2006, 31, 1755
[31] Blicke F. F., in Organic Reactions, J. Wiley and Sons, New York, 1942, 1, 303.
[32] Su H. L., Lin S.H., Wei J. C., Pao I. C., Chiao S. H., Huang C. C., Lin S. Z., Lin J. J. PLoS ONE, 2011, Vol. 6, Issue 6, 1
[33] (a)Walden P., Bull. Acad. Imper. Sci. (St. Petersburg), 1914, 1800; (b)Sugden S. and Wilkins H., J. Chem. Soc., 1929, 1291.
[34] Hurley F. H., Wier T. P., J. Electrochem. Soc., 1951, 98, 203.
[35] Chum H. L., Koch V. R., Miller L. L., Osteryong R. A., J. Am. Chem. Soc., 1975,97, 3264.
[36] Wilkes J. S., Zaworotko M. J., J. Chem. Soc., Chem. Commun., 1992, 965.
[37] Davis J. H., Fox P. A. Chem. Commun., 2003, 1209.
[38] Leone A. M., Weatherly S. C., Williams M. E., Thorp H. H., Murray R. W. J. Am. Chem. Soc., 2001, 123, 218.
[39] Yoshizawa M., Narita A., Ohno H., Aust. J. Chem., 2004, 57, 139.
[40] Hayashi S., Hamaguchi H., Chem. Lett., 2004, 33, 1590.
[41] Fukumoto K., Yoshizawa M., Ohno H., J. Am. Chem. Soc., 2005, 127, 2398.
[42] MacFarlane D. R., Huang J., Forsyth M. Nature, 1999, 402, 792.
[43] Doyle M., Choi S. K., Proulx G. J. Electrochem. Soc., 2000, 147, 34.
[44] Kubo W., Kitamura T., Hanabusa K., Wada Y., Yanagida S. Chem. Commun., 2002, 374.
[45] Boyle T. J., Ingersoll D., Rodriguez M. A., Tafoya C. J., Doughty D. H. J. Electrochem. Soc., 1999, 146, 1687.
[46] Buzzeo M. C., Klymenko O. V., Wadhawan J. D., Hardacre C., Seddon K. R., Compton R. G. J. Phys. Chem. A, 2003, 107, 8872.
[47] AlNashef I. M., Leonard M. L., Kittle M. C., Matthews M. A., Weidner J. W. Electrochem. Solid-State Lett., 2001, 4, D16.
[48] AlNashef I. M., Leonard M. L., Matthews M. A., Weidner J. W. Ind. Eng. Chem. Res., 2002, 41, 4475.
[49] Giovanelli D., Buzzeo M. C., Lawrence N. S., Hardacre C., Seddon K. R., Compton R. G., Talanta, 2004, 62, 904.
[50] Buzzeo M. C., Hardacre C., Compton R. G., Anal. Chem., 2004, 76, 4583.
[51] Swatloski R. P., Spear S. K., Holbrey J. D., Rogers R. D. J. Am. Chem. Soc., 2002,124, 4974.
[52] Liu Y., Wang M., Li Z., Liu H., He P., Li J. Langmuir, 2005, 21, 1618.
[53] Ye C. F., Liu W. M., Chen Y. X., Yu L. G. Chem. Commun., 2001, 2244.
[54] Solvent-Innovation http://www.solvent-innovation.de.
[55] Blanchard L. A., Hancu D., Beckman E. J., Brennecke J. F. Nature, 1999, 399, 28.
[56] Aggarwal V.K., Emme I., Mereu A. Chem. Commun., 2002, 1612.
[57] Wasserscheid P., Welton T. Ionic Liquids in Synthesis. Wiley-VCH: Weinheim, 2003.
[58] http://gc.chem.sinica.edu.tw/new-no-ionic.html
[59] Ferry, John D. Viscoelastic Properties of Polymers. 紐約:Wiley 出版社,1980。
[60] http://en.wikipedia.org/wiki/Gel
[61] Lee C. H., Liu K. Y., Chang S. H., Lin K. J., Lin J. J., Ho K. C., Lin K. F. Journal of Colloid and Interface Science 363 , 2011, 635.
[62] Pinnavaia T. J., Beall G. E. Polymer-Clay Nanocomposites, John Wiely & Sons: New York, 2000.
[63] Utracki L. A. Clay-Containing Polymeric Nanocomposites , Rapra Technology, 2004.
[64] Ke Y. C., Stroeve P. Polymer-Layered Silicate and Silica Nanocomposites, Elsevier: Amsterdam, 2005.
[65] Chien A. T., Lin K. F. Journal of Poly. Sci.: Part A: Poly. Chem.,2007, 5583.
[66] Tu C. W., Liu K.Y., Chien A. T., Yen M. H., Weng T. H., Ho K. C., Lin K. F. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 47.
[67] O’Regan B., Grätzel M., Nature, 1991, 353, 737
[68] Grätzel M., Journal of photochemistry and Photobiology,C:Photochemistry Reviews,4, 2003,145
[69] Nazeeruddin M. K., Humphry-Baker R., Liska P., and Grätzel M., The Journal of Physical Chemistry B, 2003, 107, 8981
[70] Redmond G., Fitzmaurice D. Chemistry of Materials, 1994, 6, 686
[71] Kamat P. V., Bedja I., Hotchandani S., Patterson L. K. Journal of Physical Chemistry, 1996, 100,4900
[72] Rensmo H., Keis K., Lindstrom H., Sodergren S., Solbrand A., Hagfeldt A., Lindquist S. E. Journal of Physical Chemistry B, 1997, 101, 2598
[73] Liu D., Hug G. L., Kamat P. V., Journal of Physical Chemistry, 1995, 99, 16768
[74] Bedja I., Hotchandani S., Kamat P. V., Journal of Physical Chemistry, 1994, 98, 4133
[75] Nazeeruddin M. K., Kay A., Rodicio I., Humpbry-Baker R., Miiller E., Liska P., Vlachopoulos N., Grätzel M. Journal of the American Chemical Society, 1993, 115, 6382
[76] Kohle O., Ruile S., Grätzel M., Inorganic Chemistry, 1996, 35, 4779
[77] Shklover V., Nazeeruddin M. K., Zakeeruddin S. M., Barbe C., Kay A., Haibach T., Steurer W., Hermann R., Nissen H. U., Grätzel M., Chemistry of Materials, 1997, 9, 430
[78] Amadelli R., Argazzi R., Bignozzi C. A., Scandola F. Journal of the American Chemical Society, 1990, 112, 7099
[79] Argazzi R., Bignozzi C. A. Inorganic Chemistry, 1997, 36, 2
[80] Kalyanasundaram K., Grätzel M. Coordination Chemistry Reviews, 1998, 77, 347
[81] Antonelli D. M., Ying J. Y. Angewandte Chemie (International ed.), 1995, 18, 2014
[82] Burnside S. D., Shklover V., Barbe C., Comte P., Arendse F., Brooks K., Grätzel M. Chemistry of Materials, 1998, 10, 2419
[83] Weidmann J., Dittrich T., Konstantinova E., Lauermann I., Uhlendorf I., Koch F. Solar Energy Materials and Solar cells, 1999, 56,153
[84] Barbé C. J., Árendse F., Comte P., Jirousek M., Lenzmann F., Shklover V., Grätzel M. Journal of the American Ceramic Society, 1997, 80, 3157
[85] Grätzel M. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 3
[86] Schlichthörl G., Huang S. Y., Sprague J., and Frank A. J., Journal of Physical Chemistry B, 1997, 101, 8141
[87] Hagfeldt A., Grätzel M. Accounts of Chemical Research, 2000, 33, 269
[88] Hagfeldt A., Grätzel M. Chemical Reviews, 1995, 95, 49
[89] Sekhon S. S., Deepa, Agnihotry S. A. Solid State Ionics, 2000, 136-137, 1189
[90] Cole K. S., Curtis H. J. Medical Physics., 1950, 2, 82.
[91] Zoltowski P. Electroanalytical Chemistry, 1998, 443, 149.
[92] Lasia A. Modern Aspects of Electrochemistry, 1999, 32.
[93] http://researchbank.rmit.edu.au/eserv/rmit:8021/Zheng.pdf [94] Placzek G. In: Hdb. der Radiologie, Vol. VI, 2, 1934, 209 [95] Gardiner D. J. Practical Raman spectroscopy.Springer-Verlag., 1989. [96] zh.wikipedia.org/wiki/拉曼光譜學
[97] Ferraro J. R., Furlani A., Russo M. V. Applied Spectroscopy, 1987, 41, 830
[98] Tadayyoni M. A., Gao P., Weaver M. J. J. Electroanal. Chem., 1986, 198, 125.
[99] Andrews L., Prochaska E. S., Loewenschuss A. Inorg. Chem., 1980, 19, 463.
[100] Loos K. R., Jones A. C. J. Phys. Chem., 1974, 78, 2306.
[101] Wataru Kubo, Kei Murakoshi, Takayuki Kitamura, Shigeo Yoshida, Mitsuru Haruki, Kenji Hanabusa, Hirofusa Shirai, Yuji Wada, and Shozo Yanagida. J. Phys. Chem. B, 2001, 105, 12809
[102] Papageorgiou N., Athanassov Y., Armand M., Bonhoˆte P., Pettersson H., Azam A., Gra¨tzel M. J. Electrochem. Soc., 1996, 143, 3099.
[103] Lin J. J., Chu C. C., Chou C. C., Shieu F. S. Adv. Mater., 2005, 17, 3, 301
[104] Lin J. J., Chen Y. M., Tsai W. C., Chiu C. W. J. Phys. Chem. C, 2008, 112 (26), 9637
[105] Lin J. J., Chen Y. M., Tsai W. C. Macromol. Symp., 2009, 279, 119
[106] Lin K. J., Weng T. H., Lee C. H., Lin K. F. Journal of Poly. Sci.: Part A: Poly. Chem., 2009, 5891
[107] Lee C. H., Weng T. H., Liu K. Y., Lin K. J., Lin K. F. Journal of Applied Polymer Science, 2010, 118, 652
[108] Lin J. J., Hsu Y. C., Wei K. L. Macromolecules, 2007, 40, 1579
[109] Lin S. T., Chiu C. W., Chen W. C., Lin J. J., J. Phys. Chem. C, 2007, 111, 13016
[110] Heinz H., Vaia R. A., Farmer B. L. Langmuir, 2008, 24, 3727
[111] Heinz H., Castelijns H. J., Suter U. W. J. AM. CHEM. SOC., 2003, 125, 9500
[112] Heinz H., Suter U. W. Angew. Chem. Int. Ed., 2004, 43, 2239
[113] Heinz H., Vaia R. A., Krishnamoorti R., Farmer B. L. Chem. Mater., 2007, 19, 59
[114] Balamurugan A., Kannan S., Selvaraj V., Rajeswari S. Trends Biomater. Artif. Organs, 2004, 18, 41
[115] Wei K. L., Hung F. Y., Lin J. J. Journal of Poly. Sci.: Part A: Poly. Chem., 2006, 646
[116] El Nahhal I. M., Chehimi M. M., Cordier C., Dodin G. Journal of Non-Crystalline Solids, 2000, 275, 142
[117] Lai Y. H., Chiu C. W., Chen J. G., Wang C. C., Lin J. J., Lin K. F., Ho K. C. Solar Energy Materials & Solar Cells, 2009, 93, 1860
[118] Tsui M. C., Tung Y. L., Tsai S. Y., Lan C. W. Journal of Solar Energy Engineering, 2011, 133, 011002-1
[119] Kruse A., Schlett V., Baalmann A., Hennecke M. Fresenius J. Anal. Chem., 1993, 346, 284
[120] http://srdata.nist.gov/xps/EngElmSrchQuery.aspx?EType=PE&CSOpt=Retri_ex_dat&Elm=Mg
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62735-
dc.description.abstract本實驗室過去曾發現利用乳化聚合脫層的蒙脫石奈米片(exMMT),由於帶負電可用來膠化1-methyl-3-propylimidazolium iodide (PMII)離子液體,使之具有不揮發不滲漏的優點,將之做成染料敏化太陽能電池的膠態離子液體電解質,結果不但不會降低光電轉化效率,效率反而由6%提昇到7.77%。因此本論文除了探討以陰離子脫層法製得之脫層蒙脫石結構與水溶液導電性質外,亦將合成帶陽離子胺鹽的長鏈分子來脫層蒙脫石,並與陰離子脫層法相互比較。除了利用TEM觀察脫層後之蒙脫石單片結構外,亦與AFM所測得的結果進行比較,結果顯示兩種方法脫層後之蒙脫石長寬均約300奈米,厚度則為1奈米。接著以XRD觀察脫層蒙脫石之回疊現象,並從TGA分析得知脫層劑之殘留量為12%,輔以理論計算得知蒙脫石奈米片回疊時,脫層劑附著於蒙脫石表面之傾斜角度為6度。除此之外,由於脫層劑的殘留,故其對蒙脫石上各金屬離子的影響也需要加以討論,以FT-IR觀察蒙脫石奈米片上的官能基特性峰,發現兩種方法的Si-O特性峰均有變寬的趨勢,表示蒙脫石有確實被脫層,而陰離子脫層法的Mg-O特性峰則有偏移的現象,表示結構上受到脫層劑之影響而改變。以XPS討論蒙脫石上金屬離子鍵結能的變化時,亦發現陰離子脫層法的Mg1s軌域特性峰往低能量處偏移,陽離子脫層法則是Si、Al、Mg均受到影響,證明了脫層劑殘留於蒙脫石上的事實。之後,我們探討不同脫層方法之exMMT/PMII電化學性質,以EIS測量R2值隨蒙脫石含量的變化,發現其於膠化點附近有下降的趨勢,此現象若用Raman光譜與XPS來分析,則可能是由於碘離子被氧化為I3-或I5-所致。最後在exMMT/PMII中添加不同含量的碘,由EIS結果顯示,I2的增加可產生hopping效應來幫助電子傳遞,再加上蒙脫石天生負電所造成的庫倫排斥力,產生離子通道,讓電子得以順利傳遞,有效地降低R2值。zh_TW
dc.description.abstractOur lab has recently discovered a novel method to exfoliate mortmorillonite (MMT) by using the soap-free emulsion polymerization. Because the exfoliated MMT nanoplatelets (exMMT) carry negative charges, they are capable of gelatinizing the 1-methyl-3-propylimidazolium iodide (PMII) ionic liquid, achieving a merit of no evaporation and no leaking properties. When they were employed to gelatinize the ionic liquid electrolyte for dye-sensitized solar cell (DSSC), it was surprised to find that the power conversion efficiency (PCE) was increased from 6 to 7.77%. Therefore, the main objective of this master thesis was to investigate the structure and solution conductivity of exMMT. Also, a kind of amine-terminated polymer was synthesized to exfoliate montmorillonite in order to compare the results with that synthesized by soap-free emulsion polymerization method. First, TEM and AFM were used to examine the structure of exMMT. It was shown that the size of exMMT was about 300 nm in width and 1 nm in height. Second, we used XRD to determine that exMMT would re-stack to some degree by itself after drying and calculate that the tilt angle of remaining amine-terminated polymer was ~6 degree on exMMT surface. Besides, the effect of exfoliator on the metallic ions of MMT is also in need of discussion. We used FT-IR to investigate the change of the spectrum after exfoliation of the MMT and XPS to measure the change of binding energy of the metallic ions on MMT. The FTIR results showed that the peak of Si-O became broader in both methods and that of Mg-O was diminished in anionic method. The former told us that MMT was actually exfoliated while the latter showed that the structure of MMT was changed due to the presence of anionic exfoliator. When we used XPS to investigate the change of binding energy of the metallic ions on MMT, it was shown that the peak of Mg1s orbital shifted to the lower energy in anionic method while Si, Al and Mg were all affected in cationic method. After that, the electrochemical properties of the exMMT/PMII composites prepared by two different methods of MMT exfoliation were examined and compared. The EIS result showed the impedance for the exMMT/PMII hybrid decreased with increasing the MMT weight percent, especially near gel point. We used Raman spectroscopy and XPS to clarify this unexpected result by determining that I3- and I5- were formed by the oxidation of I- in the presence of exMMT. Last but not least, by means of EIS, we found that the increase of I2 concentration could help the transfer of electrons by hopping effect when adding different amount of I2 in exMMT/PMII.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:08:50Z (GMT). No. of bitstreams: 1
ntu-102-R99527020-1.pdf: 2864029 bytes, checksum: b41cc551f6ee182ffc49598e1aa0d310 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝.......................................................I
摘要......................................................II
Abstract.................................................III
目錄.......................................................V
圖目錄..................................................VIII
表目錄...................................................XII
第一章、緒論...............................................1
1-1 前言...................................................1
1-2 蒙脫石.................................................2
1-2-1 蒙脫石的背景與簡介.................................2
1-2-2 無乳化劑乳化聚合...................................5
1-2-3 Mannich聚合法......................................7
1-3 離子液體...............................................8
1-3-1 離子液體的背景與簡介...............................8
1-3-2 凝膠..............................................10
1-4 染料敏化太陽能電池....................................11
1-5 膠態高分子電解質......................................17
1-6 交流阻抗分析原理......................................18
1-7 拉曼光譜..............................................23
1-8 研究目的..............................................27
1-9 研究架構..............................................28
第二章、實驗設備與方法....................................29
2-1 實驗藥品與材料........................................29
2-2 實驗儀器與設備........................................30
2-3 實驗流程..............................................31
2-3-1 脫層奈米蒙脫石(exMMT)製備.........................31
2-3-2 以脫層蒙脫石膠化離子液體..........................32
2-3-3 脫層蒙脫石/離子液體/碘三成份......................33
2-4 儀器鑑定與試片製作....................................33
2-4-1 TEM試片製作.......................................34
2-4-2 AFM試片製作.......................................34
2-4-3 奈米片狀蒙脫石水溶液之電導度量測..................34
2-4-4 XRD試片製作.......................................35
2-4-5 TGA試片製作.......................................36
2-4-6 FT-IR試片製作.....................................36
2-4-7 XPS試片製作.......................................36
2-4-8 EIS試片製作.......................................36
2-4-9 Raman鑑定之樣品製作...............................37
第三章、結果與討論........................................38
3-1 脫層蒙脫石奈米片結構分析..............................38
3-1-1 TEM觀察...........................................38
3-1-2 AFM觀察...........................................41
3-1-3 脫層蒙脫石水溶液之電導度量測......................42
3-2 奈米片狀蒙脫石與脫層劑之交互作用探討..................43
3-2-1 XRD觀察...........................................43
3-2-2 TGA觀察...........................................46
3-2-3 AMO polyamines傾斜角度與覆蓋面積..................47
3-2-4 FT-IR鑑定.........................................48
3-2-5 XPS鑑定...........................................52
3-3 離子液體膠化前後之交流阻抗分析........................56
3-3-1 脫層蒙脫石/離子液體之交流阻抗探討.................56
3-3-2 Raman鑑定結果.....................................61
3-3-3 碘離子的氧化現象..................................64
3-3-4 碘化鋰的加入對離子液體膠化前後之影響..............71
3-3-5 碘的加入對於蒙脫石奈米複材之影響..................78
第四章、結論.............................................100
第五章、參考資料.........................................101
dc.language.isozh-TW
dc.title以陰離子和陽離子脫層蒙脫石製備離子液體複合材料之製程及阻抗分析zh_TW
dc.titleProcessing of ionic liquid composite materials incorporating exfoliated montmorillonite prepared by anionic and cationic methods and their impedance analysisen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邱文英,林招松
dc.subject.keyword蒙脫石,離子液體,膠化,電化學,染料敏化太陽能電池,zh_TW
dc.subject.keywordMortmorillonite,ionic liquid,gelation,electrochemical,dye-sensitized solar cell,en
dc.relation.page108
dc.rights.note有償授權
dc.date.accepted2013-04-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved