請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62714完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝國煌 | |
| dc.contributor.author | Ting-Kai Huang | en |
| dc.contributor.author | 黃亭凱 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:08:15Z | - |
| dc.date.available | 2018-06-21 | |
| dc.date.copyright | 2013-06-21 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-05-25 | |
| dc.identifier.citation | 1. Ray SS, Okamoto M. Prog. Polym. Sci. 2003;28:1539.
2. Pavlidou S, Papaspyrides CD. Prog. Polym. Sci. 2008;33:1119. 3. Kumar AP, Depan D, Tomer NS, Singh RP. Prog. Polym. Sci. 2009;34:479. 4. Bordes P, Pollet E, Averous L. Prog. Polym. Sci. 2009;34:125. 5. Kiliaris P, Papaspyrides CD. Prog. Polym. Sci. 2010;35:902. 6. Alexandre M, Dubois P. Mater. Sci. Eng. 2000;28:1. 7. Utracki LA, Sepehr M, Boccaleri E. Polym. Adv. Technol. 2007;18:1. 8. Giannelis EP. Adv. Mater. 1996;8:29. 9. Chiu CW, Lin JJ. Prog. Polym. Sci. 2012;37:406. 10. Lin JJ, Chan YN, Chang WH. In: Geckeler KE, Nishide H, editors. Advanced Nanomaterials. New York: John Wiley & Sons Inc, 2010. p. 459. 11. Lin JJ, Chan YN, Lan YF. Materials 2010;3:2588. 12. Okada A, Usuki A. Mater. Sci. Eng. C 1995;3:109. 13. Okada A, Usuki A. Macromol. Mater. Eng. 2006;291:1449. 14. Usuki A, Hasegawa N, Kadoura H, Okamoto T. Nano Lett. 2001;1:271. 15. Lai YH, Chiu CW, Chen JG, Wang CC, Lin JJ, Lin KF, Ho KC. Sol. Energy Mater. Sol. Cells 2009;93:1860. 16. Bottino FA, Fabbri E, Fragala IL, Malandrino G, Orestano A, Pilati F, Pollicino A. Macromol. Rapid Commun. 2003;24:1079. 17. Fox DM, Maupin PH, Harris Jr. RH, Gilman JW, Eldred DV, Katsoulis D, Trulove PC, DeLong HC. Langmuir 2007;23:7707. 18. Wang ZM, Chung TC, Gilman JW, Manias E. J. Polym. Sci. B: Polym. Phys. 2003;41:3173. 19. Gilman JW, Awad WH Davis RD, Shields J, Harris Jr. RH, Davis C, Morgan AB, Sutto TE, Callahan J, Trulove PC, DeLong HC. Chem. Mater. 2002;14:3776. 20. Lin JJ, Cheng IJ, Wang R, Lee RJ. Macromolecules 2001;34:8832. 21. Lin JJ, Cheng IJ, Chou CC. Macromol. Rapid Commun. 2003;24:492. 22. Harries JM. Poly(ethylene glycol) chemistry: biotechnical and biomedical applications; Plenum: New York, 1992. 23. Okazaki K, Nakagawa A, Sugii K. US Patent 3,558,419, 1971. 24. Fukumoto T, Yano K, Iwamoto M. US Patent 5,096,995, 1992. 25. Finocchio E, Baccini I, Cristiani C, Dotelli G, Stampino PG, Zampori L. J. Phys. Chem. A 2011;115:7484. 26. Lin JJ, Chen YM., Yu MH. Colloids and Surfaces A: Physicochem. Eng. Aspects 2007, 302, 162. 27. Lin JJ, Chang YC, Cheng IJ. Macromol. Rapid Commun. 2004, 25, 508. 28. Chou CC, Chiang ML, Lin JJ. Macromol. Rapid Commun. 2005, 26, 1841. 29. Hu H, Martin JC, Xiao MC, Southworth S, Meng Y, Sun L. J. Phys. Chem. C 2011, 115, 5509. 30. Allcock HR, Taylor JP. Polym. Eng. Sci. 2000;40(5):1177–1189. 31. Allcock HR, Hartle TJ, Taylor JP, Sunderland NJ. Macromolecules 2001;34(12):3896. 32. Allcock HR, Kellam EC, Hofmann MA. Macromolecules 2001;34(15):5140. 33. Nawani P, Desai P, Lundwall M, Gelfer MY, Hsiao BS, Rafailovich M, Frenkel, AI, Tsou AH, Gilman JW, Khalid S. Polymer 2007;48(3):827. 34. Rothon RN, Hornsby PR. Polym. Degrad. Stab. 1996;54(3):383. 35. Genovese A, Shanks RA. Polym. Degrad. Stab. 2007;92(1):2. 36. Moniruzzaman M, Winey KI. Macromolecules 2006;39(16):5194. 37. Isitman NA, Kaynak C. Polym. Degrad. Stab. 2010;95(9):1523. 38. Gao F, Beyer G, Yuan Q. Polym. Degrad. Stab. 2005;89(3):559. 39. Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G, Bourbigot S, Dubois P. Polym. Degrad. Stab. 2010;95(5):889. 40. Cheng IJ, Chu CC, Lin JJ. Polymer Journal 2003;35(5):411. 41. Jan IN, Lee TM, Chiou KC, Lin JJ. Industrial & Engineering Chemistry Research 2005;44(7):2086. 42. Chiu CW, Cheng WT, Wang YP, Lin JJ. Industrial & Engineering Chemistry Research 2007;46(22):7384. 43. Chiu CW, Chu CC, Cheng WT, Lin JJ. European Polymer Journal 2008;44(3):628. 44. Chen YM, Liao YL, Lin JJ. Journal of Colloid and Interface Science 2010;343(1):209. 45. Chan YN, Lan YF, Lin JJ. Materials 2010;3(4):8. 46. Zanetti M, Kashiwagi T, Falqui L, Camino G. Chem. Mater. 2002;14(2):881. 47. Lan T, Pinnavaia TJ. Chem. Mater. 1994;6(12):2216–2219. 48. Zanetti M, Lomakin S, Camino G. Marcromol. Mater. Eng. 2000;279(1):1. 49. Lan YF, Hsieh BZ, Lin HC, Su YA, Chan YN, Lin JJ. Langmuir 2010;26(13):10572. 50. Chen YM, Lin HC, Hsu RS, Hsieh BZ, Su YA, Shen YJ, Lin JJ. Chem. Mater. 2009;21(17):4071. 51. Mahadevaiah N, Venkataramani B, Jai Prakash BS. Chem. Mater. 2007;19(18):4606. 52. Vaia RA, Teukolsky RK, Giannelis EP. Chem. Mater. 1994;6(7):1017. 53. Zeng C, Lee LJ. Macromolecules 2001;34(12):4098. 54. Hotta S, Paul DR. Polymer 2004;45(22):7639. 55. Fu X,Qutubuddin S. Polymer 2001;42(2):807. 56. Fu X, Qutubuddin S. Materials Letters 2000;42(1-2):12. 57. Bottino FA, Fabbri E, Fragala IL, Malandrino G, Orestano A, Pilati F, Pollicino A. Macromol. Rapid Commun. 2003;24(18):1079. 58. Fox DM, Maupin PH, Harris Jr. RH, Gilman JW, Eldred DV, Katsoulis D, Trulove, PC, DeLong HC. Langmuir 2007;23(14):7707. 59. Wang ZM, Chung TC, Gilman JW, Manias E. J. Polym. Sci. B Polym. Phys. 2003;41(24):3173. 60. Gilman JW, Awad WH, Davis RD, Shields J, Harris Jr. RH, Davis C, Morgan AB, Sutto TE, Callahan J, Trulove PC, DeLong HC. Chem. Mater. 2002;14(9):3776. 61. Wang J, Wheeler PA, Jarrett WL, Mathias LJ. J. Appl. Polym. Sci. 2007;106(3):1496. 62. Leu CM, Wu ZW, Wei KH. Chem. Mater. 2002;14(7):3016. 63. Vaarn DJ, Ming W, van Herk AM. Macromolecules 2006;39(14):4654. 64. Herrera NN, Letoffe JM, Puteaux JL, David L, Bourgeat-Lami E. Langmuir 2004;20(5):1564. 65. Imai Y, Nishimura S, Abe E, Tateyama H, Abiko A, Yamaguchi A, Aoyama T, Taguchi H. Chem. Mater. 2002;14(2): 477. 66. Chang JH, Jang TG, Ihn KJ, Lee WK, Sur GS. Appl. Polym. Sci. 2003;90(12):3208. 67. Ijdo WL, Pinnavaia TJ. Chem. Mater. 1999;11(11):3227. 68. Kim MH, Park CI, Choi WM, Lee JW, Lim JG, Park, OO, Kim JM. J. Appl. Polym. Sci. 2004;92(4):2144. 69. Maiti P, Yamada K, Okamoto M, Ueda K, Okamoto K. Chem. Mater. 2002;14(11):4654. 70. Vaia R, Xie W, Xie R, Pan WP, Hunter D, Koene B, Tan LS. Chem. Mater. 2002;14(11):4837. 71. Klemchuk PP, Gande ME. Polym. Degrad. Stab. 1990;27(1):65. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62714 | - |
| dc.description.abstract | 本研究使用具親水性乙醚與親油性聚丙醚鏈段之聚醚胺於質子性溶劑中改質蒙脫土。當在水中改質、及使用具高比率親油性聚丙醚的聚醚胺時,因其在親水性黏土層間的親油相聚集,能使蒙脫土的層間距擴大到 10 nm;當使用 5 當量的聚醚胺時,層狀黏土則會脫層至無序分散的狀態;反之,使用親水性聚乙醚比率較高的聚醚胺時,層間距只能擴大到 1.8 nm。但當在異丙醇中進行黏土改質,此兩類聚醚胺在 3 當量數下,皆能造成黏土的脫層,這是由於反應系統因熱力學安定的需求,會在黏土層外形成一個薄膜,再經由聚醚胺局部濃度的提升而最後滲透過薄膜進入黏土層間造成黏土脫層。
一般而言,使用傳統的化學改質法不易取得有機脫層黏土,而利用本研究中親水聚醚胺對黏土脫層的特殊機制,可以將特定的官能基,例如環三磷腈,導入聚醚胺後再對黏土脫層,來製備能改善通用塑材之熱安定性的有機脫層黏土。在本研究中,聚醚胺與環三磷腈由取代反應可合成分子級之聚醚胺環三磷腈,其結構為一個硬質的磷腈中心與具有彈性的聚醚鏈段所組成的外殼。將此聚醚胺環三磷腈酸化後對黏土進行脫層反應,可得到聚醚胺環三磷腈/脫層矽片之奈米衍生物。將此衍生物摻混入聚胺酯加工後,可以使其熱裂解溫度延緩 60 oC。使用不同摻混量的聚醚胺環三磷腈/脫層矽片組合對聚胺酯的熱安定以及抗紫外線 (365 至 400 nm 之波長) 性質有加成的效果。這可歸就於聚醚胺環三磷腈與脫層矽片在高分子材料中的分子級分散效果。 | zh_TW |
| dc.description.abstract | Poly(oxyalkylene)-amines (POA-amine) are used for affecting sodium montmorillonite (Na+-MMT) in protic mediums. In water, the hydrophobic aggregation of poly(oxypropylene)-rich (POP-) amines in the silicate galleries expands the interlayer spacing up to 10 nm and to exfoliation with over 5 amine equivalents, where as hydrophilic poly(oxyethylene)-rich (POE-) amines could only achieve in a low interlayer spacing of 1.8 nm. On the other hand, all POA-amines in isopropanol (IPA) afford the exfoliation with over 3 amine equivalents. The unexpected exfoliation is explained by the thermodynamic formations of an imaginary membrane surrounding the clay units, followed by amine diffusion from the solvent into the clay galleries.
The POA-amine-modification of Na+-MMT in IPA opened a gateway to the preparation of randomized organoclays which in general were not easily achieved by conventional methods. This new finding allowed the exploration of new exfoliating agents embedding particular functionalities for special applications, such as hexachlorophosphazenes (HCP) for enhancing the thermal properties of common polymers. The amine substitution of HCP with POA monoamines (M-amine) afforded aminophosphazenes (AP) at molecular level. Na+-MMT was modified by using HCl-treated AP to prepare AP-exfoliated MMT clay (AP/EMMT) nanohybrids. When the nanohybrid was blended into polyurethane (PU), the presence of silicate platelets promoted the PU stability and retarded the degradation for more than 60 oC under the standard TGA measurement. The co-existence of AP and EMMT at various wt ratios demonstrated a synergistic effect on the improvements of thermal stability as well as the UV resistance under the standard test of UV exposure in wavelength range of 365 to 400 nm. The molecular-level dispersion of AP and silicate platelets had synergistically contributed to the PU thermal and UV stability. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:08:15Z (GMT). No. of bitstreams: 1 ntu-102-D95549014-1.pdf: 5558134 bytes, checksum: fdf4676444a7311d8b282f301807b873 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iii Abstract iv List of Figures vii List of Tables viii List of Abbreviations ix Chapter 1. Unusual Exfoliation of Layered Silicate Clays by Non-Aqueous Amine Diffusion 1 1.1 Introduction 1 1.2 Experimental 3 1.2.1 Materials 3 1.2.2 General procedure for the exfoliation of Na+-MMT with M-amines in IPA 3 1.2.3 Characterization 4 1.3 Results and Discussion 5 1.3.1 Intercalation with POA-amine in water and exfoliation in IPA 5 1.3.2 Mechanistic study on exfoliation 9 1.4 Conclusion 13 Chapter 2. Molecular-Level Dispersion of Phosphazene-Clay Hybrids in Polyurethane and Synergistic Influences on Thermal and UV Resistance 14 2.1 Introduction 14 2.2 Experimental 17 2.2.1 Materials 17 2.2.2 General procedures for the preparation of AP 17 2.2.3 Exfoliation of Na+-MMT with AP salts 17 2.2.4 Preparation of PU NCP with the addition of AP 18 2.2.5 Preparation of PU NCP with the addition of MMT 18 2.2.6 Preparation of PU NCP with the addition of AP-M1000/EMMT 19 2.2.7 Characterization 19 2.3 Results and Discussion 20 2.3.1 Synthesis of AP 20 2.3.2 Intercalation and exfoliation of Na+-MMT with M-amines and AP-M-amines 22 2.3.3 Effect of AP on thermal properties in PU 24 2.3.4 UV-resistance of AP distribution in PU 26 2.3.5 Synergistic effect on thermal stability of AP-M1000/EMMT in PU………… 28 2.3.6 Synergistic effect of UV-resistance of AP-M1000/clay in PU 30 2.3.7 Mechanical properties of AP-M1000/clay/PU NCP 30 2.4 Conclusion 32 Chapter 3. Summary 33 References 34 Appendix…. 37 | |
| dc.language.iso | en | |
| dc.subject | 聚醚胺 | zh_TW |
| dc.subject | 熱裂解 | zh_TW |
| dc.subject | 抗紫外線 | zh_TW |
| dc.subject | 環三磷腈 | zh_TW |
| dc.subject | 蒙脫土 | zh_TW |
| dc.subject | 插層反應 | zh_TW |
| dc.subject | 耐燃劑 | zh_TW |
| dc.subject | 脫層反應 | zh_TW |
| dc.subject | flame retardant | en |
| dc.subject | montmorillonite | en |
| dc.subject | intercalation | en |
| dc.subject | poly(oxyalkylene)monoamine | en |
| dc.subject | thermal degradation | en |
| dc.subject | exfoliation | en |
| dc.subject | UV resistance | en |
| dc.subject | phosphazene | en |
| dc.title | 聚醚胺對蒙脫土之脫層機制及其衍生奈米複合材料之應用 | zh_TW |
| dc.title | Modification of Montmorillonite by Using Poly(oxyalkylene)amines and the Applications of the Derived Nanocomposites | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 林江珍 | |
| dc.contributor.oralexamcommittee | 鄭如忠,韓錦鈴,王怡仁 | |
| dc.subject.keyword | 脫層反應,耐燃劑,插層反應,蒙脫土,環三磷腈,聚醚胺,熱裂解,抗紫外線, | zh_TW |
| dc.subject.keyword | exfoliation,flame retardant,intercalation,montmorillonite,phosphazene,poly(oxyalkylene)monoamine,thermal degradation,UV resistance, | en |
| dc.relation.page | 37 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-05-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 5.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
