請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62693完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李存修(Tsun-siou Lee) | |
| dc.contributor.author | Clover M. Yeh | en |
| dc.contributor.author | 葉玫惠 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:07:40Z | - |
| dc.date.available | 2015-06-21 | |
| dc.date.copyright | 2013-06-21 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-06-05 | |
| dc.identifier.citation | 1. Altman, E.I. (1968). Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23, 589-609.
2. Altman, E.I. (1989). Measuring Corporate Bond Mortality and Performance. The Journal of Finance, 44(4), 909-922. 3. Altman, E.I. and H.J. Suggitt (2000). Default Rates in the Syndicated Bank Loan Market: A Mortality Analysis. Journal of Banking & Finance, 24 (1), 229-253. 4. Chesser, D.L. (1974). Prediction Loan Noncompliance. Journal of Commercial Bank Lending, 56(8), 28-38. 5. Cox, D.R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society, 34(2), 187-220. 6. David, J.H. (2001). Modelling Consumer Credit Risk. Journal of Management Mathematics, 12(2), 139-155. 7. Desai, V.S., J.N. Crook, and G.A. Overstreet, Jr. (1996). A Comparison of Neural Networks and Linear Scoring Models in the Credit Union Environment. European Journal of Operational Research, 95, 24-37. 8. Durand, D. (1941). Risk Elements in Consumer Instalment Financing. National Bureau of Economic Research, New York. 9. Fisher, R.A. (1936). The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7, 179-188. 10. Gepp, A., and K. Kumar (2008). The Role of Survival Analysis in Financial Distress Prediction. International Research Journal of Finance and Economics, 16, 13-34. 11. Hayhoe, C.R., L. Leach, and P.R. Turner (1999). Discriminating the Number of Credit Cards Held by College Students Using Credit and Money Attitudes. Journal of Economic Psychology, 20(6), 643-656. 12. Keasey, K., P. McGuinness, and H. Short (1990). Mauti-logit Approach to Predicting Corporate Failure ─ Further Analysis and the Issue of Signal Consistency. Omega, 18(1), 85-94. 13. Laitinen, E.K. (2005). Survival Analysis and Financial Distress Prediction: Finnish Evidence. Journal Review of Accounting and Finance, 4(4), 76-90. 14. Lando, D. (1994). The Essays on Contingent Claims Pricing. Ph.D. Thesis, Cornell University, Ithaca, NY. 15. Lane, W.R., S.W. Looney, and J.W. Wansley (1986). An Application of the Cox Proportional Hazards Model to Bank Failure. Journal of Banking & Finance, 10(4), 511-531. 16. Lee, S.H., and J.L. Urrutia (1996). Analysis and Prediction of Insolvency in the Property-Liability Insurance Industry: A Comparison of Logit and Hazard Models. The Journal of Risk and Insurance, 63(1), 121-130. 17. Limsombunchai, V., C. Gan, and M. Lee (2005). An Analysis of Credit Scoring for Agricultural Loans in Thailand. American Journal of Applied Sciences, 2(8), 1198-1205. 18. Luoma, M., and E.K. Laitinen (1991). Survival Analysis as a Tool for Company Failure Prediction. International Journal of Management Science, 19(6), 673-678. 19. Malhotra, R., and D.K. Malhotra (2002). Differentiating between Good Credits and Bad Credits Using Neuro-fuzzy Systems. European Journal of Operational Research, 136, 190-211. 20. Malhotra, R., and D.K. Malhotra (2003). Evaluating Consumer Loans Using Neural Networks. The International Journal of Management Science, Omega, 31, 83-96. 21. Narain, B. (1992). Survival Analysis and Credit Granting Decision. Credit scoring and credit control, 109-121. Oxford University Press, UK. 22. Noh, H.J., T.H. Roh, and I. Han (2005). Prognostic Personal Credit Risk Model Considering Censored Information. Expert Systems with Applications, 28, 753-762. 23. Parker, S., G.F. Peters, and H.F. Turetsky (2002). Corporate Governance and Corporate Failure: A Survival Analysis. Corporate Governance, 2(2), 4-12. 24. Salchenberger, L., E. MineCinar, and N.A. Lash (1992). Neural Networks: A New Tool for Predicting Thrift Failures. Decision Sciences, 23, 899-916. 25. Smith, L.D., M.S. Susan, and C.L. Edward (1996). A Comprehensive Model for Managing Credit Risk on Home Mortgage Portfolios. Decision Sciences 27(2), 291-317. 26. Steenackers, A. and Goovaerts, M.J. (1989). Credit Scoring Models for Personal Loans. Insurance: Mathematics and Economics, 81, 31-34. 27. Stepanova, M. and L.C. Thomas (2001). PHAB Scores: Proportional Hazards Analysis Behavioral Scores. Journal of the Operational Research Society, 52(9), 1007-1016. 28. Sullivan, A.C. (1981). Consumer Finance. In Altman, E.I. Financial Handbook, New York. 29. Thomas, L.C., J. Banasik, and J.N. Crook (1999). Not if but When will Borrowers Default. Journal of the Operational Research Society, 50(12), 1185-1190. 30. Thomas, L.C., D.B. Edelman, and N.C. Jonathan (2002). Credit Scoring and Its Application. SIAM monographs on mathematical modeling and Computation, Philadelphia. 31. Yeh, C.M., C.Y. Chang, H.H. Liao, and D.G. Jou (2007). Credit Analysis of Credit Card Holders ─ The Application of Survival Model. Review of Financial Risk Management, 3(2), 1-30. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62693 | - |
| dc.description.abstract | 本研究提議金融機構應建構兩張存活表,以應用於消費性貸款的風險管理。第一張存活表是用於監控現有貸款客戶的信用風險變化,此存活表以貸款初期的申請資料以及還款期間的繳款行為變數作為解釋變數。由於收集這些行為解釋變數的資料至少需時一年,因此,此存活表可揭露所有貸款人自還款期第二年起的違約機率。另外,本研究首度提出的第二張存活表則是用來做為放貸決策之輔助工具。藉由應用這兩張存活表,消費性貸款的風險控管將更為完備。與用於監控現有貸款客戶之風險變化的信用模型不同,目前的放貸決策系統多是以申貸資料作為放貸評估依據。但此申貸資料皆為靜態資料,無法提供貸款者最近的消費行為變化,因此在風險評估上略有不足。為彌補此缺點,本研究在期初申請資料外,另採納貸款者在申貸前一年內的信用卡消費與繳費行為變數作為解釋變數。由於信用卡是目前最普及的消費金融工具,以信用卡的消費與繳費行為變數做為消費性貸款的代理人十分方便與適合。
為配合這兩張存活表的應用,本研究亦提出一套信用評分系統,其中包含消費性貸款的評分方法以及分組方法。應用台灣一家知名金融機構所提供之消費性貸款資料做實證研究,發現此信用評分系統的正確性及可行性皆極高。實證結果顯示,將信用卡消費與繳費行為變數納入解釋變數的確能提高放貸決策模型的準確度。再者,與目前最為普遍運用的邏輯迴歸分析模型相比,存活分析及存活表無論在監控現有貸款客戶之風險變化或是在放貸決策上,皆有較好的表現。 | zh_TW |
| dc.description.abstract | This study introduces two survival tables for the risk management of consumer loans. The first survival table, constructed by consumer loan application data and behavioral variables, is a tool to monitor the credit risk of existing borrowers dynamically. And another survival table which tells the default probabilities of new loan applicants is first introduced in this study to complete the risk management of consumer loan portfolios. These two survival tables are helpful not only in the risk management of individual consumer loans but also in that of consumer loan portfolios. Compared with the credit methods for monitoring existing loans, consumer loan grant decision models are usually composed of only static application data which are weak in seizing the changes of consumer behavior. To improve the efficiency of survival table for grant decision, not only loan application data but also credit card behavioral variables are included in survival analysis. Since credit card is the most commonly held consumer credit product and the frequency of credit card behavioral data is the same as that of consumer loan behavioral ones, the behavioral variables of credit cards are suitable proxies for these of consumer loans. To match up the practicability of survival tables, this study also introduces a credit scoring methodology which contains the computation of credit score and the classification rule that divides consumer loans into groups. Evidences from Taiwan show the soundness of the credit scoring system. They indicate that the efficiency of survival table for grant decision is improved by including the credit card behavioral variables, too. It is also pointed out that both survival table and survival analysis are competitive with, and sometimes superior to, logistic regression, in the failure prediction of existing as well as new consumer loans. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:07:40Z (GMT). No. of bitstreams: 1 ntu-102-D93723009-1.pdf: 805592 bytes, checksum: 167bcd8839254a16f0f9ab4c70897051 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii 1 Introduction 1 2 Research Framework 5 2.1 Consumer Credit Models 5 2.2 Proportional Hazards Model 12 3 Survival Table for Dynamic Monitoring 14 3.1 Methodology 14 3.2 Personal Loan 22 3.3 Auto Loan 31 3.4 Mortgage Loan 38 3.5 Summary 46 4 Survival Table for Grant Decision 52 4.1 Methodology 52 4.2 Personal Loan 56 4.3 Auto Loan 62 4.4 Mortgage Loan 67 4.5 Summary 72 5 Conclusion and Further Research 76 References 82 Appendix A. Behavioral Variables 85 Appendix B. Components of Significant Factors 87 | |
| dc.language.iso | en | |
| dc.subject | 存活分析 | zh_TW |
| dc.subject | 危險比例模型 | zh_TW |
| dc.subject | 信用評分系統 | zh_TW |
| dc.subject | 消費性貸款 | zh_TW |
| dc.subject | 存活表 | zh_TW |
| dc.subject | Survival Analysis | en |
| dc.subject | Survival Table | en |
| dc.subject | Consumer loan | en |
| dc.subject | Credit Scoring System | en |
| dc.subject | Proportional Hazards Model | en |
| dc.title | 消費性貸款之風險管理 — 存活表之應用 | zh_TW |
| dc.title | Risk Management of Consumer Loans — An Application of Survival Tables | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 葉銀華(Yin-Hua Yeh),姜堯民(Yao-Min Chiang),陳業寧(Yehning Chen),胡星陽(Shing-Yang Hu),廖咸興(Hsien-Hsing Liao) | |
| dc.subject.keyword | 存活分析,存活表,消費性貸款,信用評分系統,危險比例模型, | zh_TW |
| dc.subject.keyword | Survival Analysis,Survival Table,Consumer loan,Credit Scoring System,Proportional Hazards Model, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-06-06 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 財務金融學研究所 | zh_TW |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 786.71 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
