請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62688完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭勝文 | |
| dc.contributor.author | Shan-Ho Huang | en |
| dc.contributor.author | 黃善和 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:07:31Z | - |
| dc.date.available | 2014-06-21 | |
| dc.date.copyright | 2013-06-21 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-06-07 | |
| dc.identifier.citation | [1] J. A. Catipovic, 'Performance limitations in underwater acoustic telemetry,' IEEE J. Ocean. Eng., vol. 15, pp. 205-216, Jul. 1990.
[2] M. Stojanovic, 'Recent advances in high-speed underwater acoustic communications,' IEEE J. Ocean. Eng., vol. 21, pp. 125-136, Apr. 1996. [3] D. B. Kilfoyle and A. B. Baggeroer, 'The state of the art in underwater acoustic telemetry,' IEEE J. Ocean. Eng., vol. 25, pp. 4-27, Jan. 2000. [4] M. Chitre, M. Stojanovic, S. Shahabudeen, and L. Freitag, 'Recent Advances in Underwater Acoustic Communications & Networking,' Proc. IEEE Ocean'08 Conference, Sep. 2008. [5] J. G. Proakis, E. M. Sozer, J. A. Rice, and M. Stojanovic, 'Shallow water acoustic networks,' IEEE Communications Magazine, vol. 39, pp. 114-119, Nov. 2001. [6] I. F. Akyildiz, D. Pompili, and T. Melodia, 'Underwater acoustic sensor networks: research challenges,' Ad Hoc Networks, vol. 3, pp. 257-279, 2005. [7] M. Stojanovic and J. Preisig, 'Underwater acoustic communication channels: Propagation models and statistical characterization,' IEEE Communications Magazine, vol. 47, pp. 84 - 89, Jan. 2009. [8] M. Stojanovic, J. Catipovic, and J. Proakis, 'Adaptive multichannel combining and equalization for underwater acoustic communications,' J. Acoust. Soc. Am., vol. 94, pp. 1621-1621, 1993. [9] J. C. Preisig, 'Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment,' J. Acoust. Soc. Am., vol. 118, pp. 263-278, Jul. 2005. [10] M. Stojanovic, J. G. Proakis, and J. A. Catipovic, 'Analysis of the impact of channel estimation errors on the performance of a decision-feedback equalizer in fading multipath channels,' IEEE Trans. on comms., vol. 43, pp. 877-886, Feb/Mar/Apr 1995. [11] E. M. Sozer, M. Stojanovic, and J. G. Proakis, 'Underwater acoustic networks,' IEEE J. Ocean. Eng., vol. 25, pp. 72-83, Jan. 2000. [12] W. Li and J. C. Preisig, 'Estimation of rapidly time-varying sparse channels,' IEEE J. Ocean. Eng., vol. 32, pp. 927-939, Oct. 2007. [13] J. C. Preisig and G. B. Deane, 'Surface wave focusing and acoustic communications in the surf zone,' J. Acoust. Soc. Am., vol. 116, pp. 2067-2080, Oct. 2004. [14] D. Rouseff, J. Flynn, J. Ritcey, and W. Fox, 'Acoustic Communication Using Time-Reversal Signal Processing: Spatial and Frequency Diversity,' High Frequency Ocean Acoustics, vol. 728, pp. 83-89, 2004. [15] T. C. Yang, 'A Study of Spatial Processing Gain in Underwater Acoustic Communications,' IEEE J. Ocean. Eng., vol. 32, pp. 689-709, Jul. 2007. [16] S. Haykin, 'Adaptive Filter Theory,' 4th ed Upper Saddle River, NJ: Prentice-Hall, 2002. [17] L. Guo and L. Ljung, 'Performance Analysis of General Tracking Algorithms,' IEEE Trans. Automatic Control, vol. 40, Aug. 1995. [18] E. Eweda and O. Macchi, 'Convergence of the RLS and LMS adaptive filters,' IEEE Trans. on Circuits and Systems, vol. 34, pp. 799-803, Jul. 1987. [19] E. Eweda, 'Comparison of RLS, LMS, and sign algorithms for tracking randomly time-varying channels,' IEEE Trans. Signal Processing, vol. 42, pp. 2937-2944, Nov. 1994. [20] W. Leon and D. Taylor, 'Steady-state tracking analysis of the RLS algorithm for time-varying channels: A General State-Space Approach,' IEEE Comm. Letters, vol. 7, pp. 236-238, May 2003. [21] E. Eleftheriou and D. D. Falconer, 'Tracking properties and steady-state performance of RLS adaptive filter algorithms,' IEEE Trans. Acoust., Speech and Signal Processing, vol. 34, pp. 1097-1110, Oct. 1986. [22] A. H. Sayed and T. Kailath, 'A state-space approach to adaptive RLS filtering,' IEEE Signal Processing Magazine, vol. 11, pp. 18-60, Jul. 1994. [23] M. Medard, 'The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel,' IEEE Trans. Information Theory, vol. 46, pp. 933-946, May 2000. [24] T. S. Rappaport, Wireless Communications: Principle and Practice. Englewood Cliffs, NJ: Prentice-Hall, 1996. [25] A. J. Goldsmith and P. P. Varaiya, 'Capacity, mutual information, and coding for finite-state Markov channels,' IEEE Trans. Information Theory, vol. 42, pp. 868 - 886, May 1996. [26] W. Li, 'Estimation and tracking of rapidly time-varying broadband acoustic communication channels,' Ph.D. thesis., Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution, 2006. [27] R. A. Iltis, 'An EKF-based joint estimator for interference, multipath, and code delay in a DS spread-spectrum receiver,' IEEE Trans. on Commun., vol. 42, pp. 1288-1299, Feb/Mar/Apr 1994. [28] T. H. Eggen, A. B. Baggeroer, and J. C. Preisig, 'Communication over Doppler spread channels. Part I: Channel and receiver presentation,' IEEE J. Ocean. Eng., vol. 25, pp. 62-71, Jan. 2000. [29] T. H. Eggen, J. C. Preisig, and A. B. Baggeroer, 'Communication over Doppler spread channels. II. Receiver characterization and practical results,' IEEE J. Ocean. Eng., vol. 26, pp. 612-621, Oct. 2001. [30] R. A. Iltis, 'Joint estimation of PN code delay and multipath using the extended Kalman filter,' IEEE Trans. on comms., vol. 38, pp. 1677 - 1685, Oct. 1990. [31] R. A. Iltis and L. Mailaender, 'An adaptive multiuser detector with joint amplitude and delay estimation,' IEEE J. on selected areas in Comm., vol. 12, pp. 774-785, Jun. 1994. [32] M. Stojanovic, L. Freitag, and M. Johnson, 'Channel-estimation-based adaptive equalization of underwater acoustic signals,' OCEANS'99 MTS/IEEE. Riding the Crest into the 21st Century, vol. 2, pp. 590 - 595, 1999. [33] M. Stojanovic, 'Efficient processing of acoustic signals for high-rate information transmission over sparse underwater channels,' Physical Communication, Jan. 2008. [34] A. A. Rontogiannis and K. Berberidis, 'Efficient decision feedback equalization for sparse wireless channels,' IEEE Trans. on Wireless Comms., vol. 2, pp. 570 - 581, May 2003. [35] P. C.-W. Yip and D. M. Etter, 'An adaptive multiple echo canceller for slowly time-varying echo,' IEEE Trans. on Commun., vol. 38, pp. 1693-1698, Oct. 1990. [36] D. L. Donoho and J. Tanner, 'Thresholds for the recovery of sparse solutions via l1 minimization,' Proceedings of the Conference on Information Science ans Systems, Mar. 2006. [37] J. Tropp, 'Greed is good: Algorithmic results for sparse approximation,' IEEE Trans. Information Theory, vol. 50, pp. 2231 - 2242, Oct. 2004. [38] W. Li, 'Estimation and Equalization of Rapidly Varying Sparse Acoustic Communication Channels,' OCEANS 2006, pp. 1 - 6, Sep. 2006. [39] C. R. Berger, Shengli Zhou, J. C. Preisig, and P. Willett, 'Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing,' IEEE Trans. Signal Processing, vol. 58, pp. 1708-1721, Mar. 2010. [40] S. F. Cotter and B. D. Rao, 'The adaptive matching pursuit algorithm for estimation and equalization of sparse time-varying channels,' Conf. on Signals, Systems and Computers, 2000, pp. 1772-1776, Oct. 2000. [41] S. Cotter and B. Rao, 'Sparse channel estimation via matching pursuit with application to equalization,' IEEE Trans. on Comms., vol. 50, pp. 374-377, Mar. 2002. [42] M. Stojanovic, J. A. Catipovic, and J. G. Proakis, 'Phase-coherent digital communications for underwater acoustic channels,' IEEE J. Ocean. Eng., vol. 19, pp. 100-111, Jan. 1994. [43] P. A. van Walree, T. Jenserud, and M. Smedsrud, 'A discrete-time channel simulator driven by measured scattering functions,' IEEE J. Select. Areas Commun, vol. 26, Dec. 2008. [44] P. A. Bello, 'Characterization of randomly time-variant linear channels,' IEEE Trans. Comm. Syst. , vol. 11, pp. 360 - 393, Dec. 1963. [45] G. Matz, 'On non-WSSUS wireless fading channels,' IEEE Trans. on Wireless Comms., vol. 4, pp. 2465-2478, Sept. 2005. [46] B. Tomasi, J. Preisig, G. B. Deane, and M. Zorzo, 'A Study on the Wide-Sense Stationarity of the Underwater Acoustic Channel for Non-coherent Communication Systems,' Wireless Conference 2011 - Sustainable Wireless Technologies (European Wireless), 11th European, pp. 1 - 6, 2011. [47] C. Komninakis, C. Fragouli, A. H. Sayed, and R. D. Wesel, 'Multi-input multi-output fading channel tracking and equalization using Kalman estimation,' IEEE Trans. on Signal Processing, vol. 50, pp. 1065 - 1076, May 2002. [48] S. McLaughlin, 'Adaptive equalisation via Kalman filtering techniques,' IEE Proceedings-F Radar and Signal Processing, vol. 138, Aug. 1991. [49] M. K. Tsatsanis, G. B. Giannakis, and G. Zhou, 'Estimation and equalization of fading channels with random coefficients,' IEEE Inter. Conf. on Acoustics, Speech, and Signal Processing, pp. 1093 - 1096, 1996. [50] O. Macchi, 'Adaptive Processing: The LMS Approach with Applications in Transmission,' Wiley, New York, 1995. [51] Z. B. Krusevac, R. A. Kennedy, and P. B. Rapajic, 'Model-based adaptive algorithms for time-varying communication channels with application to adaptive multiuser detection,' IEEE 63rd Vehicular Technology Conference, pp. 1675 - 1679, May 2006. [52] Z. Krusevac, 'Model-based approach to reliable information transfer over time-varying communication channels,' Ph.D thesis. Australian National University, Feb. 2007. [53] J. G. Proakis, 'Digital Communications,' McGraw-Hill Inc., New York, 2001. [54] L. Dossi, G. Tartara, and F. Tallone, 'Statistical analysis of measured impulse response functions of 2.0 GHz indoor radio channels,' IEEE J. on selected areas in Comm., vol. 14, pp. 405 - 410, Apr. 1996. [55] R. Nadakuditi and J. C. Preisig, 'A channel subspace post-filtering approach to adaptive least-squares estimation,' IEEE Trans. Signal Processing, vol. 52, pp. 1901-1914, Jul. 2004. [56] T. C. Yang, 'Measurements of temporal coherence of sound transmissions through shallow water,' J. Acoust. Soc. Am., vol. 120, pp. 2595-2614, 2006. [57] T. C. Yang, 'Properties of underwater acoustic communication channels in shallow water,' J. Acoust. Soc. Am., vol. 131, pp. 129-145, 2012. [58] P. Roux, R. L. Culver, and S. Walker, 'Application of the coherent-to-incoherent intensity ratio to estimation of ocean surface roughness from high-frequency, shallow-water propagation measurements,' J. Acoust. Soc. Am., vol. 127, p. 1258, 2010. [59] P. N. Mikhalevsky, 'Envelope statistics of partially saturated process,' J. Acoust. Soc. Am., vol. 72, pp. 151-158, 1982. [60] Dyson, W. Munk, and B. Zetler, 'Interpretation of multipath scintillations Eleuthera to Bermuda in terms of internal waves and tides,' J. Acoust. Soc. Am., vol. 59, pp. 1121-1133, 1976. [61] Taps with time separation less than the pulse width may be correlated due to leakage in energy by the pulse shape function. See for example, C. Xiao, J. Wu, S.-Y. Leong, Y.R. Zheng, and K. B. Letaief, ``A Discrete-time Model for Triply Selective MIMO Rayleigh Fading Channels,' IEEE Trans. Wireless Comm., 3, 1678-1688, (2004), and references therein. Here, the correlation is concerned with paths well separated in delay time (time separations greater than the pulse width). [62] See, for example, D. B. Kilfoyle, J. C. Preisig, and A. B. Baggeroer, 'Spatial modulation over partially coherent multiple-input/multiple-output channels,' IEEE Trans. Signal Processing, 51, 794-804 (2003). [63] B. Yang, 'Projection approximation subspace tracking,' IEEE Trans. Signal Processing, vol. 43, pp. 95 - 107, Jan. 1995. [64] S. H. Huang, T. C. Yang, and Chen-Fen Huang, 'Sub-space channel tracking for correlated underwater acoustic communication channels,' Proceedings of the 7th ACM International Conference on Underwater Networks and Systems (WUWNet2102), UCLA, Nov. 2012. [65] P. H. Dahl, A. B. Baggeroer, P. N. Mikhalevsky, and I. Dyer, 'Measurement of the temporal fluctuations of CW tones propagated in the marginal ice zone,' J. Acoust. Soc. Am., vol. 83, pp. 2175-2179, 1988. [66] The temporal coherence of the shaping function is reported in Ref. 13 as the single path coherence function, since it plots the absolute value of the coherence where the phase drops out. It varies slowly with time and is approximated as unity here. [67] See for example, W. C. Jakes, Microwave Mobile Communications. New York, Wiley, 1974 . In this case, the AR parameters can be obtained by fitting the autocorrelation function to the PSD and then solve the resulting Yule-Walker equations. [68] A. W. Fuxjaeger and R. A. Iltis, 'Adaptive parameter estimation using parallel Kalman filtering for spread spectrum code and Doppler tracking,' IEEE Trans. on Commun., , vol. 42, pp. 2227 - 2230, Jun. 1994. [69] E. J. Sullivan and J. V. Candy, 'Space-time array processing: The model based approach,' J. Acoust. Soc. Am., vol. 102, pp. 2809-2820 1997. [70] See for example, C. Xiao, J. Wu, S.-Y. Leong, Y.R. Zheng, and K. B. Letaief,``A Discrete-time Model for Triply Selective MIMO Rayleigh Fading Channels,' IEEE Trans. Wireless Comm., 3, 1678-1688, (2004), and references therein. [71] S. H. Huang, T. C. Yang, and Chen-Fen Huang, 'Multipath correlation in underwater acoustic communications channels,' J. Acoust. Soc. Am., vol. 133, pp. 2180-2190, 2013. [72] D. B. Kilfoyle, J. C. Preisig, and A. B. Baggeroer, 'Spatial modulation over partially coherent multiple-input/multiple-output channels,' IEEE Trans on Signal Processing, vol. 51, pp. 794-804, Mar. 2003. [73] W. Dai and O. Milenkovic, 'Subspace pursuit for compressive sensing signal reconstruction,' IEEE Trans. Information Theory, vol. 55, pp. 2230-2249, May 2009. [74] M. K. Tsatsanis and Z. Xu, 'Pilot symbol assisted modulation in frequency selective fading wireless channels,' IEEE Trans. Signal Processing, vol. 48, pp. 2353 - 2365, Aug. 2000. [75] S. Haykin, A. H. Sayed, J. Zeidler, P. Yee, and P. Wei, 'Adaptive tracking of linear time-variant systems by extended RLS algorithms,' IEEE Trans. Signal Processing, vol. 45, pp. 1118-1128, May 1997. [76] A quantitative evaluation of the actual run time between the RLS and the proposed algorithm is difficult using a general purpose computer due to the housekeeping work which can't be controlled, except when both use comparable numbers of computations. For p =1, r = 10, the ratio of the elapsed time between the RLS and the proposed algorithm is ~ 3.6 theoretically and is ~ 2.2 on the average, measured on a personal computer. [77] L. L. Scharf and D. W. Tufts, 'Rank reduction for modeling stationary signals,' IEEE Trans. Acous., Speech and Signal Processing, vol. 35, pp. 350 - 355, Mar 1987. [78] S. R. Ramp, et al., 'Internal solitons in the northeastern south China Sea. Part I: sources and deep water propagation,' IEEE J. Ocean. Eng., vol. 29, pp. 1157-1181, Oct. 2004. [79] Ching-Sang Chiu, et al., 'Acoustic intensity fluctuations induced by South China Sea internal tides and solitons,' IEEE J. Ocean. Eng., vol. 29, pp. 1249-1263, Oct. 2004. [80] A. K. Liu, S. R. Ramp, Y. Zhao, and T. Y. Tang, 'A case study of internal solitary wave propagation during ASIAEX 2001,' IEEE J. Ocean. Eng., vol. 29, pp. 1144-1156, Oct. 2004. [81] T. F. Duda, J. F. Lynch, A. E. Newhall, L. Wu, and C. S. Chiu, 'Fluctuation of 400-Hz sound intensity in the 2001 ASIAEX South China Sea experiment,' IEEE J. Ocean. Eng., vol. 29, pp. 1264-1279, Oct. 2004. [82] P. C. Mignerey and M. H. Orr, 'Observations of matched field autocorrelation time in the South China Sea,' IEEE J. Ocean. Eng., vol. 29, pp. 1280-1291, 2004. [83] L. M. Chen and B. S. Chen, 'A robust adaptive DFE receiver for DS-CDMA systems under multipath fading channels,' IEEE Trans. Signal Processing vol. 49, pp. 1523 - 1532, Jul. 2001. [84] An alternative, from the pratical point of view, is to track the CIR h directly without subtracting the channl mean. [85] Multipaths are correlated when they have a finite phase rate, see S. H. Huang et al., “Multipaht correlations in underwater acoustic communiction channels,” submitted for publication.” The rank of the path covatinace matrix is approximately given by the number of multipaths. [86] The posed problem is simpler than conventional subspace trakcing which assumes that the bases are time varying. [87] S. H. Huang, J. Tsao, T. C. Yang, and S.-W. Cheng, 'Model-based signal subspace channel tracking for correlated underwater acoustic communication channels,' IEEE J. Ocean. Eng. (accepted for publication), 2013. [88] M. Wax and T. Kailath, 'Detection of signals by information theoretic criteria,' IEEE Trans. Acous., Speech and Signal Processing, vol. ASSP-33, pp. 387 - 392, Apr. 1985. [89] O. Macchi, 'Optimization of adaptive identification for time-varying filters,' Automatic Control, vol. AC-31, pp. 283-287, Mar. 1986. [90] X. G. Doukopoulos and G. V. Moustakides, 'Fast and stable subspace tracking,' IEEE Trans. on Signal Processing, vol. 56, pp. 1452-1465, Apr. 2008. [91] P. Strobach, 'Low-rank adaptive filters,' vol. 44, pp. 2932-2947, 1996. [92] Jian Yang, H. Xi, F. Yang, and Z. Yu, 'RLS-based adaptive algorithms for generalized eigen-decomposition,' IEEE Trans. on Signal Processing, vol. 54, pp. 1177 - 1188, Apr. 2006. [93] Baoguo Yang, K. B. Letaief, R. S. Cheng, and C. Z., 'Channel estimation for OFDM transmission in multipath fading channels based on parametric channel modeling,' IEEE Trans. on Commun., vol. 49, pp. 467 - 479, Mar. 2001. [94] Yung-Fu Cheng and D. M. Etter, 'Analysis of an adaptive technique for modeling sparse systems,' IEEE Trans. Acous., Speech and Signal Processing, vol. 37, pp. 254-264, Feb. 1989. [95] M. Kocic, D. Brady, and M. Stojanovic, 'Sparse equalization for real-time digital underwater acousticcommunications,' OCEANS'95. MTS/IEEE., vol. 3, pp. 1417 - 1422, Oct. 1995. [96] P. Stroback, 'Low-rank adaptive filters,' IEEE Trans. on Signal Processing, vol. 44, pp. 2932-1947, Dec. 1996. [97] F. A. Dietrich and W. Utschick, 'Pilot-assisted channel estimation based on second-order statistics,' IEEE Trans. on Signal Processing, vol. 53, pp. 1178-1193, Mar. 2005. [98] O. Edfors, M. Sandell, J.-J. v. d. B. Beek, S. K. Wilson, and P. O. Borjesson, 'OFDM channel estimation by singular value decomposition,' IEEE Trans. on Comms,, vol. 46, pp. 931 - 939, Jul. 1998. [99] O. Simeone, Y. Bar-Ness, and U. Spagnolini, 'Pilot-based channel estimation for OFDM systems by tracking the delay-subspace,' IEEE Trans. on Wireless Comms., vol. 3, pp. 315-325, Jan. 2004. [100] P. Comon and G. H. Golub, 'Tracking a few extreme singular values and vectors in signal processing,' Proc. IEEE, vol. 78, pp. 1327-1343, Aug. 1990. [101] M. Jachan, G. Matz, and F. Hlawatsch, 'Vector Time-Frequency AR Models for Nonstationary Multivariate Random Processes,' IEEE Trans. on Signal Processing, vol. 57, pp. 4646 - 4659, Dec. 2009. [102] H. Nooralizadeh and S. Shirvani Moghaddam, 'A novel shifted type of SLS estimator for estimation of Rician flat fading MIMO channels,' Signal Processing, pp. 1886-1893, Dec. 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62688 | - |
| dc.description.abstract | 許多水聲通訊通道常具有時變之交互相關 ( cross-tap correlation) 的特性,此種通訊通道的脈沖響應 (Channel Impulse Response; CIR) 具有隨時間改變的二階統計值以及時變的交互相關特性,通稱為non-WSSUS通道。傳統的通道估測/追蹤演算法,並不針對此特殊的種通道特性做任何的處理,且一般數位通訊,包含水聲通訊,均假設通道滿足uncorrelated scattering (US) 的假設。
本文的主旨,在於提出針對non-WSSUS淺水水聲通道之降階估測/追蹤的演算法。Non-WSSUS淺水水聲通道具備以下幾種特殊的特性:因有限的頻寬及tap間的交互相關性,使得用來描述通道的變數taps,雖具備相對大的維度,但卻僅有較低的自由度 (DOF) ; 此外,因為通道介質的不均勻性或因為水面的波浪影響,使得此種交互相關的結構隨時間而改變。 本文主要的發現,在於可將通道脈沖響應參數化成不同訊號成分貢獻的加總,每筆貢獻可視為訊號子空間基底向量 (signal subspace basis) 乘上一複數變量,稱之為通道成分 (channel components) ; 本文所提出的通道追蹤方式,根基於此參數化的解析 (decomposition),並以不同的方式處理此兩種參數,文中所提出的方法,以一種被稱為子空間追蹤的演算法 (subspace tracking algorithm),追蹤變化速度較慢的訊號子空間基底向量的時變特性,至於變化較快的通道成分變量,可視為具備交互相關的通道響應投影到訊號子空間基底上的分量,這些投影的分量 (即通道成分) 則成為互不相關 (uncorrelated) 的變量,這些快速變化且互不相關的通道成分變量,可以數種不同的方式追蹤,例如,使用基於通道模型 (model base) 的追蹤方法 (如:使用卡曼濾波器; Kalman Filter) ; 使用傳統的LMS或RLS 等追蹤演算法或是根基於子空間基底向量重組的演算法 (channel reconstruction)。這些方法藉由在較低維度的訊號子空間進行通道成分以及基底追蹤 (或重組)。相較於傳統的演算法 (如RLS ),除了可以降低計算的複雜度外並且可以大幅提升通道追蹤的性能,這些演算法的實際性能,則經由實海實驗資料加以驗證。 此研究的主要貢獻,在於了解通道的物理特性如何影響通訊演算法的設計及探討可能的改進空間,並可將此發現運用在其他具有維度-變化量相互衝突的問題上。 | zh_TW |
| dc.description.abstract | Many underwater acoustic channels exhibit time-varying cross-path (cross-tap) correlated scattering (CS) property; such channels, with time-varying 2nd order statistics, are known as non-WSSUS channels. Traditional channel estimation algorithms do not exploit/compensate this time-varying correlation property. Despite uncorrelated scattering (US) has been the standard assumption for digital communications including underwater acoustic communications; this thesis develops methods for tracking non-WSSUS shallow-water acoustic communication channels. Such channel has few distinct features: large dimension yet limited number of degrees of freedom (DOF) due to limited bandwidth and inter-tap correlations; these correlation structure are time-varying due to medium inhomogeneity and motion sea surface.
The key observation is that the channel impulse responses can be parameterized as the sum of contributions, each related to a different multipath component, characterized by a signal subspace basis and complex weighting amplitude known as channel components. The channel tracking methods proposed in this thesis relies on this parameterization and differs in the way they handle these two parameters. The proposed techniques perform an unstructured tracking of the slow variations of the signal subspace through one of the so-called subspace tracking algorithms. The fast time-varying channel components are tracked separately, e.g., using the model (Kalman filter) based approach. By tracking only a small number of degrees of freedom in the signal subspace, significant savings in computations and significant tracking performance improvements can be achieved compared with the conventional recursive least square (RLS) algorithm. Performance is demonstrated with at sea data. The study contributes to a better understanding of the channel physical constraints on algorithm design and potential performance improvement. It may also be generalized to other applications where dimensionality and variability collide. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:07:31Z (GMT). No. of bitstreams: 1 ntu-102-D94525004-1.pdf: 5634708 bytes, checksum: e9a7094d482c4b2c43015640cdd739c6 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS I
中文摘要 II ABSTRACT IV DECLARATION VI CONTENTS VII LIST OF FIGURES XI LIST OF TABLES XVII ABBREVIATIONS XVIII NOTATION FOR THESIS XIX CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND AND MOTIVATION 1 1.2 TECHNICAL ISSUES OF UNDERWATER ACOUSTIC CHANNEL 3 1.3 PREVIOUS WORK 5 1.3.1 Channel Tracking Methods 5 1.3.2 Channel Modeling of Time-varying Communication Channels 9 1.3.3 Compress sensing and Subspace Method 11 1.4 THE APPROACH 13 1.4.1 Statistical Characterization of Doubly Spread Channels 15 1.4.2 Stochastic CIR taps 17 1.4.3 Model-based Approach for Channel Tracking 18 1.5 THESIS OUTLINE 19 1.6 SUMMARY OF CONTRIBUTIONS 20 CHAPTER 2 MULTIPATH CORRELATIONS IN UNDERWATER ACOUSTIC COMMUNICATION CHANNELS 23 2.1 INTRODUCTION 23 2.2 TEMPORAL COHERENCE, CROSS-PATH COHERENCE, AND CTIR: DEFINITIONS 27 2.2.1 Auto-Correlation and Temporal Coherence Function 27 2.2.2 Cross-Correlation and Cross-Path Coherence Function 28 2.2.3 CTIR 30 2.3 DATA ON CALM SEAS 31 2.3.1 Cross-Correlation and Cross-Path Coherence Function 33 2.3.2 CTIR 34 2.3.3 Eigenvector Decomposition 36 2.3.4 Implications For Underwater Acoustic Communications 38 2.4 DATA ON ROUGH SEAS 42 2.5 DATA INTERPRETATION: A THEORETICAL MODEL 44 2.6 SUMMARY AND CONCLUSIONS 49 CHAPTER 3 MODEL-BASED SIGNAL SUBSPACE CHANNEL TRACKING FOR CORRELATED UNDERWATER ACOUSTIC COMMUNICATION CHANNELS 52 3.1 INTRODUCTION 53 3.2 SYSTEM MODEL 56 3.2.1 Signal Model 56 3.2.2 Auto-regressive Analysis 59 3.2.3 Model Based Tracking Algorithm 62 3.2.4 Reduced Rank Approximation 65 3.3 EXPERIMENTAL DATA CHARACTERIZATION 67 3.3.1 Acoustic data 69 3.3.2 Characteristics of Order 1 AR equation 72 3.4 MODEL BASED CHANNEL TRACKING: EXPERIMENTAL DATA 74 3.4.1 Performance vs. AR order 76 3.4.2 Performance with rank r approximation 78 3.4.3 Comparison tracking performance between model and non-model based algorithms 80 3.4.4 Tracking performance assessment 81 3.5 SUMMARY AND CONCLUSION 85 CHAPTER 4 LOW COMPLEXITY REDUCED-RANK CHANNEL TRACKING 88 4.1 INTRODUCTION 88 4.2 SYSTEM MODEL AND SIGNAL MODEL 91 4.2.1 Signal model 91 4.2.2 Reduced-rank approximation 91 4.3 PERFORMANCE COMPARISON WITH MODEL-BASED APPROACH: EXPERIMENTAL DATA 97 4.3.1 Acoustic communication data 99 4.3.2 Tracking Performance vs. AR order p 101 4.3.3 Tracking Performance of rank r estimation 102 4.3.4 Comparison Tracking Performance between Model and Non-model Based Algorithms 104 4.4 SUMMARY AND CONCLUSION 105 CHAPTER 5 TRACKING NON-WSSUS NOISY CHANNELS 107 5.1.1 Introduction 107 5.2 REDUCED-RANK CHANNEL ESTIMATION METHODS 111 5.2.1 Rank reduction in channel estimation 111 5.2.2 Adaptive Reduced-rank Channel Reconstruction (ARCR) 115 5.2.3 Adaptive Reduced-rank Amplitude Estimation using RLS (ARAE-RLS) 120 5.2.4 Adaptive Reduced-rank Model Based Amplitude Estimation (ARMAE) 121 5.3 PERFORMANCE COMPARISON: EXPERIMENTAL DATA 124 CHAPTER 6 SUMMARY AND FUTURE WORK 128 6.1 INNOVATION AND SIGNIFICANCE 128 6.2 FUTURE RESEARCH WORK 129 APPENDIX A: LS CHANNEL ESTIMATOR FOR ASIAEX DATA 131 APPENDIX B: TRACKING PERFORMANCE ASSESSMENT 136 APPENDIX C: COMPARING THE SUB-SPACE POST FILTERING AND MODEL-BASED APPROACHES 139 APPENDIX D: SUBSPACE TRACKING 141 APPENDIX E: SUBSPACE TRACKING RESULTS 146 REFERENCES 149 | |
| dc.language.iso | en | |
| dc.subject | 卡曼濾波器 | zh_TW |
| dc.subject | 水聲通訊 | zh_TW |
| dc.subject | 基於模型之通道估測 | zh_TW |
| dc.subject | 子空間追蹤 | zh_TW |
| dc.subject | Underwater Acoustic Communication | en |
| dc.subject | Model Based Channel Tracking | en |
| dc.subject | Subspace Tracking | en |
| dc.subject | Kalman Filter | en |
| dc.title | Non-WSSUS水聲通訊通道之降階追蹤 | zh_TW |
| dc.title | Low-Rank Tracking of Non-WSSUS Underwater Acoustic Communication Channels | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張順雄,曹建和,陳琪芳,楊子江,郭振華 | |
| dc.subject.keyword | 水聲通訊,基於模型之通道估測,子空間追蹤,卡曼濾波器, | zh_TW |
| dc.subject.keyword | Underwater Acoustic Communication,Model Based Channel Tracking,Subspace Tracking,Kalman Filter, | en |
| dc.relation.page | 154 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-06-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 5.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
