請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62639
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李綱(Kang Li) | |
dc.contributor.author | Lin-Kuan Wu | en |
dc.contributor.author | 林冠吾 | zh_TW |
dc.date.accessioned | 2021-06-16T16:06:14Z | - |
dc.date.available | 2025-09-22 | |
dc.date.copyright | 2020-09-23 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2020-06-04 | |
dc.identifier.citation | [1] 交通部統計查詢網, '機動車輛登記數,' 2019. [Online]. Available: https://stat.thb.gov.tw/hb01/webMain.aspx?sys=220 ym=10800 ymt=10903 kind=21 type=1 funid=1110007 cycle=41 outmode=0 compmode=0 outkind=1 fld0=1 cod00=1 rdm=R52419. [2] 交通部安全入口網, '全國道路交通安全事故(30日內)死亡人數108年1-12月,' 2019. [Online]. Available: https://168.motc.gov.tw/citydata. [3] 警政署統計室, '警政統計通報,' 2019. [4] R. Palin, D. Ward, I. Habli, and R. Rivett, 'ISO 26262 safety cases: Compliance and assurance,' 2011. [5] S. O.-R. A. D. Committee, 'SAE J3016. Taxonomy and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles,' tech. rep., SAE International, 2016. Cited on. [6] P. Koopman and M. Wagner, 'Autonomous vehicle safety: An interdisciplinary challenge,' IEEE Intelligent Transportation Systems Magazine, vol. 9, no. 1, pp. 90-96, 2017. [7] D. Wanner, L. Drugge, and A. S. Trigell, 'Fault classification method for the driving safety of electrified vehicles,' Vehicle System Dynamics, vol. 52, no. 5, pp. 704-732, 2014. [8] C. Becker, L. Yount, S. Rozen-Levy, and J. Brewer, 'Functional Safety Assessment of an Automated Lane Centering System,' United States. Department of Transportation. National Highway Traffic Safety …, 2018. [9] A. Nardi and A. Armato, 'Functional safety methodologies for automotive applications,' in Proceedings of the 36th International Conference on Computer-Aided Design, 2017: IEEE Press, pp. 970-975. [10] D. Suo, S. Yako, M. Boesch, and K. Post, 'Integrating STPA into ISO 26262 process for requirement development,' SAE Technical Paper, 0148-7191, 2017. [11] M. Lower, J. Magott, and J. Skorupski, 'A system-theoretic accident model and process with human factors analysis and classification system taxonomy,' Safety science, vol. 110, pp. 393-410, 2018. [12] N. Leveson, Engineering a safer world: Systems thinking applied to safety. MIT press, 2011. [13] J. P. Thomas IV, 'Extending and automating a systems-theoretic hazard analysis for requirements generation and analysis,' Massachusetts Institute of Technology, 2013. [14] A. S. Trigell, M. Rothhämel, J. Pauwelussen, and K. Kural, 'Advanced vehicle dynamics of heavy trucks with the perspective of road safety,' Vehicle system dynamics, vol. 55, no. 10, pp. 1572-1617, 2017. [15] 'Automatic emergency braking with pedestrian detection,' 2019. [Online]. Available: NewsRoom.AAA.com. [16] S. Geyer et al., 'Concept and development of a unified ontology for generating test and use-case catalogues for assisted and automated vehicle guidance,' IET Intelligent Transport Systems, vol. 8, no. 3, pp. 183-189, 2013. [17] C. Nowakowski, S. E. Shladover, C.-Y. Chan, and H.-S. Tan, 'Development of California regulations to govern testing and operation of automated driving systems,' Transportation Research Record, vol. 2489, no. 1, pp. 137-144, 2015. [18] E. Thorn, S. C. Kimmel, M. Chaka, and B. A. Hamilton, 'A Framework for Automated Driving System Testable Cases and Scenarios,' United States. Department of Transportation. National Highway Traffic Safety …, 2018. [19] M. S. D. P. R. D. M. M. D. R. D. T. Matthew Wood, 'Safety first for automated driving,' p. 157, 2019. [20] T. Menzel, G. Bagschik, and M. Maurer, 'Scenarios for development, test and validation of automated vehicles,' in 2018 IEEE Intelligent Vehicles Symposium (IV), 2018: IEEE, pp. 1821-1827. [21] K. Czarnecki, 'Operational World Model Ontology for Automated Driving Systems–Part 1: Road Structure,' Waterloo Intelligent Systems Engineering Lab (WISE) Report, 2018. [22] K. Czarnecki, 'Operational World Model Ontology for Automated Driving Systems–Part 2: Road Users, Animals, Other Obstacles, and Environmental Conditions,' Waterloo Intelligent Systems Engineering Lab (WISE) Report, University of Waterloo, 2018. [23] A. Reschka, G. Bagschik, S. Ulbrich, M. Nolte, and M. Maurer, 'Ability and skill graphs for system modeling, online monitoring, and decision support for vehicle guidance systems,' in 2015 Ieee intelligent vehicles symposium (Iv), 2015: IEEE, pp. 933-939. [24] A. Reschka and M. Maurer, 'Conditions for a safe state of automated road vehicles,' it-information technology, vol. 57, no. 4, pp. 215-222, 2015. [25] D. Wittmann, C. Wang, and M. Lienkamp, 'Definition and identification of system boundaries of highly automated driving,' in 7. Tagung Fahrerassistenz, 2015. [26] S. Moon, W. Cho, and K. Yi, 'Intelligent vehicle safety control strategy in various driving situations,' Vehicle System Dynamics, vol. 48, no. S1, pp. 537-554, 2010. [27] B. Tsuge et al., 'Reconstructing Vehicle Dynamics from On-Board Event Data,' SAE International Journal of Advances and Current Practices in Mobility, vol. 1, no. 2019-01-0632, pp. 1202-1212, 2019. [28] I. Colwell, 'Runtime Restriction of the Operational Design Domain: A Safety Concept for Automated Vehicles,' University of Waterloo, 2018. [29] M. Hörwick and K.-H. Siedersberger, 'Strategy and architecture of a safety concept for fully automatic and autonomous driving assistance systems,' in 2010 IEEE Intelligent Vehicles Symposium, 2010: IEEE, pp. 955-960. [30] A. Reschka, J. R. Böhmer, T. Nothdurft, P. Hecker, B. Lichte, and M. Maurer, 'A surveillance and safety system based on performance criteria and functional degradation for an autonomous vehicle,' in 2012 15th International IEEE Conference on Intelligent Transportation Systems, 2012: IEEE, pp. 237-242. [31] A. Kohn, R. Schneider, A. Vilela, A. Roger, and U. Dannebaum, 'Architectural concepts for fail-operational automotive systems,' SAE Technical Paper, 0148-7191, 2016. [32] M. Blanco et al., 'Human factors evaluation of level 2 and level 3 automated driving concepts,' 2015. [33] T. Stolte, T. Liao, M. Nee, M. Nolte, and M. Maurer, 'Investigating Functional Redundancies in the Context of Vehicle Automation–A Trajectory Tracking Perspective,' in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2018: IEEE, pp. 2398-2405. [34] D. J. Thomas, 'Systems Theoretic Process Analysis (STPA) Tutorial,' 2013. [Online]. Available: http://psas.scripts.mit.edu/home/wp-content/uploads/2014/03/Systems-Theoretic-Process-Analysis-STPA-v9-v2-san.pdf | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62639 | - |
dc.description.abstract | 安全為自動駕駛發展之核心條件,因此本研究致力於提出一套符合車用電子電機系統功能安全標準之系統架構與失效策略設計以及安全分析之方法。本論文以ISO26262標準以及SAE J3016標準為車輛安全的主要標竿,在車輛系統設計時期,將設計執行域定義或可稱為系統安全使用條件、失效安全分析、模擬情景設計、監控車輛系統狀態以及事故失效應對處理,上述五個部分進行分析及設計。 因此,根據系統架構分析及設計,得到以下結果:1. 可以藉由安全分析及驗證,建立出安全的系統架構。2. 針對現存的系統架構進行安全性的分析,如果分析結果為安全,可根據分析結果進行修改。3. 從安全分析得到的安全需求中,得知每個安全需求對車輛系統的重要程度,以及如果因為技術或者成本的關係,無法達到某個安全需求時,車輛將有可能在何種場域及情況下發生事故。4. 車輛系統進行SIL以及HIL安全驗證時,得知該如何設計情境以及測試的優先順序為何。5. 為了在大量的車輛即時監控資料中,依照重要程度的不同進行監控,因此分析各項監控資料的重要程度。6. 為了減少設計以及分析的時間,所以採取模組化的結構進行安全分析。 | zh_TW |
dc.description.abstract | Safety is the core condition for the development of automatic driving. Therefore, this study aims to propose a system architecture, failure strategy design and safety analysis method that meet the functional safety standards of automotive electrical and electronic systems. ISO26262 and SAE J3016 standards are the main standards for vehicle safety. During the vehicle system design period, Operational Design Domain definition or can be called the system safe use conditions, failure safety analysis, simulation scenario design, monitoring vehicle system status and incident failure response, the above five parts are analyzed and designed. Therefore, according to the system architecture analysis and design, the following results are obtained: 1. Secure system architecture can be built through security analysis and verification. 2. This method can be used to conduct a security analysis of the existing system architecture, and if the results of the analysis are not secure, the results can be modified based on the analysis. 3. From the safety analysis, we know how important each safety requirement is to the vehicle's system, and in what fields and situations the vehicle is likely to be involved in an accident if this safety requirement cannot be achieved because of technology or cost. 4. When a vehicle system performs SIL and HIL safety verification, it knows how the scenario should be designed and what the testing priorities should be. 5. In order to monitor according to the level of importance in a large amount of real-time vehicle surveillance data, the level of importance of each surveillance data was analyzed. 6. In order to reduce design and analysis time, a modular structure is adopted for safety analysis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T16:06:14Z (GMT). No. of bitstreams: 1 ntu-108-R06522832-1.pdf: 5569210 bytes, checksum: 25e6b2a701e4f102b81f709f32361b4c (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 摘要 i ABSTRACT ii 目錄 iii 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 研究貢獻 4 第二章 車輛設計製造及安全驗證 5 2.1 系統架構 5 2.2 ISO 26262標準 8 2.2.1 嚴重度 10 2.2.2 暴露率 11 2.2.3 可控性 12 2.2.4 ASIL等級分級 13 2.3 SAE J3016標準 14 2.4 SAE J3018標準 17 2.5 危害分析(Hazard Analysis) 18 第三章 系統安全設計 22 3.1 設計執行域設計 22 3.2 設計執行域場景(ODD Scenarios) 22 3.2.1 場景(ODD Scenarios – Scenarios) 23 3.2.2 車輛性能(ODD Scenarios – Vehicle dynamics) 24 3.2.3 場景地圖(ODD Scenarios – ODD Scenarios map) 24 3.3 系統功能選擇及設計 27 3.4 系統功能需求 28 3.5 系統功能架構圖 29 3.6 失效理論過程分析 30 3.7 車輛級潛在危害 33 3.8 安全目標 33 3.9 風險評估 (ASIL) 34 3.10 安全需求 36 3.11 內部安全需求 37 3.12 外部安全需求 38 3.13 安全需求與事故之關係圖 40 第四章 自動駕駛系統架構分析結果 42 4.1 場域分析介紹 42 4.2 自動駕駛系統架構分析目的介紹 44 4.3 ODD場景地圖 45 4.4 場景ID定義 49 4.5 系統功能定義以及設計需求 51 4.6 系統功能架構 52 4.7 車輛級潛在危害以及安全目標 53 4.8 系統理論過程分析 54 4.9 風險評估(ASIL) 62 4.10 安全需求與事故之因果關係 82 4.11 系統功能安全架構 96 第五章 結論與未來工作建議 97 5.1 結論 97 5.2 未來工作與建議 99 參考文獻 100 | |
dc.language.iso | zh-TW | |
dc.title | 自動駕駛系統架構與失效策略設計以及安全分析研究 | zh_TW |
dc.title | Autonomous Vehicle Architecture and Fail-safe Design and Safety Analysis | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 詹魁元(Kuei-Yuan Chan),吳文方(Wen-Fang Wu) | |
dc.subject.keyword | 自動駕駛,系統架構設計,功能安全,安全分析,失效策略應對, | zh_TW |
dc.subject.keyword | Autonomous vehicle,System architecture design,Functional safety,Safety analysis,Failure strategy, | en |
dc.relation.page | 101 | |
dc.identifier.doi | 10.6342/NTU202000893 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-06-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 5.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。