Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62606
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor傅楸善(Chiou-Shann Fuh)
dc.contributor.authorYi Hsiaoen
dc.contributor.author蕭翊zh_TW
dc.date.accessioned2021-06-16T16:05:28Z-
dc.date.available2014-07-11
dc.date.copyright2013-07-11
dc.date.issued2013
dc.date.submitted2013-06-20
dc.identifier.citation[1] J. Begard, N. Allezard, and P. Sayd, “Real-Time Human Detection in Urban Scenes: Local Descriptors and Classifiers Selection with AdaBoost-like Algorithms,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, pp. 1–8, 2008.
[2] Z. Lin, G. Hua, L. S. Davis, and C. Park, “Multi-Scale Shared Features for Cascade Object Detection,” in Proceedings of IEEE International Conference on Image Processing, Orlando, FL, pp. 1865–1868, 2012.
[3] D. Mitzel, P. Sudowe, and B. Leibe, “Real-Time Multi-Person Tracking with Time-Constrained Detection,” in Proceedings of the British Machine Vision Conference, Dundee, Scotland, UK, pp. 104.1–104.11, 2011.
[4] Papago, Inc, “Papago P3,” http://www.papago.com.tw/products/Product P3.aspx, 2012.
[5] K. C. Peng, “Pedestrian Detection and Range Estimation Based on CENTRIST Descriptor and Implementation,” Master Thesis, Department of Computer Science and Information Engineering, National Taiwan University, 2011.
[6] M. Souded and F. Bremond, “Optimized Cascade of Classifiers for People Detection Using Covariance Features,” in Proceedings of International Conference on Computer Vision Theory and Applications, Barcelona, Espagne, pp. 1–7, 2013.
[7] P. Viola and M. Jones, “Robust Real-Time Object Detection,” International Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, 2002.
[8] Volvo, “World Unique Pedestrian Detection in Action,” http://youtu.be/9fVWB1I9a08, 2010.
[9] Wikipedia, “Poisson Process,” http://en.wikipedia.org/wiki/Poisson process, 2010.
[10] J. Wu and J. M. Rehg, “Real-Time Human Detection Using Contour Cues,” in Proceedings of IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 0–7, 2011.
[11] R. Xu, J. Jiao, B. Zhang, and Q. Ye, “Pedestrian Detection in Images via Cascaded L1-Norm Minimization Learning Method,” Pattern Recognition, vol. 45, no. 7, pp.2573–2583, 2012.
[12] R. Zabih and J. Wood, “Non-Parametric Local Transforms for Computing Visual Correspondence,” in Proceedings of European Conference on Computer Vision, Stockholm, Sweden, pp. 151–158, 1994.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62606-
dc.description.abstractA method of pedestrian detection based on CENTRIST descriptor and stochastic process is proposed in this thesis. In related work such as C4 and Peng’s method, they use only single image as input, regardless driving is a continuous process. In our work, we will use sequential data and use stochastic process to help determine the possibility of pedestrian appearance. We use the training set cut from our own database built by driving recorder Papago P3 to train SVM models to be our basic object detector. Our experimental results show that our method outperforms C4 and Peng’s method in execution time and comparable accuracy by applying stochastic determination.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:05:28Z (GMT). No. of bitstreams: 1
ntu-102-R00944030-1.pdf: 4430615 bytes, checksum: 5cc3a7be6cda951797a9ecced737e0a3 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsAcknowledgments iii
Abstract iv
List of Tables vi
List of Figures viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Objectives and Contributions 2
1.3 Thesis Organization 2
Chapter 2 Background and Related Work 3
2.1 Background 3
2.1.1 Census Transform Histogram 3
2.1.2 C4 Human Detection Method 7
2.1.3 Peng’s Method 8
2.1.4 Poisson Process 11
2.2 RelatedWork 15
Chapter 3 System Model and Methodology 18
3.1 System Overview 18
3.2 Stochastic Determination 20
3.3 Post-processing 22
3.3.1 Non-Maximal Suppression (NMS) 24
3.3.2 Repetition around Real Human Figure 26
3.3.3 SVM Bias Adjustment 26
3.4 ROI Tracking 30
Chapter 4 Experimental Results 32
Chapter 5 Conclusion and FutureWork 51
References 52
dc.language.isoen
dc.subject行人偵測zh_TW
dc.subject隨機過程zh_TW
dc.subjectCENTRIST特徵zh_TW
dc.subjectstochastic processen
dc.subjectPedestrian detectionen
dc.subjectCENTRIST descriptoren
dc.title基於CENTRIST特徵和隨機過程實現行人偵測zh_TW
dc.titlePedestrian Detection Based on CENTRIST Descriptor and Stochastic Process and Implementationen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔣迪豪(Ti-Hao Chiang),張振龍(Bert Chang)
dc.subject.keyword行人偵測,CENTRIST特徵,隨機過程,zh_TW
dc.subject.keywordPedestrian detection,CENTRIST descriptor,stochastic process,en
dc.relation.page53
dc.rights.note有償授權
dc.date.accepted2013-06-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
4.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved