Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62553
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王凡
dc.contributor.authorCheng-Chieh Changen
dc.contributor.author張程傑zh_TW
dc.date.accessioned2021-06-16T16:04:19Z-
dc.date.available2015-07-03
dc.date.copyright2013-07-03
dc.date.issued2013
dc.date.submitted2013-06-27
dc.identifier.citation1. Ankidroid. http://code.google.com/p/ankidroid/.
2. Atpak. http://code.google.com/p/atpak/.
3. Sms bomber. http://code.google.com/p/sms-bomber/.
4. Surround. https://play.google.com/store/apps/details?id=ui.test#.
5. Taskcatapp. http://code.google.com/p/taskcatapp/.
6. R. Agrawal, T. Imieli’nski, and A. Swami. Mining association rules between sets
of items in large databases. SIGMOD Rec., 22(2):207–216, June 1993.
7. R. Agrawal, T. Imieli’nski, and A. Swami. Mining association rules between
sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD
international conference on Management of data, SIGMOD ’93, pages 207–216,
New York, NY, USA, 1993. ACM.
8. R. Agrawal and R. Srikant. Mining sequential patterns. In ICDE, pages 3–14,
1995.
9. G. Ammons, R. Bod’ık, and J. R. Larus. Mining specifications. In Proceedings
of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’02, pages 4–16, New York, NY, USA, 2002. ACM.
10. S. Anand, M. Naik, H. Yang, and M. J. Harrold. Automated concolic testing of
smartphone apps.
11. R. C. Bryce, S. Sampath, and A. M. Memon. Developing a single model and
test prioritization strategies for event-driven software. IEEE Trans. Softw. Eng.,
37(1):48–64, Jan. 2011.
12. V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller. Generating test cases
for specification mining. In Proceedings of the 19th international symposium on
Software testing and analysis, ISSTA ’10, pages 85–96, New York, NY, USA,
2010. ACM.
13. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discover-
ing likely program invariants to support program evolution. In Proceedings of the
21st international conference on Software engineering, ICSE ’99, pages 213–224,
New York, NY, USA, 1999. ACM.
14. S. Geisser. Predictive inference: an introduction. Chapman & Hall, New York,
1993.
15. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.
16. K. Havelund and G. Rosu. Testing linear temporal logic formulae on finite
execution traces. Technical report, 2001.
17. C. Hu and I. Neamtiu. Automating gui testing for android applications. In
Proceedings of the 6th International Workshop on Automation of Software Test,
AST ’11, pages 77–83, New York, NY, USA, 2011. ACM.
18. E. M. C. Jr., O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
1999.
19. H.W. Kamp. Tense Logic and the Theory of Linear Order. Phd thesis, Computer
Science Department, University of California at Los Angeles, USA, 1968.
20. S. Kotsiantis and D. Kanellopoulos. Association rules mining: A recent overview.
. . . International Transactions on Computer Science and . . . , Jan. 2006.
21. C. C. Li. Mining Temporal Rules for Diagnosis. master thesis, Electrical Engi-
neering Department, National Taiwan University, TW, 2012.
22. D. Lo and S.-C. Khoo. Mining patterns and rules for software specification
discovery. Proc. VLDB Endow., 1(2):1609–1616, Aug. 2008.
23. D. Lo, S.-C. Khoo, and C. Liu. Efficient mining of recurrent rules from a se-
quence database. In Proceedings of the 13th international conference on Database
systems for advanced applications, DASFAA’08, pages 67–83, Berlin, Heidelberg,
2008. Springer-Verlag.
24. D. Lorenzoli, L. Mariani, and M. Pezz`e. Automatic generation of software be-
havioral models. In Proceedings of the 30th international conference on Software
engineering, ICSE ’08, pages 501–510, New York, NY, USA, 2008. ACM.
25. A. Memon, I. Banerjee, and A. Nagarajan. Gui ripping: Reverse engineering of
graphical user interfaces for testing. In Proceedings of the 10th Working Con-
ference on Reverse Engineering, WCRE ’03, pages 260–269, Washington, DC,
USA, 2003. IEEE Computer Society.
26. A. M. Memon. A comprehensive framework for testing graphical user interfaces.
PhD thesis, 2001.
27. A. M. Memon and M. L. Soffa. Regression testing of guis. In Proceedings of the
11th ACM SIGSOFT Symposium on Foundations of Software Engineering 2003
held jointly with 9th European Software Engineering Conference, ESEC/FSE
2003, Helsinki, Finland, September 1-5, 2003, pages 118–127. ACM, 2003.
28. J. Pei, J. Han, B. Mortazavi-asl, H. Pinto, Q. Chen, U. Dayal, and M. chun Hsu.
Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern
growth. pages 215–224, 2001.
29. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th An-
nual Symposium on Foundations of Computer Science, SFCS ’77, pages 46–57,
Washington, DC, USA, 1977. IEEE Computer Society.
30. D. M. W. Powers. Evaluation : From precision , recall and f-measure to roc ,
informedness , markedness & correlation. Journal of Machine Learning Tech-
nologies, 2(1):37–63, 2011.
31. C. J. V. Rijsbergen. Information Retrieval. Butterworth-Heinemann, Newton,
MA, USA, 2nd edition, 1979.
32. J. Strejˇcek. Linear Temporal Logic: Expressiveness and Model Checking. PhD
thesis, Faculty of Informatics, Masaryk University, Brno, Czech Republic, 2004.
33. T. Takala, M. Katara, and J. Harty. Experiences of system-level model-based
gui testing of an android application. In Proceedings of the 2011 Fourth IEEE
International Conference on Software Testing, Verification and Validation, ICST
’11, pages 377–386, Washington, DC, USA, 2011. IEEE Computer Society.
34. F. Wang, L.-W. Yao, and J.-H. Wu. Intelligent test oracle construction for re-
active systems without explicit specifications. In Proceedings of the 2011 IEEE
Ninth International Conference on Dependable, Autonomic and Secure Com-
puting, DASC ’11, pages 89–96, Washington, DC, USA, 2011. IEEE Computer
Society.
35. J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences.
36. X. Yan, J. Han, and R. Afshar. Clospan: Mining closed sequential patterns in
large datasets. In In SDM, pages 166–177, 2003.
37. J. Yang and D. Evans. Perracotta: mining temporal api rules from imperfect
traces. In In ICSE, pages 282–291. ACM Press, 2006.
38. X. Yuan, M. B. Cohen, and A. M. Memon. Gui interaction testing: Incorporating
event context. IEEE Trans. Softw. Eng., 37(4):559–574, July 2011.
39. M. J. Zaki. Efficient enumeration of frequent sequences. In IN 7TH INTL.
CONF. ON INFORMATION AND KNOWLEDGE MANAGEMENT, pages 68–
75, 1998.
40. Q. Zhao and S. S. Bhowmick. Association Rule Mining: A Survey.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62553-
dc.description.abstractWe investigate how to use specification mining techniques for program anomaly analysis. We assume the input of positive traces (without execution anomalies) and negative traces (with execution anomalies).
We then partition the traces into the following clusters: a positive cluster that contains all positive traces and some negative clusters according to the characteristics of trace anomalies. We present techniques for learning temporal properties in Linear Temporal Logic with finite trace semantics (FLTL). We propose to mine FLTL properties that distinguish the negative clusters from the positive cluster. We present a method to learn the importance of FLTL properties for each cluster. We experiment with 5 Android applications from Google Code and Google Play with traces of GUI events and crashes as the target anomaly. The reported FLTL properties reveal the temporal patterns in GUI traces that cause the crashes. The performance data also shows that the clustering of negative traces indeed enhances the accuracy in mining meaningful temporal properties for test verdict prediction.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:04:19Z (GMT). No. of bitstreams: 1
ntu-102-R99943141-1.pdf: 2357168 bytes, checksum: 3f07c5cd00d63a1151842d197dc5f164 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsAbstract ii
List of Figures vi
List of Tables vii
1 Introduction 1
2 Related Work 7
3 Preliminaries 10
3.1 Program Trace Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Finite Linear Temporal Logic . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Association Rule Mining . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Crash Call Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 The Framework 17
5 Rule Extraction 23
5.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Target FLTL Templates . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2.1 Nested Conditional Next Rule P1 . . . . . . . . . . . . . . . . 26
5.2.2 Nested Conditional Eventually Rule P2 . . . . . . . . . . . . . 27
5.2.3 Nested Eventually Rule P3 . . . . . . . . . . . . . . . . . . . . 28
5.2.4 Until Rule P4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.5 Starvation Rule P5 . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Mining Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6 Weight Learning and Accuracy Evaluation 33
6.1 Weight Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Accuracy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7 Implementation 38
8 Experiment 42
8.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.2 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.3 Example of Mined Rules and Anomaly Analysis . . . . . . . . . . . . 47
8.3.1 Until Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.3.2 Starvation Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9 Conclusions and Future Works 51
References 52
dc.language.isoen
dc.subject規格探勘zh_TW
dc.subject程式軌跡zh_TW
dc.subject時態規則zh_TW
dc.subjectSpecification Miningen
dc.subjectFLTLen
dc.subjectClusteringen
dc.subjectProgram traceen
dc.subjectAndroiden
dc.title從Android應用軌跡探勘時態規則於錯誤分析zh_TW
dc.titleTemporal Rules Mining from Android Application Traces for Anomaly Analysisen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee顏嗣鈞,黃鐘揚,郁方,王柏堯
dc.subject.keyword規格探勘,時態規則,程式軌跡,zh_TW
dc.subject.keywordSpecification Mining,FLTL,Clustering,Program trace,Android,en
dc.relation.page55
dc.rights.note有償授權
dc.date.accepted2013-06-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved