Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62538
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳章甫(Chang-Fu Wu)
dc.contributor.authorCheng-Pin Kuoen
dc.contributor.author郭承彬zh_TW
dc.date.accessioned2021-06-16T16:04:02Z-
dc.date.available2013-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-06-28
dc.identifier.citationAlfarra, M.R., Coe, H., Allan, J.D., Bower, K.N., Boudries, H., Canagaratna, M.R., Jimenez, J.L., Jayne, J.T., Garforth, A.A., Li, S.-M., Worsnop, D.R., 2004. Characterization of urban and rural organic particulate in the Lower Fraser Valley using two Aerodyne Aerosol Mass Spectrometers. Atmospheric Environment 38, 5745-5758.
Anttila, P., Paatero, P., Tapper, U., Jarvinen, O., 1995. Source identification of bulk wet deposition in Finland by positive matrix factorization. Atmospheric Environment 29, 1705-1718.
Brown, S.G., Frankel, A., Hafner, H.R., 2007. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmospheric Environment 41, 227-237.
Buzcu, B., Fraser, M.P., 2006. Source identification and apportionment of volatile organic compounds in Houston, TX. Atmospheric Environment 40, 2385-2400.
Buzcu, B., Fraser, M.P., Kulkarni, P., Chellam, S., 2003. Source identification and apportionment of fine particulate matter in Houston, TX, using positive matrix factorization. Environmental Engineering Science 20, 533-545.
Chan, Y.C., Hawas, O., Hawker, D., Vowles, P., Cohen, D.D., Stelcer, E., Simpson, R., Golding, G., Christensen, E., 2011. Using multiple type composition data and wind data in PMF analysis to apportion and locate sources of air pollutants. Atmospheric Environment 45, 439-449.
Chen, K.S., Lin, C., Chou, Y.M., 2001. Determination of source contributions to ambient PM2. 5 in Kaohsiung, Taiwan, using a receptor model. Journal of the Air & Waste Management Association 51, 489-498.
Cheng, M.T., Horng, C.-L., Su, Y.-R., Lin, L.-K., Lin, Y.C., Chou, C.C.K., 2009. Particulate matter characteristics during agricultural waste burning in Taichung City, Taiwan. Journal of Hazardous Materials 165, 187-192.
Chiang, P.C., Chang, E., Chang, T.C., Chiang, H.L., 2005. Seasonal source-receptor relationships in a petrochemical industrial district over Northern Taiwan. Journal of the Air & Waste Management Association 55, 326-341.
Chio, C. P., Cheng, M. T., Wang, C. F., 2004. Source apportionment to PM10 in different air quality conditions for Taichung urban and coastal areas, Taiwan. Atmospheric Environment 38, 6893-6905.
Choi, E., Heo, J. B., Hopke, P., Jin, B. B., Yi, S.M., 2011. Identification, Apportionment, and Photochemical Reactivity of Non-methane Hydrocarbon Sources in Busan, Korea. Water, Air, & Soil Pollution 215, 67-82.
Cooper, J.A., Watson, J.G., 1980. Receptor Oriented Methods of Air Particulate Source Apportionment. Journal of the Air Pollution Control Association 30, 1116-1125.
Derwent, R.G., Davies, T.J., Delaney, M., Dollard, G.J., Field, R.A., Dumitrean, P., Nason, P.D., Jones, B.M.R., Pepler, S.A., 2000. Analysis and interpretation of the continuous hourly monitoring data for 26 C2–C8 hydrocarbons at 12 United Kingdom sites during 1996. Atmospheric Environment 34, 297-312.
Gaimoz, C., Sauvage, S., Gros, V., Herrmann, F., Williams, J., Locoge, N., Perrussel, O., Bonsang, B., d’Argouges, O., Sarda-Esteve, R., Sciare, J., 2011. Volatile organic compounds sources in Paris in spring 2007. Part II: source apportionment using positive matrix factorisation. Environmental Chemistry 8, 91-103.
Guo, H., So, K.L., Simpson, I.J., Barletta, B., Meinardi, S., Blake, D.R., 2007. C1-C8 volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment. Atmospheric Environment 41, 1456-1472.
Guo, H., Wang, T., Blake, D.R., Simpson, I.J., Kwok, Y.H., Li, Y.S., 2006. Regional and local contributions to ambient non-methane volatile organic compounds at a polluted rural/coastal site in Pearl River Delta, China. Atmospheric Environment 40, 2345-2359.
Guo, H., Wang, T., Louie, P., 2004. Source apportionment of ambient non-methane hydrocarbons in Hong Kong: Application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model. Environmental Pollution 129, 489-498.
Habre, R., Coull, B., Koutrakis, P., 2011. Impact of source collinearity in simulated PM2.5 data on the PMF receptor model solution. Atmospheric Environment 45, 6938-6946.
Han, J.S., Moon, K.J., Lee, S.J., Kim, Y.J., Ryu, S.Y., Cliff, S.S., Yi, S.M., 2006. Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background site in East Asia. Atmospheric Chemistry and Physics 6, 211-223.
Hopke, P.K., 2010. Discussion of “Sensitivity of a molecular marker based positive matrix factorization model to the number of receptor observations” by YuanXun Zhang, Rebecca J. Sheesley, Min-Suk Bae and James J. Schauer. Atmospheric Environment 44, 1138.
Huang, S., Arimoto, R., A. Rahn, K., 2001. Sources and source variations for aerosol at Mace Head, Ireland. Atmospheric Environment 35, 1421-1437.
International, E.a.I.M.D.R., 2009. Standard Operating Procedure for the X-Ray Fluorescence Analysis of Particulate Matter Deposits on Teflon Filters, North Carolina.
Kampa, M., Castanas, E., 2008. Human health effects of air pollution. Environmental Pollution 151, 362-367.
Kawashima, H., Minami, S., Hanai, Y., Fushimi, A., 2006. Volatile organic compound emission factors from roadside measurements. Atmospheric Environment 40, 2301-2312.
Khoder, M., 2002. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 49, 675-684.
Kim, E., Brown, S.G., Hafner, H.R., Hopke, P.K., 2005a. Characterization of non-methane volatile organic compounds sources in Houston during 2001 using positive matrix factorization. Atmospheric Environment 39, 5934-5946.
Kim, E., Hopke, P.K., Edgerton, E.S., 2003. Source identification of Atlanta aerosol by positive matrix factorization. Journal of the Air & Waste Management Association 53, 731-739.
Kim, E., Hopke, P.K., Kenski, D.M., Koerber, M., 2005b. Sources of fine particles in a rural midwestern US area. Environmental Science & Technology 39, 4953-4960.
Kim, E., Hopke, P.K., Pinto, J.P., Wilson, W.E., 2005c. Spatial Variability of Fine Particle Mass, Components, and Source Contributions during the Regional Air Pollution Study in St. Louis. Environmental Science & Technology 39, 4172-4179.
Kourtidis, K.A., Ziomas, I., Zerefos, C., Kosmidis, E., Symeonidis, P., Christophilopoulos, E., Karathanassis, S., Mploutsos, A., 2002. Benzene, toluene, ozone, NO2 and SO2 measurements in an urban street canyon in Thessaloniki, Greece. Atmospheric Environment 36, 5355-5364.
Lai, C.H., 2004. Spatial and temporal characteristics of C2-C15 hydrocarbons and receptor modeling in the air of urban Kaohsiung, Taiwan. Atmospheric Environment 39, 4543-4559.
Lai, C., Chen, K., Ho, Y., Peng, Y., Chou, Y.-M., 2005. Receptor modeling of source contributions to atmospheric hydrocarbons in urban Kaohsiung, Taiwan. Atmospheric Environment 39, 4543-4559.
Larson, T.V., Covert, D.S., Kim, E., Elleman, R., Schreuder, A.B., Lumley, T., 2006. Combining size distribution and chemical species measurements into a multivariate receptor model of PM2. 5. Journal of Geophysical Research: Atmospheres 111, D10S09.
Lebonnois, S., 2005. Benzene and aerosol production in Titan and Jupiter's atmospheres: a sensitivity study. Planetary and Space Science 53, 486-497.
Lee, E., Chan, C.K., Paatero, P., 1999. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment 33, 3201-3212.
Lee, J.H., Hopke, P.K., Turner, J.R., 2006. Source identification of airborne PM2.5 at the St. Louis-Midwest Supersite. Journal of Geophysical Research: Atmospheres 111, D10S10.
Lee, J.H., Yoshida, Y., Turpin, B.J., Hopke, P.K., Poirot, R.L., Lioy, P.J., Oxley, J.C., 2002. Identification of sources contributing to Mid-Atlantic regional aerosol. Journal of the Air & Waste Management Association 52, 1186-1205.
Leuchner, M., Rappengluck, B., 2010. VOC source-receptor relationships in Houston during TexAQS-II. Atmospheric Environment 44, 4056-4067.
Liao, H.T., Kuo, C.P., Hopke, P.K., Wu, C.F., 2013. Evaluation of a modified receptor model for solving multiple time resolution equations: a simulation study. Aerosol and Air Quality Research.
Lin, L., Lee, M.L., Eatough, D.J., 2010. Review of Recent Advances in Detection of Organic Markers in Fine Particulate Matter and Their Use for Source Apportionment. Journal of the Air & Waste Management Association 60, 3-25.
Ling, Z.H., Guo, H., Cheng, H.R., Yu, Y.F., 2011. Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China. Environmental Pollution 159, 2310-2319.
Liu, W., Hopke, P.K., Han, Y.J., Yi, S.M., Holsen, T.M., Cybart, S., Kozlowski, K., Milligan, M., 2003. Application of receptor modeling to atmospheric constituents at Potsdam and Stockton, NY. Atmospheric Environment 37, 4997-5007.
Liu, W., Wang, Y., Russell, A., Edgerton, E.S., 2006. Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. Atmospheric Environment 40, 445-466.
Lu, K., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C., Haseler, R., Hu, M., Kita, K., 2012. Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere. Atmospheric Chemistry and Physics 12, 1541-1569.
Lung, S.C.C., Liu, C.H., Huang, S.Y., Lin, T.J., Chou, C.C., Liu, S.C., 2004. Water-soluble ions of aerosols in Taipei in spring 2002. Terrestrial, Atmospheric and Oceanic Sciences 15, 901-923.
Maykut, N.N., Lewtas, J., Kim, E., Larson, T.V., 2003. Source apportionment of PM2. 5 at an urban IMPROVE site in Seattle, Washington. Environmental Science & Technology 37, 5135-5142.
Miller, S.L., Anderson, M.J., Daly, E.P., Milford, J.B., 2002. Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmospheric Environment 36, 3629-3641.
Ogulei, D., Hopke, P.K., Zhou, L., Paatero, P., Park, S.S., Ondov, J.M., 2005. Receptor modeling for multiple time resolved species: The Baltimore supersite. Atmospheric Environment 39, 3751-3762.
Paatero, P., 1999. The Multilinear Engine: A Table-Driven, Least Squares Program for Solving Multilinear Problems, including the n-Way Parallel Factor Analysis Model. Journal of Computational and Graphical Statistics 8, 854-888.
Paatero, P., Hopke, P.K., 2003. Discarding or downweighting high-noise variables in factor analytic models. Analytica Chimica Acta 490, 277-289.
Paatero, P., Tapper, U., 1994. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111-126.
Prendes, P., Andrade, J.M., Lopez-Mahı́a, P., Prada, D., 1999. Source apportionment of inorganic ions in airborne urban particles from Coruna city (N.W. of Spain) using positive matrix factorization. Talanta 49, 165-178.
Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., De la Rosa, J., Sanchez de la Campa, A., Artinano, B., 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric Environment 41, 7219-7231.
Reff, A., Eberly, S.I., Bhave, P.V., 2007a. Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. Journal of the Air & Waste Management Association 57, 146-154.
Reff, A., Eberly, S.I., Bhave, P.V., 2007b. Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. Journal of the Air & Waste Management Association 57, 146-154.
Rizzo, M.J., Scheff, P.A., 2007. Fine particulate source apportionment using data from the USEPA speciation trends network in Chicago, Illinois: Comparison of two source apportionment models. Atmospheric Environment 41, 6276-6288.
Seagrave, J., McDonald, J.D., Bedrick, E., Edgerton, E.S., Gigliotti, A.P., Jansen, J.J., Ke, L., Naeher, L.P., Seilkop, S.K., Zheng, M., Mauderly, J.L., 2006. Lung toxicity of ambient particulate matter from southeastern U.S. sites with different contributing sources: relationships between composition and effects. Environ Health Perspect 114, 1387-1393.
Song, Y., Shao, M., Liu, Y., Lu, S., Kuster, W., Goldan, P., Xie, S., 2007. Source apportionment of ambient volatile organic compounds in Beijing. Environmental science & technology 41, 4348-4353.
Song, Y., Zhang, Y., Xie, S., Zeng, L., Zheng, M., Salmon, L.G., Shao, M., Slanina, S., 2006. Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmospheric Environment 40, 1526-1537.
Stanek, L.W., Brown, J.S., Stanek, J., Gift, J., Costa, D.L., 2011a. Air pollution toxicology- a brief review of the role of the science in shaping the current understanding of air pollution health risks. Toxicological Science 120 Suppl 1, S8-27.
Stanek, L.W., Sacks, J.D., Dutton, S.J., Dubois, J.J.B., 2011b. Attributing health effects to apportioned components and sources of particulate matter: An evaluation of collective results. Atmospheric Environment 45, 5655-5663.
Świetlik, R., Molik, A., Molenda, M., Trojanowska, M., Siwiec, J., 2011. Chromium(III/VI) speciation in urban aerosol. Atmospheric Environment 45, 1364-1368.
Thurston, G.D., Spengler, J.D., 1985. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmospheric Environment (1967) 19, 9-25.
Tsai, D.H., Wang, J.L., Wang, C.H., Chan, C.C., 2008. A study of ground-level ozone pollution, ozone precursors and subtropical meteorological conditions in central Taiwan. Journal of Environmental Monitoring 10, 109-118.
Tsai, J.H., Chiang, H. L., Hsu, Y.C., Weng, H.C., Yang, C.-Y., 2003. The speciation of volatile organic compounds (VOCs) from motorcycle engine exhaust at different driving modes. Atmospheric Environment 37, 2485-2496.
Tsai, J.H., Hsu, Y.C., Weng, H.C., Lin, W.Y., Jeng, F. T., 2000. Air pollutant emission factors from new and in-use motorcycles. Atmospheric Environment 34, 4747-4754.
Tseng, C.C., Chang, N.B., 2001. Assessing relocation strategies of urban air quality monitoring stations by GA-based compromise programming. Environment International 26, 523-541.
USEPA, 2005. Health Effects Information Used In Cancer and Noncancer Risk Characterization for the 2005 National-Scale Assessment
USEPA, 2012. Photochemical Assessment Monitoring Stations (PAMS).
Vallius, M., Lanki, T., Tiittanen, P., Koistinen, K., Ruuskanen, J., Pekkanen, J., 2003. Source apportionment of urban ambient PM2.5 in two successive measurement campaigns in Helsinki, Finland. Atmospheric Environment 37, 615-623.
Viana, M., Querol, X., Alastuey, A., Gil, J.I., Menendez, M., 2006. Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere 65, 2411-2418.
Watson, J.G., Zhu, T., Chow, J.C., Engelbrecht, J., Fujita, E.M., Wilson, W.E., 2002. Receptor modeling application framework for particle source apportionment. Chemosphere 49, 1093-1136.
White, M., Russo, R., Zhou, Y., Ambrose, J., Haase, K., Frinak, E., Varner, R., Wingenter, O., Mao, H., Talbot, R., 2009. Are biogenic emissions a significant source of summertime atmospheric toluene in the rural Northeastern United States. Atmospheric Chemistry and Physics 9, 81-92.
Wichmann, F.A., Muller, A., Busi, L.E., Cianni, N., Massolo, L., Schlink, U., Porta, A., Sly, P.D., 2009. Increased asthma and respiratory symptoms in children exposed to petrochemical pollution. Journal of Allergy and Clinical Immunology 123, 632-638.
Williams, J., Custer, T., Riede, H., Sander, R., Jockel, P., Hoor, P., Pozzer, A., Wong-Zehnpfennig, S., Hosaynali Beygi, Z., Fischer, H., Gros, V., Colomb, A., Bonsang, B., Yassaa, N., Peeken, I., Atlas, E.L., Waluda, C.M., van Aardenne, J.A., Lelieveld, J., 2010. Assessing the effect of marine isoprene and ship emissions on ozone, using modelling and measurements from the South Atlantic Ocean. Environmental Chemistry 7, 171-182.
Wu, C.-f., Larson, T.V., Wu, S.Y., Williamson, J., Westberg, H.H., Liu, L.J.S., 2007. Source apportionment of PM2.5 and selected hazardous air pollutants in Seattle. Science of The Total Environment 386, 42-52.
Wu, C.F., Wu, S.Y., Wu, Y.H., Cullen, A.C., Larson, T.V., Williamson, J., Liu, L.J.S., 2009. Cancer risk assessment of selected hazardous air pollutants in Seattle. Environment International 35, 516-522.
Yang, K.L., Ting, C.-C., Wang, J.-L., Wingenter, O.W., Chan, C.-C., 2005. Diurnal and seasonal cycles of ozone precursors observed from continuous measurement at an urban site in Taiwan. Atmospheric Environment 39, 3221-3230.
Yuan, Z., Lau, A.K.H., Shao, M., Louie, P.K., Liu, S.C., Zhu, T., 2009. Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing. Journal of Geophysical Research: Atmospheres (1984-2012) 114.
Zhou, L., Hopke, P.K., Paatero, P., Ondov, J.M., Pancras, J.P., Pekney, N.J., Davidson, C.I., 2004. Advanced factor analysis for multiple time resolution aerosol composition data. Atmospheric Environment 38, 4909-4920.
Zhou, L., Hopke, P.K., Stanier, C.O., Pandis, S.N., Ondov, J.M., Pancras, J.P., 2005. Investigation of the relationship between chemical composition and size distribution of airborne particles by partial least squares and positive matrix factorization. J. Geophys. Res. 110, D07S18.
王根樹, 張., 2003. 臭氧前驅物監測分析之研究. 行政院環境保護署.
周武雄, 莊., 曠永銓, 習良孝, 2008. 台北盆地光化學污染現象之探討分析. 中興工程季刊 100, 55-63.
行政院環境保護署, 2010. 99 年度光化學評估監測站操作品保例行性計畫. 行政院環境保護署.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62538-
dc.description.abstract本研究利用不同時間解析度之懸浮微粒PM2.5(fine particle matter)與揮發性有機氣體(volatile organic compounds, VOCs)監測資料,驗證使用複合型資料於來源推估模式(Source apportionment)的可行性。本研究以台灣新北市土城測站監測資料為例,每12小時收集懸浮微粒PM2.5樣本,共收集19天,並使用測站所監測之每時揮發性有機氣體資料,最後來源推估模式共納入12種元素、6種離子與38種揮發性有機氣體資料,而本研究所使用的來源推估模式為受體模式(receptor model)之一—正矩陣因子法(Positive Matrix Factorization, PMF)。
  以模式解析之汙染源指紋(source profile)結果,並將其貢獻量估計量(source contribution estimates, SCE)結合時間與氣象資料,推估土城測站至少有5種主要汙染源,含交通排放源一(Vehicle 1)、交通排放源二(Vehicle 2)、工業製程排放(Industry processing source)、其他地域傳播源(Transported regional source)與二次汙染源(Secondary pollution source)。在土城地區,揮發性有機氣體主要來源為交通排放源,佔36%。而懸浮微粒PM2.5主要排放源則為其他地域傳播源與二次汙染源,佔54%。
  為了驗證使用複合型資料的效用,利用前述模式結果與僅使用揮發性有機氣體資料模式推估之結果比較。在本研究中,使用複合型資料所推估之汙染源相較於僅使用揮發性有機氣體資料推估,多解析出一個汙染源(其他地域傳播源)。使用複合型資料時,懸浮微粒PM2.5所解析出的汙染源指紋資料可提供汙染來源特性判斷。同時,高時間解析度的揮發性有機氣體資料也可協助解析懸浮微粒PM2.5汙染源。綜觀而論,即使資料有不同時間解析度,使用複合型資料對於推估懸浮微粒PM2.5與揮發性有機氣體來源是有助益的。
  另外,使用危害性空氣汙染物(hazardous air pollutants)來源貢獻量估計結果,亦可進一步推估健康危害風險來源。汙染源因其組成不同,所造成的健康風險亦不盡相同。以本研究結果為例,工業製程排放結果雖然僅佔懸浮微粒PM2.5總貢獻量之13%,但其所造成的癌症風險卻相對較高。因此,若此一風險來源推估技術應用於暴露評估,以減少居民暴露於特定危害性空氣汙染物,其結果可提供風險控制策略擬定之參考。
zh_TW
dc.description.abstractThis study demonstrated the effect of utilizing composition data set which included fine particle matter (PM2.5) and volatile organic compounds (VOCs) data with multiple time resolution for source apportionment. 12-hr PM2.5 composition data and hourly VOCs data were collected from Tucheng monitoring site in Taiwan for 19 days. A total of 12 elementals, 6 ions and 38 VOCs species were included in receptor modeling. The model of positive matrix factorization (PMF) was applied in this study. Based on the resolved source profiles, source contribution estimates (SCE), and meteorological data, five characterized sources were identified: Vehicle 1, Vehicle 2, Industry processing source, Transported regional source and Secondary pollution source. In Tucheng site, VOCs emission was mainly contributed by vehicle emission (36%), while the largest contributors of PM2.5 were transported regional source and secondary pollution source (54%).
Effect of using composition data set was demonstrated by comparing to results from modeling with VOCs data only. Inclusion of PM2.5 component data extracted one more source (Transported regional source) in this study and information of PM2.5 elements in the source profiles facilitated interpretation of source type and formation. Meanwhile, higher time-resolved VOCs data also assisted source apportionment of PM2.5. Overall, using composition data sets even with different time resolution is contributive to source apportionment of PM2.5 and VOCs.
Additionally, SCE of species were applied for risk apportionment of hazardous air pollutants (HAPs) in this study. Distributions of source specific risks could be different from contributions to mass concentrations. For example in this study, industry emission sources had relative low contribution (13%) to PM2.5 mass concentration but could pose considerable cancer risk. Applying this risk apportionment approach appropriately could provide the references for future risk management to design risk reduction strategy more effectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:04:02Z (GMT). No. of bitstreams: 1
ntu-102-R00841003-1.pdf: 3325185 bytes, checksum: 2b4fe9a148f24e2522364b0b5fe50cb9 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents1. Introduction 1
2. Methods 8
2.1. Introduction of sampling site 8
2.2. Sampling strategies and chemical analysis 9
3. Model Description 13
3.1. Receptor modeling 13
3.2. Quality assurance and control of data 17
3.3. Determination of the number of sources 17
3.4. Profile interpretation 19
4. Results and discussion 21
4.1. Descriptive analysis 21
4.2. Source identification 22
4.3. Source contribution 30
4.4. Effect of using composition data sets 33
4.5. Source-specific cancer risk assessment 35
5. Conclusion and Recommendations 40
6. Reference 54
7. Appendix 62
7.1. Appendix I: QA/QC results of ED-XRF 62
7.2. Appendix II: Discussions about Q value 63
7.3. Appendix III: Detail information of VOCs included in this study 65
7.4. Appendix IV: Variation of modeled Q in terms of different Fpeak value 66
7.5. Appendix V: Frequency distribution of the scaled residuals 67
7.6. Appendix VI: Types of industry located in Tucheng Industrial Park and Shulin Industrial Park 74
7.7. Appendix VII: Non-cancer risk assessment 76
7.8. Appendix VIII: Time series plot of benzene and ethylbenzene in 2012 77
dc.language.isoen
dc.subject揮發性有機汙染物zh_TW
dc.subject懸浮微粒zh_TW
dc.subject來源推估zh_TW
dc.subject受體模式zh_TW
dc.subject正矩陣因子法zh_TW
dc.subject風險來源評估zh_TW
dc.subjectSource Apportionmenten
dc.subjectVolatile Organic Compounds (VOCs)en
dc.subjectFine Particle Matter (PM2.5)en
dc.subjectPositive Matrix Factorization (PMF)en
dc.subjectReceptor Modelen
dc.subjectRisk Apportionmenten
dc.title多時間解析度資料於推估懸浮微粒與揮發性有機氣體來源之效用zh_TW
dc.titleEfficacy of Utilizing Multiple Time Resolution Data for Source Apportionment of Particulate Matter and Volatile Organic Compoundsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃耀輝(Yaw-Huei Hwang),蔡詩偉(Shih-Wei Tsai),蔣本基(Pen-Chi Chiang)
dc.subject.keyword揮發性有機汙染物,懸浮微粒,來源推估,受體模式,正矩陣因子法,風險來源評估,zh_TW
dc.subject.keywordVolatile Organic Compounds (VOCs),Fine Particle Matter (PM2.5),Source Apportionment,Receptor Model,Positive Matrix Factorization (PMF),Risk Apportionment,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2013-06-28
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved