Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62492
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙挺偉(Ting-Wai Chiu)
dc.contributor.authorYu-Chih Chenen
dc.contributor.author陳昱至zh_TW
dc.date.accessioned2021-06-16T16:03:16Z-
dc.date.available2018-07-08
dc.date.copyright2013-07-08
dc.date.issued2012
dc.date.submitted2013-07-02
dc.identifier.citationBibliography
[1] H. J. Rothe, Lattice gauge theories: An Introduction,' World Sci. Lect. Notes
Phys. 82, 1 (2012).
[2] C. Gattringer, C. B. Lang and , Quantum chromodynamics on the lattice,'
Lect. Notes Phys. 788, 1 (2010).
[3] K. G. Wilson, in New Phenomena in Subnuclear Physics, ed. A. Zinchichi
(Plenum Press, New York, 1975), Part A, p.69.
[4] H. B. Nielsen and M. Ninomiya, Phys. Lett. B 105, 219 (1981).
[5] D. B. Kaplan, Phys. Lett. B 288, 342 (1992)
[6] T. W. Chiu, Phys. Rev. Lett. 90, 071601 (2003)
[7] T. W. Chiu, Phys. Lett. B 552, 97 (2003)
[8] Y. C. Chen, T. W. Chiu [TWQCD Collaboration], Phys. Rev. D 86, 094508
(2012) [arXiv:1205.6151 [hep-lat]].
[9] R. Narayanan and H. Neuberger, Nucl. Phys. B 443, 305 (1995)
[10] H. Neuberger, Phys. Lett. B 417, 141 (1998); Phys. Lett. B 427, 353 (1998)
[11] N. I. Akhiezer, New York, 1992.
101
[12] T. W. Chiu, T. H. Hsieh, C. H. Huang and T. R. Huang, Phys. Rev. D 66,
114502 (2002).
[13] T. W. Chiu, Phys. Lett. B 716, 461 (2012); Nucl. Phys. Proc. Suppl. 129, 135
(2004)
[14] T. W. Chiu and S. V. Zenkin, Phys. Rev. D 59, 074501 (1999)
[15] Y. Shamir, Nucl. Phys. B 406, 90 (1993)
[16] A. Borici, Nucl. Phys. Proc. Suppl. 83, 771 (2000)
[17] R. C. Brower, H. Ne and K. Orginos, Nucl. Phys. Proc. Suppl. 140, 686 (2005)
[18] V. Furman and Y. Shamir, Nucl. Phys. B 439, 54 (1995)
[19] P. H. Ginsparg and K. G. Wilson, Phys. Rev. D 25, 2649 (1982).
[20] R. G. Edwards, B. Joo, A. D. Kennedy, K. Orginos and U. Wenger, PoS LAT
2005, 146 (2006)
[21] D. J. Antonio et al. [RBC and UKQCD Collaborations], Phys. Rev. D 77,
014509 (2008)
[22] R. C. Brower, H. Ne and K. Orginos, arXiv:1206.5214 [hep-lat].
[23] T. W. Chiu et al. [TWQCD Collaboration], Phys. Lett. B 717, 420 (2012)
[24] T. W. Chiu, Simulation of Lattice QCD with Domain-Wall Fermions,'
arXiv:1302.6918 [hep-lat].
[25] M. Creutz, Phys. Rev. D 21, 2308 (1980).
102
[26] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller,
J. Chem. Phys. 21, 1087 (1953).
[27] M. A. Clark and A. D. Kennedy, Phys. Rev. Lett. 98, 051601 (2007) [heplat/
0608015].
[28] Y. C. Chen and T. W. Chiu [TWQCD Collaboration], Exact pseudofermion
action for hybrid Monte Carlo simulation of one quark
avor in lattice QCD
with domain-wall fermion', in preparation.
[29] T. Takaishi and P. de Forcrand, Phys. Rev. E 73, 036706 (2006) [heplat/
0505020].
[30] J. C. Sexton and D. H. Weingarten, Nucl. Phys. B 380, 665 (1992).
[31] M. Hasenbusch, Phys. Lett. B 519, 177 (2001) [hep-lat/0107019].
[32] I. Sachs and A. Wipf, Helv. Phys. Acta 65, 652 (1992) [arXiv:1005.1822 [hepth]].
[33] M. Luscher, Comput. Phys. Commun. 165, 199 (2005) [hep-lat/0409106].
[34] N. Madras and A. D. Sokal, J. Statist. Phys. 50, 109 (1988).
[35] U. Wol [ALPHA Collaboration], Comput. Phys. Commun. 156, 143 (2004)
[Erratum-ibid. 176, 383 (2007)] [hep-lat/0306017].
[36] M. F. Atiyah and I. M. Singer, Annals Math. 87, 484 (1968).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62492-
dc.description.abstract量子色動力學(QCD)是研究夸克和膠子間交互作用的最根本理論。它不但可描述核子間的強交互作用力,更在研究早期宇宙的演進中(由夸克-膠子相位到強子相位)扮演重要的角色。要在四維時空的離散晶格點上完全地計算解答量子色動力學是相當困難的挑戰,因為它需要非常大尺度的數值模擬計算。此外,為了使無質量極限下的夸克在有限晶格區間上能保持確切的手則對稱,額外的第五維空間將被引入並定義夸克在第五維空間的邊界上,這就是所謂的domain-wall費米子。在這篇論文中,我們討論其擁有確切手則對稱的格點量子色動力學,並研究如何用蒙地卡羅演算法來做包含動態的u, d, s 和c 夸克的量子色動力學的數值模擬計算。我們推導了domain-wall 費米子在格點量子色動力學的軸向Ward 恆等式,並從中獲得“殘留質量”的數學式,其可以用來測量由於有限晶格點數的第五維空間所帶來的手則對稱破壞。更進一步,我們獲得格點量子色動力學上最佳手則對稱domain-wall費米子的 ”殘留質量”的數值上限。zh_TW
dc.description.abstractQuantum Chromodynamics (QCD) is the fundamental theory for the interaction between quarks and gluons. It manifests as the short-range strong interaction inside the nucleus, and plays an important role in the evolution of the early universe, from the quark-gluon phase to the hadron phase. To solve QCD is a grand challenge, since it requires very large-scale numerical simulations of the discretized action of QCD on the 4-dimensional space-time lattice. Moreover, since quarks are relativistic fermions, the 5-th dimension is introduced such that massless quarks with exact chiral symmetry can be realized at finite lattice spacing, on the boundaries of the 5-th dimension, the so-called domain-wall fermion (DWF). In this thesis, we discuss the formulation of lattice QCD with exact chiral symmetry, and the algorithms to perform Monte Carlo simulation of QCD with dynamical u, d, s, and c quarks. We also derive the axial Ward identity for lattice QCD with domain-wall fermion, and from which we obtain a formula for the residual mass, that can be used to measure the chiral symmetry breaking due to the finite extension $ N_s $ in the fifth dimension. Furthermore, we obtain an upper bound for the residual mass in lattice QCD with the optimal domain-wall fermion.en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:03:16Z (GMT). No. of bitstreams: 1
ntu-101-F95222027-1.pdf: 1266319 bytes, checksum: 78541e85fcc6b76de4959933cdd1b660 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
1 Introduction of Lattice QCD 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Free Scalar Field on the Lattice . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Klein-Gordon Field in the Euclidean Space-Time . . . . . . . 3
1.2.2 Fourier Transformation with Discrete Space-Time . . . . . . . 4
1.2.3 Klein-Gordon Field on the Lattice . . . . . . . . . . . . . . . . 5
1.3 Gauge Field on the Lattice . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Fermion Field on the Lattice 9
2.1 Naive Fermion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Wilson Fermion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Wilson Fermion . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 No-Go Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Domain-Wall Fermion . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Domain-Wall Fermion in Continuum . . . . . . . . . . . . . . 12
2.3.2 Domain-Wall Fermion on the Lattice . . . . . . . . . . . . . . 13
2.4 Overlap Dirac Operator . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Optimal Domain-Wall Fermion 16
iii
3.1 The Chiral Symmetry of Optimal Domain-Wall Fermion . . . . . . . 17
3.2 Axial Ward Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Generating Functional for n-Point Green's Function . . . . . . . . . . 24
3.4 A Formula for the Residual Mass . . . . . . . . . . . . . . . . . . . . 30
3.5 An Upper Bound for the Residual Mass . . . . . . . . . . . . . . . . . 33
3.6 Numerical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 Estimation of Nthres
s . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4 Monte Carlo Simulation of Lattice QCD 48
4.1 Methods for Integration . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.1 Naive Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 Simple Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.3 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.4 Importance Sampling and Heat Bath Method . . . . . . . . . 51
4.1.5 Importance Sampling with Rejection Method . . . . . . . . . 52
4.2 The Metropolis Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 The Algorithm of Metropolis, Rosenbluth, Rosenbluth, Teller
and Teller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Hybrid Monte Carlo Simulation of Lattice QCD . . . . . . . . . . . . 56
4.3.1 Algorithm of Hybrid Monte Carlo . . . . . . . . . . . . . . . . 56
4.3.2 The Gauge Force of the Plaquette Action . . . . . . . . . . . . 59
4.4 Dirac Operator of ODWF . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Two Flavors Algorithm of ODWF . . . . . . . . . . . . . . . . . . . . 61
4.5.1 Pseudofermion Action . . . . . . . . . . . . . . . . . . . . . . 62
iv
4.5.2 Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5.3 Fermion Force . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 RHMC Algorithm of ODWF . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.1 Pseudofermion Action . . . . . . . . . . . . . . . . . . . . . . 64
4.6.2 Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.3 Fermion Force . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7 One Flavor Algorithm of ODWF . . . . . . . . . . . . . . . . . . . . 67
4.7.1 Pseudofermion Action . . . . . . . . . . . . . . . . . . . . . . 68
4.7.2 Gaussian Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7.3 Fermion Force . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.7.4 Simulations of the Schwinger Model with One Flavor of Optimal
Domain-Wall Fermion . . . . . . . . . . . . . . . . . . . . 75
4.7.5 One Flavor Algorithm and Mass Preconditioning . . . . . . . 81
4.8 Comparison of OFA and RHMC in the Schwinger Model . . . . . . . 84
4.8.1 Autocorrelation Time . . . . . . . . . . . . . . . . . . . . . . . 85
4.8.2 Gauge Force and Fermion Forces . . . . . . . . . . . . . . . . 85
4.8.3 H in Molecular Dynamics . . . . . . . . . . . . . . . . . . . 88
4.8.4 Topological Charge . . . . . . . . . . . . . . . . . . . . . . . . 90
4.8.5 The Cost of Simulation . . . . . . . . . . . . . . . . . . . . . . 91
4.9 Comparison of OFA and RHMC in the HMC simulation of QCD . . . 93
4.9.1 Memory Consumption . . . . . . . . . . . . . . . . . . . . . . 93
4.9.2 Force and Eciency . . . . . . . . . . . . . . . . . . . . . . . 94
5 Conclusions 97
5.1 Residual Mass of ODWF . . . . . . . . . . . . . . . . . . . . . . . . . 97
v
5.2 One Flavor Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.1 Schwinger Model Simulations . . . . . . . . . . . . . . . . . . 99
5.2.2 4D QCD Simulations . . . . . . . . . . . . . . . . . . . . . . . 100
Bibliography 101
A Gaussian Noise of the One Flavor Algorithm 104
dc.language.isoen
dc.subject格點量子色動力學zh_TW
dc.subject夸克zh_TW
dc.subject膠子zh_TW
dc.subject強交互作用力zh_TW
dc.subjectdomain-wall 費米子zh_TW
dc.subject手則對稱zh_TW
dc.subject蒙地卡羅模擬計算zh_TW
dc.subject殘留質量zh_TW
dc.subjectquarken
dc.subjectresidual massen
dc.subjectMonte Carlo simulationen
dc.subjectchiral symmetryen
dc.subjectdomain-wall fermionen
dc.subjectstrong interactionen
dc.subjectgluonen
dc.subjectquarken
dc.subjectlattice quantum chromodynamicsen
dc.subjectresidual massen
dc.subjectMonte Carlo simulationen
dc.subjectlattice quantum chromodynamicsen
dc.subjectchiral symmetryen
dc.subjectdomain-wall fermionen
dc.subjectstrong interactionen
dc.subjectgluonen
dc.title格點量子色動力學: Domain-Wall 夸克之探討zh_TW
dc.titleLattice QCD with Domain-Wall Quarksen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee高涌泉(Yeong-Chuan Kao),賀培銘(Pei-Ming Ho),張志義(Chi-Yee Cheung),余海禮(Hoi-Lai Yu),朱創新(Chong-Sun Chu)
dc.subject.keyword格點量子色動力學,夸克,膠子,強交互作用力,domain-wall 費米子,手則對稱,蒙地卡羅模擬計算,殘留質量,zh_TW
dc.subject.keywordlattice quantum chromodynamics,quark,gluon,strong interaction,domain-wall fermion,chiral symmetry,Monte Carlo simulation,residual mass,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2013-07-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved