請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62465完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 常怡雍(Yee-yung Charng) | |
| dc.contributor.author | Kuo-hsing Chai | en |
| dc.contributor.author | 柴幗馨 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:02:53Z | - |
| dc.date.available | 2023-07-03 | |
| dc.date.copyright | 2013-07-18 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-03 | |
| dc.identifier.citation | References
Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133: 713-725 Boavida LC, McCormick S (2007) Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J 52: 570-582 Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13: 1499-1510 Charng YY, Liu HC, Liu NY, Hsu FC, Ko SS (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140: 1297-1305 Faure J-E, Rotman N, Fortune P, Dumas C (2002) Fertilization in Arabidopsis thaliana wild type: Developmental stages and time course. Plant J 30: 481-488 Firon N, Pressman E, Meir S, Khoury R, Altahan L (2012) Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB Plants 2012 Frank G, Pressman E, Ophir R, Althan L, Shaked R, Freedman M, Shen S, Firon N (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J Exp Bot 60: 3891-3908 Frova C, Taramino G, Binelli G (1989) Heat-shock proteins during pollen development in maize. Dev Genet 10: 324-332 Gurley WB (2000) HSP101: a key component for the acquisition of thermotolerance in plants. Plant Cell 12: 457-460 Hedhly A, Hormaza JI, Herrero M (2009) Global warming and sexual plant reproduction. Trends Plant Sci 14: 30-36 Kim SY, Hong CB, Lee I (2001) Heat shock stress causes stage-specific male sterility in Arabidopsis thaliana. J Plant Res 114: 301-307 Liu HC, Liao HT, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ 34: 738-751 Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333: 616-620 Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16: 1555-1567 Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamoi M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y, Shigeoka S (2011) HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol 52: 933-945 Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101: 9971-9975 Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819: 104-119 Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in Arabidopsis. Plant Cell 2: 755-767 Snider JL, Oosterhuis DM (2011) How does timing, duration, and severity of heat stress influence pollen-pistil interactions in angiosperms? Plant Signal Behav 6: 930-933 Tunc-Ozdemir M, Tang C, Ishka MR, Brown E, Groves NR, Myers CT, Rato C, Poulsen LR, McDowell S, Miller G, Mittler R, Harper JF (2013) A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol 161: 1010-1020 Wu TY, Juan YT, Hsu YH, Wu SH, Liao HT, Fung RW, Charng YY (2013) Interplay between heat shock proteins, HSP101 and HSA32, prolongs heat acclimation memory posttranscriptionally in Arabidopsis. Plant Physiol 161: 2075-2084 Yang KZ, Xia C, Liu XL, Dou XY, Wang W, Chen LQ, Zhang XQ, Xie LF, He L, Ma X, Ye D (2009) A mutation in Thermosensitive Male Sterile 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis. Plant J 57: 870-882 Yeh CH, Kaplinsky NJ, Hu C, Charng YY (2012) Some like it hot, some like it warm: phenotyping to explore thermotolerance diversity. Plant Sci 195: 10-23 Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61: 1959-1968 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62465 | - |
| dc.description.abstract | 發生在作物生殖生長期的高溫逆境往往直接導致作物減產。因此,植物在生殖生長時期的高溫逆境反應是一個重要的研究課題。然而,過去在這方面的研究卻很少。本文以模式植物—阿拉伯芥( Arabidopsis thaliana )花及花粉進行耐熱性試驗,探討生殖生長期植物的耐熱機制。利用受熱處理後之果莢以及種子發育和花粉發芽率及花粉管長度分別建立花和花粉的耐熱量化指標,可發現熱馴化處理使剛展開的花和離體的花粉明顯產生後天耐熱性。利用此方法分析幼苗期重要的耐熱基因在生殖生長期的角色,發現 hsp101、hsa32、以及轉錄因子HSFA1的三重突變體eTK,其剛展開的花在熱馴化處理後無法產生後天耐熱性。在後天耐熱試驗處理後,這些突變體的果莢顯著比野生型短,種子的數目也顯著降低。表示HSA32、 HSP101及轉錄因子HSFA1a/b/d 為花的後天耐熱性機制所必需。西方墨點法檢測熱馴化處理後HSP101與HSA32的表現,結果與幼苗期一致,在花朵中HSP101與HSA32能夠相互正回饋調節,使其產生長期後天耐熱性。然而hsp101與hsa32突變體的成熟花粉後天耐熱性並不受到該基因缺失的影響,表示這兩個蛋白質對於花粉後天耐熱性機制不扮演重要功能。檢測熱休克轉錄因子HSFA1a/b/d/e 的T-DNA三重突變體花粉耐熱性,結果顯示除了HSFA1a以外,HSFA1e為啓動花粉後天耐熱性的重要轉錄因子。然而HSFA1e對幼苗和整朵花的後天耐熱性不具有重要功能,故HSFA1e在花粉耐熱試驗結果與在幼苗的結論相反。綜合以上結果,植物生殖生長期的花器與花粉,可以透過熱馴化產生後天耐熱性,幫助植物避免第二次更高溫逆境的傷害。但成熟花粉的後天耐熱性機制顯然與其它組織有所不同。 | zh_TW |
| dc.description.abstract | Heat stress response has been investigated intensively in vegetative tissues of plants, but not in reproductive tissues, which are directly relevant to productivity in agriculture. In this study, we established biological assays for Arabidopsis flowers and pollen to identify important components for acquired thermotolerance (AT) at reproductive stage. Like seedlings, newly opened flowers could endure harsh heat if primed with milder heat, manifesting by elongation of siliques and seed setting following the heat treatment. Pollen also acquire enhanced thermotolerance after heat acclimation, which was demonstrated by measuring in vitro pollen germination rate and pollen tube length. We then used these assays to show whether previously identified components for AT in seedling stage are also required at reproductive stage. The T-DNA knockout mutants of HSP101 and HSA32 showed significantly retarded growth of silique and decreased seed number after treatments, suggesting HSP101 and HSA32 play important roles in heat acclimation in flowers. The pollens of HSP101 and HSA32 mutants did not showed significant defect in AT, indicating that these thermotolerance components have differential functions in different organs. Furthermore, we evaluated the individual role of the four HSFA1 genes, HSFA1a/b/d/e, in pollen AT. HSFA1a, A1b, and A1d were shown to be the redundant master regulators of heat stress response in vegetative tissues. Intriguingly, HSFA1a and A1e, but not HSFA1b and A1d, play major role in pollen AT, suggesting the subfunctionalization of HSFA1 genes in Arabidopsis. Taken together, we suggest that flowers and pollens have the capacity of acquiring thermotolerance by acclimation, which protects them from damage caused by severely high temperature. Our data also indicate that common and distinct thermotolerance components are employed in different organs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:02:53Z (GMT). No. of bitstreams: 1 ntu-102-R00621106-1.pdf: 4425523 bytes, checksum: 5c495f07f4993dc7d41936d534a22c1f (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 ……………………………………………………………………..i
誌謝 …………………………………………………………………………………….ii 摘要 (Abstract in Chinese) ………………….……………………………………….iii Abstract .……………………………………………………………………………….v Abreviattions …………………………………………………………………………..vi Chapter 1 Introduction ………………….……………………………….………….1 Chapter 2 Materials and Methods …………………………………………………4 2.1 Plant materials and growth conditions ……………….…….……………….4 2.2 Immunoblotting...……………..……………………………………………..5 2.3 Thermotolerance assays for newly opened flowers ………………………...6 2.4 Thermotolerance assay for isolated pollens ………………………………...6 2.5 Statistics analysis……………………………………………………………7 Chapter 3 Results …………………………………………………………………….8 3.1 Severe heat stress has negative effects on the development of silliques…….8 3.2 HSP101 and HSA32 were highly induced in newly opened flowers after heat stress treatments ………………………………………………………..8 3.3 Mild heat stress treatment induced AT in newly opened flowers …………..9 3.4 Null mutants of HSP101 and HSA32 showed heat sensitive phenotypes under BT, SAT, and LAT assay conditions……………………………….10 3.5 Interplay between HSP101 and HSA32 occurred in heat-treated flowers…11 3.6 Acquired themotoleracne occurred in isolated pollen, although HSP101 and HSA32 were not substantial …………………………………………...12 3.7 The bTK, dTK, and QK mutants showed heat sensitive phenotypes after pollen AT assay treatments…………………………………………….…..13 Chapter 4 Discussion …….…………………………………………………………15 4.1 Thermotolerance of newly opened flower in reproductive phase plants ….15 4.2 Both HSP101 and HSA32 are crucial for BT and SAT in newly opened flowers, and the positive feedback of HSP101 and HSA32 contributes to LAT ………………………………………………………………………..15 4.3 Thermotolerance of pollen…………………………………………………16 4.4 Differential expression of HSP101 and HSA32 in thermotolerance………17 4.5 Stage-specific regulation and subfuntionalization of HSFA1s…………….18 Chapter 5 Perspective ……………….………………...……………………………19 Figures ………………………………………………………………………………...20 References……………………………………………………………………………...28 | |
| dc.language.iso | en | |
| dc.subject | 熱休克蛋白 | zh_TW |
| dc.subject | 阿拉伯芥 | zh_TW |
| dc.subject | 熱逆境 | zh_TW |
| dc.subject | 後天耐熱性 | zh_TW |
| dc.subject | 生殖生長期 | zh_TW |
| dc.subject | Arabidopsis | en |
| dc.subject | Reproductive phase | en |
| dc.subject | Acquired thermotolerance | en |
| dc.subject | Heat shock protein | en |
| dc.subject | Heat stress | en |
| dc.title | 阿拉伯芥熱逆境反應基因於生殖生長期之功能分析 | zh_TW |
| dc.title | Functional Analysis of Arabidopsis Heat Stress Response Genes at Reproductive Stage | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 盧虎生(Huu-sheng Lur) | |
| dc.contributor.oralexamcommittee | 張孟基(Meng-chi Chang),葉國楨(Kuo-chen Yeh),楊健志(Chien-Chih Yang) | |
| dc.subject.keyword | 阿拉伯芥,熱逆境,熱休克蛋白,生殖生長期,後天耐熱性, | zh_TW |
| dc.subject.keyword | Arabidopsis,Heat stress,Heat shock protein,Reproductive phase,Acquired thermotolerance, | en |
| dc.relation.page | 30 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-03 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
