請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62462完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡錦華(Ching-Hwa Tsai) | |
| dc.contributor.author | Ming Lo | en |
| dc.contributor.author | 羅敏 | zh_TW |
| dc.date.accessioned | 2021-06-16T16:02:51Z | - |
| dc.date.available | 2018-09-24 | |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-03 | |
| dc.identifier.citation | Aldridge, J. R., Jr., Moseley, C. E., Boltz, D. A., Negovetich, N. J., Reynolds, C., Franks, J., Brown, S. A., Doherty, P. C., Webster, R. G. & Thomas, P. G. (2009). TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc Natl Acad Sci U S A 106, 5306-5311.
Arankalle, V. A., Lole, K. S., Arya, R. P., Tripathy, A. S., Ramdasi, A. Y., Chadha, M. S., Sangle, S. A. & Kadam, D. B. (2010). Role of Host Immune Response and Viral Load in the Differential Outcome of Pandemic H1N1 (2009) Influenza Virus Infection in Indian Patients. Plos One 5. Arimori, Y., Nakamura, R., Yamada, H., Shibata, K., Maeda, N., Kase, T. & Yoshikai, Y. (2013). Type I interferon limits influenza virus-induced acute lung injury by regulation of excessive inflammation in mice. Antiviral Res. Baskin, C. R., Bielefeldt-Ohmann, H., Tumpey, T. M., Sabourin, P. J., Long, J. P., Garcia-Sastre, A., Tolnay, A. E., Albrecht, R., Pyles, J. A., Olson, P. H., Aicher, L. D., Rosenzweig, E. R., Murali-Krishna, K., Clark, E. A., Kotur, M. S., Fornek, J. L., Proll, S., Palermo, R. E., Sabourin, C. L. & Katze, M. G. (2009). Early and sustained innate immune response defines pathology and death in nonhuman primates infected by highly pathogenic influenza virus. Proc Natl Acad Sci U S A 106, 3455-3460. Bender, A., Albert, M., Reddy, A., Feldman, M., Sauter, B., Kaplan, G., Hellman, W. & Bhardwaj, N. (1998). The distinctive features of influenza virus infection of dendritic cells. Immunobiology 198, 552-567. Borzi, R. M., Mazzetti, I., Cattini, L., Uguccioni, M., Baggiolini, M. & Facchini, A. (2000). Human chondrocytes express functional chemokine receptors and release matrix-degrading enzymes in response to C-X-C and C-C chemokines. Arthritis Rheum 43, 1734-1741. Daffis, S., Suthar, M. S., Szretter, K. J., Gale, M., Jr. & Diamond, M. S. (2009). Induction of IFN-beta and the innate antiviral response in myeloid cells occurs through an IPS-1-dependent signal that does not require IRF-3 and IRF-7. PLoS Pathog 5, e1000607. de Jong, M. D., Simmons, C. P., Thanh, T. T., Hien, V. M., Smith, G. J., Chau, T. N., Hoang, D. M., Chau, N. V., Khanh, T. H., Dong, V. C., Qui, P. T., Cam, B. V., Ha do, Q., Guan, Y., Peiris, J. S., Chinh, N. T., Hien, T. T. & Farrar, J. (2006). Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nature Medicine 12, 1203-1207. Delano, M. J., Scumpia, P. O., Weinstein, J. S., Coco, D., Nagaraj, S., Kelly-Scumpia, K. M., O'Malley, K. A., Wynn, J. L., Antonenko, S., Al-Quran, S. Z., Swan, R., Chung, C. S., Atkinson, M. A., Ramphal, R., Gabrilovich, D. I., Reeves, W. H., Ayala, A., Phillips, J., Laface, D., Heyworth, P. G., Clare-Salzler, M. & Moldawer, L. L. (2007). MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204, 1463-1474. Dienz, O., Rud, J. G., Eaton, S. M., Lanthier, P. A., Burg, E., Drew, A., Bunn, J., Suratt, B. T., Haynes, L. & Rincon, M. (2012). Essential role of IL-6 in protection against H1N1 influenza virus by promoting neutrophil survival in the lung. Mucosal Immunology 5, 258-266. Ferguson, N. M., Galvani, A. P. & Bush, R. M. (2003). Ecological and immunological determinants of influenza evolution. Nature 422, 428-433. Gabrilovich, D. I. & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology 9, 162-174. Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology 12, 253-268. Hayes, I. M., Jordan, N. J., Towers, S., Smith, G., Paterson, J. R., Earnshaw, J. J., Roach, A. G., Westwick, J. & Williams, R. J. (1998). Human vascular smooth muscle cells express receptors for CC chemokines. Arterioscler Thromb Vasc Biol 18, 397-403. Hippocrates & Smith, W. D. (1994). Hippocrates. Volume VII. Cambridge, Mass.: Harvard University. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G. & Webster, R. G. (2000). A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A 97, 6108-6113. Johnson, N. P. & Mueller, J. (2002). Updating the accounts: global mortality of the 1918-1920 'Spanish' influenza pandemic. Bull Hist Med 76, 105-115. Kato, H., Sato, S., Yoneyama, M., Yamamoto, M., Uematsu, S., Matsui, K., Tsujimura, T., Takeda, K., Fujita, T., Takeuchi, O. & Akira, S. (2005). Cell type-specific involvement of RIG-I in antiviral response. Immunity 23, 19-28. Kumagai, Y., Takeuchi, O., Kato, H., Kumar, H., Matsui, K., Morii, E., Aozasa, K., Kawai, T. & Akira, S. (2007). Alveolar macrophages are the primary interferon-alpha producer in pulmonary infection with RNA viruses. Immunity 27, 240-252. Lee, P. Y., Li, Y., Kumagai, Y., Xu, Y., Weinstein, J. S., Kellner, E. S., Nacionales, D. G., Butfiloski, E. J., van Rooijen, N., Akira, S., Sobel, E. S., Satoh, M. & Reeves, W. H. (2009). Type I Interferon Modulates Monocyte Recruitment and Maturation in Chronic Inflammation. American Journal of Pathology 175, 2023-2033. Manicassamy, B., Manicassamy, S., Belicha-Villanueva, A., Pisanelli, G., Pulendran, B. & Garcia-Sastre, A. (2010). Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc Natl Acad Sci U S A 107, 11531-11536. Medina, R. A. & Garcia-Sastre, A. (2011). Influenza A viruses: new research developments. Nat Rev Microbiol 9, 590-603. Morens, D. M., Taubenberger, J. K. & Fauci, A. S. (2009). The persistent legacy of the 1918 influenza virus. N Engl J Med 361, 225-229. Oslund, K. L. & Baumgarth, N. (2011). Influenza-induced innate immunity: regulators of viral replication, respiratory tract pathology & adaptive immunity. Future Virology 6, 951-962. Pichlmair, A., Schulz, O., Tan, C. P., Naslund, T. I., Liljestrom, P., Weber, F. & Reis e Sousa, C. (2006). RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314, 997-1001. Rodgers, B. C. & Mims, C. A. (1982). Influenza virus replication in human alveolar macrophages. J Med Virol 9, 177-184. Rodriguez-Sanabria, F., Rull, A., Beltran-Debon, R., Aragones, G., Camps, J., Mackness, B., Mackness, M. & Joven, J. (2010). Tissue distribution and expression of paraoxonases and chemokines in mouse: the ubiquitous and joint localisation suggest a systemic and coordinated role. Journal of Molecular Histology 41, 379-386. Sabbah, A., Chang, T. H., Harnack, R., Frohlich, V., Tominaga, K., Dube, P. H., Xiang, Y. & Bose, S. (2009). Activation of innate immune antiviral responses by Nod2. Nature Immunology 10, 1073-U1049. Sarafi, M. N., GarciaZepeda, E. A., MacLean, J. A., Charo, I. F. & Luster, A. D. (1997). Murine monocyte chemoattractant protein (MCP)-5: A novel CC chemokine that is a structural and functional homologue of human MCP-1. Journal of Experimental Medicine 185, 99-109. Seo, S. U., Kwon, H. J., Ko, H. J., Byun, Y. H., Seong, B. L., Uematsu, S., Akira, S. & Kweon, M. N. (2011). Type I interferon signaling regulates Ly6C(hi) monocytes and neutrophils during acute viral pneumonia in mice. PLoS Pathog 7, e1001304. Serbina, N. V. & Pamer, E. G. (2006). Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nature Immunology 7, 311-317. Shi, C., Jia, T., Mendez-Ferrer, S., Hohl, T. M., Serbina, N. V., Lipuma, L., Leiner, I., Li, M. O., Frenette, P. S. & Pamer, E. G. (2011). Bone Marrow Mesenchymal Stem and Progenitor Cells Induce Monocyte Emigration in Response to Circulating Toll-like Receptor Ligands. Immunity 34, 590-601. Short, K. R., Brooks, A. G., Reading, P. C. & Londrigan, S. L. (2012). The fate of influenza A virus after infection of human macrophages and dendritic cells. J Gen Virol 93, 2315-2325. Siren, J., Imaizumi, T., Sarkar, D., Pietila, T., Noah, D. L., Lin, R. T., Hiscott, J., Krug, R. M., Fisher, P. B., Julkunen, I. & Matikainen, S. (2006). Retinoic acid inducible gene-I and mda-5 are involved in influenza A virus-induced expression of antiviral cytokines. Microbes and Infection 8, 2013-2020. Smith, W., Andrewes, C. H. & Laidlaw, P. P. (1933). A virus obtained from influenza patients. The Lancet 222, 2. Taubenberger, J. K. & Morens, D. M. (2008). The pathology of influenza virus infections. Annu Rev Pathol 3, 499-522. Teijaro, J. R., Walsh, K. B., Cahalan, S., Fremgen, D. M., Roberts, E., Scott, F., Martinborough, E., Peach, R., Oldstone, M. B. & Rosen, H. (2011). Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146, 980-991. Tsou, C. L., Peters, W., Si, Y., Slaymaker, S., Aslanian, A. M., Weisberg, S. P., Mack, M. & Charo, I. F. (2007). Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J Clin Invest 117, 902-909. Ware, L. B. & Matthay, M. A. (2000). The acute respiratory distress syndrome. N Engl J Med 342, 1334-1349. Yu, W. C., Chan, R. W., Wang, J., Travanty, E. A., Nicholls, J. M., Peiris, J. S., Mason, R. J. & Chan, M. C. (2011). Viral replication and innate host responses in primary human alveolar epithelial cells and alveolar macrophages infected with influenza H5N1 and H1N1 viruses. J Virol 85, 6844-6855. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62462 | - |
| dc.description.abstract | 流感病毒感染是全球性重要的公衛議題。目前施行的預防性疫苗以及抗病毒藥物對於降低大規模流感病毒爆發的風險雖有一定成效,然而高致病力流感病毒感染所造成的重症病患亟需發展針對降低宿主過度免疫反應的治療策略來減少流感病毒造成的死亡。
細胞激素風暴在流感病毒致病機轉中扮演關鍵角色。本論文利用已建立之三株不同致病力H1N1 流感病毒小鼠感染模式,藉由比較致死性的A/PR8-1/34 (PR8)、中度致病性的A/Taiwan/126/09 以及致病性最低的A/Taiwan/141/02 感染小鼠肺臟的免疫反應,嘗試找出其中細胞激素或細胞吸引素的來源細胞;並探討不同株流感病毒感染中細胞激素風暴如何造成宿主不同嚴重程度的呼吸道發炎反應而導致對宿主致病力的差異。之前研究已利用蛋白質微陣列分析找到病毒感染小鼠肺泡支氣管沖洗液中特定細胞激素與細胞吸引素的表現量與病毒致病力的正向關連。本論文首先利用RT-PCR顯示病毒感染小鼠肺臟浸潤的白血球中會表現蛋白質微陣列分析中與病毒致病力呈正相關的細胞激素與細胞吸引素的mRNA。在高致病力的PR8感染小鼠體內,進一步利用流式細胞儀分析發現Gr1+CD11b+細胞佔肺臟內白血球最高的比例。型態上,PR8感染小鼠肺臟內的Gr1+CD11b+ 細胞絕大部分帶有大量明顯的質內空泡;且此群細胞高度表現細胞激素與細胞吸引素相關的基因顯示其高度活化的狀態。本研究發現在流感病毒感染小鼠中Gr1+CD11b+ 細胞是三種單核球吸引素:CCL2、CCL7 以及 CCL12的主要細胞來源。分子機制上,在第一型干擾素受器剔除小鼠感染流感病毒後肺臟內的Gr1+CD11b+ 細胞中CCL2、CCL7 以及 CCL12基因表現顯著被抑制的結果暗示第一型干擾素調控Gr1+CD11b+ 細胞產生單核球吸引素。肺臟中越多Gr1+CD11b+ 細胞累積,病毒感染小鼠血清中CCL2、CCL7 以及 CCL12的蛋白質濃度越高。推測因此較多骨髓球(myeloid cells)從骨髓中被吸引致肺臟累積。本研究揭示在流感病毒感染小鼠中,Gr1+CD11b+ 細胞是產生CCL2、CCL7 以及 CCL12的主要細胞來源,並提出Gr1+CD11b+ 細胞由骨髓移行至肺臟的可能途徑。以上資訊對未來發展高致病力流感病毒感染治療策略中,針對調節Gr1+CD11b+ 細胞在肺臟的累積有所助益。 | zh_TW |
| dc.description.abstract | Influenza virus infection is a critical public health issue worldwide. While preventive vaccination and antiviral therapies are primary available approaches to lower risk of influenza virus outbreaks, as for high-mortality influenza pandemics, the need to identify supplementary mechanisms to alleviate overly-aggressive host response to influenza virus is urgent.
Cytokine storm plays a significant role in influenza virus infection. In this study, we try to define the cellular source and the mechanism how cytokine storm contributes to different pathological outcomes caused by different strains of influenza virus by using established model of three strains of H1N1 influenza viruses with distinct pathogenecities infections in mice: A/PR8-1/34 (PR8) as fatal strain, A/Taiwan/126/09 as moderately pathogenic strain and A/Taiwan/141/02 as mildly pathogenic strain. Previous results show the positive correlation between virus strains pathogenecities and the production level of specific cytokines and chemokines in protein array analysis of bronchoalveolar lavage fluid in virus-infected mice. In this thesis, we first demonstrate the mRNA expression of those cytokines and chemokines in pulmonary infiltrating leukocytes of virus-infected mice by RT-PCR. In PR8-infected mice, we further identify Gr1+CD11b+ cells as dominant infiltrating leukocytes by flow cytometry. Morphologically, most Gr1+CD11b+ cells in lung possess significant cytoplasmic vacuoles in PR8 infected mice. In addition, the upregulated gene expression profile of chemokines and cytokines in pulmonary infiltrating Gr1+CD11b+ cells in PR8 infected mice indicates its hyperactivated status. We found these cells primarily contribute to the production of monocyte chemotractants: CCL2, CCL7 and CCL12. The failure of the induction of those chemokines in Gr1+CD11b+ cells from virus-infected IFNAR KO mice hints out the possible regulation role of Type 1 IFN. While more above chemokines are produced by pulmonary infiltrating Gr1+CD11b+ cells, the serum concentration of above chemokines are elevated according to the amount of Gr1+CD11b+ cells in lung. As a result, it is suggested that more monocytes are recruited from bone marrow to lung. This study discovers Gr1+CD11b+ cells as a major cellular source of CCL2, CCL7 and CCL12 in influenza virus infection in mice and proposes their possible migration route from bone marrow to lung. Above information may help us develop potential therapeutic strategies by manipulating the accumulation of pulmonary infiltrating Gr1+CD11b+ myeloid cells in highly pathogenic influenza virus infections. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T16:02:51Z (GMT). No. of bitstreams: 1 ntu-102-R00445107-1.pdf: 4642135 bytes, checksum: 8b8d50e8bf2517fed43ac435f1f91bba (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii 英文摘要 iii 序論 1 第一章 流行性感冒病毒特性及大規模流行性感冒爆發史 1 第二章 流行性感冒病毒致病機轉 3 第三章 CCL2、CCL7以及CCL12 3 第四章 流行性感冒病毒感染後宿主的先天性免疫反應 4 第五章 實驗目的 5 實驗材料 6 第一章、藥品 6 第二章、細胞株 7 第三章、抗體 7 實驗方法 9 第一章 流感病毒重組與製備 9 第二章 動物感染、臟器採集、細胞分離及細胞計數 9 2.1 小鼠品系 9 2.2 病毒感染 9 2.3 臟器採集 10 2.4 細胞分離與計數 10 第三章 細胞表面抗原染色、細胞流式儀及細胞分選 11 第四章 Plaque assay 11 第五章 RNA分離、反轉錄及聚合酶鏈鎖反應或定量聚合酶鏈鎖反應 (RT-PCR and RT-QPCR) 11 5.1 RNA 分離 11 5.2 反轉錄 12 5.4 Q-PCR 12 第六章 血清採集以及CCL2、CCL7、CCL12 酵素免疫測定法(ELISA) 12 實驗結果 13 第一章、肺臟內浸潤白血球為流感病毒感染後多種細胞激素與細胞吸引素的主要來源 14 第二章、Gr-1+CD11b+細胞為高致病力流感病毒感染中小鼠肺臟內主要浸潤的白血球種類 14 第三章、Gr-1+CD11b+細胞在高致病力流感病毒感染中主要分布於肺臟及骨髓 15 第四章、肺臟及骨髓內之Gr-1+CD11b+細胞型態不同,且流感病毒會感染肺臟內Gr-1+CD11b+細胞,骨髓內Gr-1+CD11b+細胞則否 15 第五章、高致病力流感病毒感染中,肺臟內Gr-1+CD11b+細胞與骨髓內Gr-1+CD11b+細胞相較,可表現多種細胞吸引素以及細胞激素 16 第六章、流感病毒感染中肺臟內Gr-1+CD11b+細胞屬於單核球系細胞 17 第七章、流感病毒感染中肺臟內Gr-1+CD11b+細胞是單核球吸引素CCL2、CCL7以及CCL12的主要來源 18 第八章、流感病毒感染中肺臟內Gr-1+CD11b+細胞依賴Type 1 IFN受器媒介之訊息傳遞產生CCL2、CCL7以及CCL12 19 第九章、流感病毒感染小鼠血清內CCL2、CCL7 以及CCL12 蛋白質含量與病毒致病力呈正相關 20 討論 22 第一章、RT-PCR結果部分細胞激素與細胞吸引素未與致病力呈正相關的可能原因 22 第二章、骨髓內與肺臟內在Gr1+CD11b+ 細胞型態差異的可能原因 22 第三章、Gr-1+CD11b+細胞在流感病毒感染中的細胞功能 23 第四章、Type 1 IFN對Gr-1+CD11b+細胞產生CCL2、CCL7以及CCL12的扮演的角色 23 4.2.1 IFNβ mRNA 在IFNAR1 KO mice 與WT沒有顯著差異的可能原因 24 附錄 48 | |
| dc.language.iso | zh-TW | |
| dc.subject | Gr+CD11b+細胞 | zh_TW |
| dc.subject | 致病機轉 | zh_TW |
| dc.subject | 細胞激素風暴 | zh_TW |
| dc.subject | 流行性感冒病毒 | zh_TW |
| dc.subject | cytokine storm | en |
| dc.subject | Gr+CD11b+ cells | en |
| dc.subject | influenza virus | en |
| dc.subject | pathogenesis | en |
| dc.title | Gr-1+CD11b+ 細胞特性鑑定於不同致病力之H1N1流感病毒感染小鼠 | zh_TW |
| dc.title | Characterization of Gr+CD11b+ cells in different
pathogenic strains of H1N1 influenza virus infections | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林素珍(Sue-Jane Lin) | |
| dc.contributor.oralexamcommittee | 李建國(Chien-Kuo Lee),董馨蓮(Shin-Lian Doong) | |
| dc.subject.keyword | Gr+CD11b+細胞,流行性感冒病毒,細胞激素風暴,致病機轉, | zh_TW |
| dc.subject.keyword | Gr+CD11b+ cells,influenza virus,cytokine storm,pathogenesis, | en |
| dc.relation.page | 51 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-04 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 微生物學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
