Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62457
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高成炎
dc.contributor.authorChien-Hao Suen
dc.contributor.author蘇建豪zh_TW
dc.date.accessioned2021-06-16T16:02:47Z-
dc.date.available2014-07-18
dc.date.copyright2013-07-18
dc.date.issued2013
dc.date.submitted2013-07-04
dc.identifier.citation1. Whitman WB, Coleman DC, Wiebe WJ: Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 1998, 95(12):6578-6583.
2. Amann RI, Ludwig W, Schleifer KH: Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 1995, 59(1):143-169.
3. Hugenholtz P, Goebel BM, Pace NR: Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 1998, 180(18):4765-4774.
4. Thomas T, Gilbert J, Meyer F: Metagenomics - a guide from sampling to data analysis. Microb Inform Exp 2012, 2(1):3.
5. Temperton B, Giovannoni SJ: Metagenomics: microbial diversity through a scratched lens. Current Opinion in Microbiology 2012, 15(5):605-612.
6. Gilbert JA, Dupont CL: Microbial metagenomics: beyond the genome. Ann Rev Mar Sci 2011, 3:347-371.
7. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM: Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 1998, 5(10):R245-249.
8. Handelsman J, Tiedje J, Alvarez-Cohen L, Ashburner M, Cann I, DeLong E: The New Science of metagenomics: revealing the secrets of our microbial planet. In.: Washington, DC: The National Academies Press; 2007.
9. Schmeisser C, Steele H, Streit WR: Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 2007, 75(5):955-962.
10. Uchiyama T, Miyazaki K: Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 2009, 20(6):616-622.
11. Simon C, Daniel R: Metagenomic Analyses: Past and Future Trends. Appl Environ Microb 2011, 77(4):1153-1161.
12. Venter JC: Multiple personal genomes await. Nature 2010, 464(7289):676-677.
13. Perkel J: Finding the true $1000 genome. Biotechniques 2013, 54(2):71-74.
14. Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P: Metagenomic gene discovery: past, present and future. Trends Biotechnol 2005, 23(6):321-329.
15. Ferrer M, Martinez-Abarca F, Golyshin PN: Mining genomes and 'metagenomes' for novel catalysts. Curr Opin Biotechnol 2005, 16(6):588-593.
16. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC et al: Comparative metagenomics of microbial communities. Science 2005, 308(5721):554-557.
17. Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C et al: Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 2000, 66(6):2541-2547.
18. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF: Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 2004, 428(6978):37-43.
19. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, Chan AM, Haynes M, Kelley S, Liu H et al: The marine viromes of four oceanic regions. PLoS Biol 2006, 4(11):e368.
20. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR et al: Community genomics among stratified microbial assemblages in the ocean's interior. Science 2006, 311(5760):496-503.
21. DeLong EF: Microbial community genomics in the ocean. Nat Rev Microbiol 2005, 3(6):459-469.
22. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K et al: The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 2007, 5(3):e77.
23. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, Eisen JA, Heidelberg KB, Manning G, Li W et al: The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol 2007, 5(3):e16.
24. Li X, Qin L: Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol 2005, 23(11):539-543.
25. Pedros-Alio C: Genomics and marine microbial ecology. Int Microbiol 2006, 9(3):191-197.
26. Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Alexander EC, Jr., Rohwer F: Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 2006, 7:57.
27. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W et al: Environmental genome shotgun sequencing of the Sargasso Sea. Science 2004, 304(5667):66-74.
28. Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH: Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci U S A 2008, 105(30):10583-10588.
29. Martin-Cuadrado AB, Lopez-Garcia P, Alba JC, Moreira D, Monticelli L, Strittmatter A, Gottschalk G, Rodriguez-Valera F: Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. Plos One 2007, 2(9):e914.
30. Martin-Cuadrado AB, Rodriguez-Valera F, Moreira D, Alba JC, Ivars-Martinez E, Henn MR, Talla E, Lopez-Garcia P: Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. ISME J 2008, 2(8):865-886.
31. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM et al: A metagenomic survey of microbes in honey bee colony collapse disorder. Science 2007, 318(5848):283-287.
32. Huang Y, Lai X, He X, Cao L, Zeng Z, Zhang J, Zhou S: Characterization of a deep-sea sediment metagenomic clone that produces water-soluble melanin in Escherichia coli. Mar Biotechnol (NY) 2009, 11(1):124-131.
33. Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF: Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 2004, 305(5689):1457-1462.
34. Kim EY, Oh KH, Lee MH, Kang CH, Oh TK, Yoon JH: Novel cold-adapted alkaline lipase from an intertidal flat metagenome and proposal for a new family of bacterial lipases. Appl Environ Microbiol 2009, 75(1):257-260.
35. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T et al: A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464(7285):59-65.
36. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM et al: Enterotypes of the human gut microbiome. Nature 2011, 473(7346):174-180.
37. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P: Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 2010, 107(33):14691-14696.
38. Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, Shah N, Wang C, Magrini V, Wilson RK et al: Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci U S A 2009, 106(14):5859-5864.
39. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP et al: Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 2007, 14(4):169-181.
40. Vaishampayan PA, Kuehl JV, Froula JL, Morgan JL, Ochman H, Francino MP: Comparative metagenomics and population dynamics of the gut microbiota in mother and infant. Genome Biol Evol 2010, 2:53-66.
41. Tasse L, Bercovici J, Pizzut-Serin S, Robe P, Tap J, Klopp C, Cantarel BL, Coutinho PM, Henrissat B, Leclerc M et al: Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res 2010, 20(11):1605-1612.
42. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE: Metagenomic analysis of the human distal gut microbiome. Science 2006, 312(5778):1355-1359.
43. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI: The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004, 101(44):15718-15723.
44. Turnbaugh PJ, Gordon JI: The core gut microbiome, energy balance and obesity. J Physiol 2009, 587(Pt 17):4153-4158.
45. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP et al: A core gut microbiome in obese and lean twins. Nature 2009, 457(7228):480-484.
46. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI: Human nutrition, the gut microbiome and the immune system. Nature 2011, 474(7351):327-336.
47. Armougom F, Raoult D: Use of pyrosequencing and DNA barcodes to monitor variations in Firmicutes and Bacteroidetes communities in the gut microbiota of obese humans. BMC Genomics 2008, 9:576.
48. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P et al: Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 2006, 55(2):205-211.
49. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB et al: Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012, 13(9):R79.
50. Dicksved J, Halfvarson J, Rosenquist M, Jarnerot G, Tysk C, Apajalahti J, Engstrand L, Jansson JK: Molecular analysis of the gut microbiota of identical twins with Crohn's disease. ISME J 2008, 2(7):716-727.
51. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D et al: A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490(7418):55-60.
52. Fraser CM, Eisen J, Fleischmann RD, Ketchum KA, Peterson S: Comparative genomics and understanding of microbial biology. Emerg Infect Dis 2000, 6(5):505-512.
53. Raes J, Foerstner KU, Bork P: Get the most out of your metagenome: computational analysis of environmental sequence data. Current Opinion in Microbiology 2007, 10(5):490-498.
54. Vaishampayan PA, Kuehl JV, Froula JL, Morgan JL, Ochman H, Francino MP: Comparative metagenomics and population dynamics of the gut microbiota in mother and infant. Genome Biol Evol 2010, 2010:53-66.
55. Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, Sinelnikov I, Budwill K, Nesbo CL, Wishart DS: METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res 2012, 40(Web Server issue):W88-95.
56. Huson DH, Richter DC, Mitra S, Auch AF, Schuster SC: Methods for comparative metagenomics. Bmc Bioinformatics 2009, 10 Suppl 1:S12.
57. Mitra S, Gilbert JA, Field D, Huson DH: Comparison of multiple metagenomes using phylogenetic networks based on ecological indices. ISME J 2010.
58. Mitra S, Klar B, Huson DH: Visual and statistical comparison of metagenomes. Bioinformatics 2009, 25(15):1849-1855.
59. Li W: Analysis and comparison of very large metagenomes with fast clustering and functional annotation. Bmc Bioinformatics 2009, 10:359.
60. Parks DH, Beiko RG: Identifying biologically relevant differences between metagenomic communities. Bioinformatics 2010, 26(6):715-721.
61. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA: Diversity of the human intestinal microbial flora. Science 2005, 308(5728):1635-1638.
62. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI: The Human Microbiome Project. Nature 2007, 449(7164):804-810.
63. Wooley JC, Ye Y: Metagenomics: Facts and Artifacts, and Computational Challenges. J Comput Sci Technol 2009, 25(1):71-81.
64. Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P: A bioinformatician's guide to metagenomics. Microbiol Mol Biol Rev 2008, 72(4):557-578, Table of Contents.
65. Sleator RD, Shortall C, Hill C: Metagenomics. Lett Appl Microbiol 2008, 47(5):361-366.
66. Simon C, Daniel R: Metagenomic analyses: past and future trends. Appl Environ Microbiol 2011, 77(4):1153-1161.
67. Patel PV, Gianoulis TA, Bjornson RD, Yip KY, Engelman DM, Gerstein MB: Analysis of membrane proteins in metagenomics: Networks of correlated environmental features and protein families. Genome Res 2010.
68. Olman V, Mao F, Wu H, Xu Y: Parallel clustering algorithm for large data sets with applications in bioinformatics. IEEE/ACM Trans Comput Biol Bioinform 2009, 6(2):344-352.
69. Sharma N, Sudarsan Y, Sharma R, Singh G: RAPD analysis of soil microbial diversity in western Rajasthan. Current Science 2008, 94(8):1058-1061.
70. Aagaard K, Riehle K, Ma J, Segata N, Mistretta TA, Coarfa C, Raza S, Rosenbaum S, Van den Veyver I, Milosavljevic A et al: A Metagenomic Approach to Characterization of the Vaginal Microbiome Signature in Pregnancy. Plos One 2012, 7(6).
71. Parks DH, Beiko RG: Measures of phylogenetic differentiation provide robust and complementary insights into microbial communities. ISME J 2013, 7(1):173-183.
72. Kuczynski J, Liu Z, Lozupone C, McDonald D, Fierer N, Knight R: Microbial community resemblance methods differ in their ability to detect biologically relevant patterns. Nat Methods 2010, 7(10):813-819.
73. D'Haeseleer P: How does gene expression clustering work? Nat Biotechnol 2005, 23(12):1499-1501.
74. Angly F, Rodriguez-Brito B, Bangor D, McNairnie P, Breitbart M, Salamon P, Felts B, Nulton J, Mahaffy J, Rohwer F: PHACCS, an online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information. Bmc Bioinformatics 2005, 6:41.
75. Martin AP: Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl Environ Microbiol 2002, 68(8):3673-3682.
76. Lozupone C, Hamady M, Knight R: UniFrac--an online tool for comparing microbial community diversity in a phylogenetic context. Bmc Bioinformatics 2006, 7:371.
77. Yooseph S, Li W, Sutton G: Gene identification and protein classification in microbial metagenomic sequence data via incremental clustering. Bmc Bioinformatics 2008, 9:182.
78. Wooley JC, Godzik A, Friedberg I: A primer on metagenomics. PLoS Comput Biol 2010, 6(2):e1000667.
79. Weng FC, Su CH, Hsu MT, Wang TY, Tsai HK, Wang D: Reanalyze unassigned reads in Sanger based metagenomic data using conserved gene adjacency. Bmc Bioinformatics 2010, 11:565.
80. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P: Toward automatic reconstruction of a highly resolved tree of life. Science 2006, 311(5765):1283-1287.
81. Gomez-Alvarez V, Teal TK, Schmidt TM: Systematic artifacts in metagenomes from complex microbial communities. ISME J 2009, 3(11):1314-1317.
82. Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy AC, Rigoutsos I, Salamov A, Korzeniewski F, Land M et al: Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nature Methods 2007, 4(6):495-500.
83. Niu B, Fu L, Sun S, Li W: Artificial and natural duplicates in pyrosequencing reads of metagenomic data. Bmc Bioinformatics 2010, 11:187.
84. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ: At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microb 2005, 71(12):7724-7736.
85. Gifford SM, Sharma S, Rinta-Kanto JM, Moran MA: Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME J 2011, 5(3):461-472.
86. Konstantinidis KT, Ramette A, Tiedje JM: The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 2006, 361(1475):1929-1940.
87. Trifonov V, Rabadan R: Frequency analysis techniques for identification of viral genetic data. MBio 2010, 1(3).
88. Frostegard A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P: Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 1999, 65(12):5409-5420.
89. Williamson KE, Kan J, Polson SW, Williamson SJ: Optimizing the indirect extraction of prokaryotic DNA from soils. Soil Biol Biochem 2011, 43(4):736-748.
90. Pham VD, Konstantinidis KT, Palden T, DeLong EF: Phylogenetic analyses of ribosomal DNA-containing bacterioplankton genome fragments from a 4000 m vertical profile in the North Pacific Subtropical Gyre. Environ Microbiol 2008, 10(9):2313-2330.
91. Angly FE, Willner D, Rohwer F, Hugenholtz P, Tyson GW: Grinder: a versatile amplicon and shotgun sequence simulator. Nucleic Acids Res 2012, 40(12):e94.
92. Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic J: Metagenomic pyrosequencing and microbial identification. Clin Chem 2009, 55(5):856-866.
93. Shendure J, Ji H: Next-generation DNA sequencing. Nat Biotechnol 2008, 26(10):1135-1145.
94. Abe T, Sugawara H, Kanaya S, Ikemura T: A novel bioinformatics tool for phylogenetic classification of genomic sequence fragments derived from mixed genomes of uncultured environmental microbes. Polar Bioscience 2006, 20:103.
95. Brady A, Salzberg SL: Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nat Methods 2009, 6(9):673-676.
96. Chan CK, Hsu AL, Halgamuge SK, Tang SL: Binning sequences using very sparse labels within a metagenome. Bmc Bioinformatics 2008, 9:215.
97. Chan CK, Hsu AL, Tang SL, Halgamuge SK: Using growing self-organising maps to improve the binning process in environmental whole-genome shotgun sequencing. J Biomed Biotechnol 2008, 2008:513701.
98. Chatterji S, Yamazaki I, Bai Z, Eisen JA: CompostBin: A DNA composition-based algorithm for binning environmental shotgun reads. In: 2008: Springer-Verlag; 2008: 17-28.
99. Diaz NN, Krause L, Goesmann A, Niehaus K, Nattkemper TW: TACOA: taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. Bmc Bioinformatics 2009, 10:56.
100. Ghosh TS, Mohammed MH, Komanduri D, Mande SS: ProViDE: A software tool for accurate estimation of viral diversity in metagenomic samples. Bioinformation 2011, 6(2):91-94.
101. Ghosh TS, Monzoorul Haque M, Mande SS: DiScRIBinATE: a rapid method for accurate taxonomic classification of metagenomic sequences. Bmc Bioinformatics 2010, 11 Suppl 7:S14.
102. Huson DH, Auch AF, Qi J, Schuster SC: MEGAN analysis of metagenomic data. Genome Res 2007, 17(3):377-386.
103. Krause L, Diaz NN, Goesmann A, Kelley S, Nattkemper TW, Rohwer F, Edwards RA, Stoye J: Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res 2008, 36(7):2230-2239.
104. Leung HC, Yiu SM, Yang B, Peng Y, Wang Y, Liu Z, Chen J, Qin J, Li R, Chin FY: A robust and accurate binning algorithm for metagenomic sequences with arbitrary species abundance ratio. Bioinformatics 2011, 27(11):1489-1495.
105. McHardy AC, Martin HG, Tsirigos A, Hugenholtz P, Rigoutsos I: Accurate phylogenetic classification of variable-length DNA fragments. Nat Methods 2007, 4(1):63-72.
106. Monzoorul Haque M, Ghosh TS, Komanduri D, Mande SS: SOrt-ITEMS: Sequence orthology based approach for improved taxonomic estimation of metagenomic sequences. Bioinformatics 2009, 25(14):1722-1730.
107. Patil KR, Haider P, Pope PB, Turnbaugh PJ, Morrison M, Scheffer T, McHardy AC: Taxonomic metagenome sequence assignment with structured output models. Nat Methods 2011, 8(3):191-192.
108. Teeling H, Waldmann J, Lombardot T, Bauer M, Glockner FO: TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences. Bmc Bioinformatics 2004, 5:163.
109. Wu YW, Ye Y: A novel abundance-based algorithm for binning metagenomic sequences using l-tuples. J Comput Biol 2011, 18(3):523-534.
110. Yang B, Peng Y, Leung H, Yiu S, Qin J, Li R, Chin FYL: MetaCluster: unsupervised binning of environmental genomic fragments and taxonomic annotation. In: 2010: ACM; 2010: 170-179.
111. Zheng H, Wu H: Short prokaryotic DNA fragment binning using a hierarchical classifier based on linear discriminant analysis and principal component analysis. J Bioinform Comput Biol 2010, 8(6):995-1011.
112. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE: Metagenomic Analysis of the Human Distal Gut Microbiome. Science 2006, 312(5778):1355-1359.
113. Garcia Martin H, Ivanova N, Kunin V, Warnecke F, Barry KW, McHardy AC, Yeates C, He S, Salamov AA, Szeto E et al: Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 2006, 24(10):1263-1269.
114. Angly FE, Willner D, Prieto-Davo A, Edwards RA, Schmieder R, Vega-Thurber R, Antonopoulos DA, Barott K, Cottrell MT, Desnues C et al: The GAAS metagenomic tool and its estimations of viral and microbial average genome size in four major biomes. PLoS Comput Biol 2009, 5(12):e1000593.
115. Beszteri B, Temperton B, Frickenhaus S, Giovannoni SJ: Average genome size: a potential source of bias in comparative metagenomics. ISME J 2010, 4(8):1075-1077.
116. Rogozin IB, Makarova KS, Natale DA, Spiridonov AN, Tatusov RL, Wolf YI, Yin J, Koonin EV: Congruent evolution of different classes of non-coding DNA in prokaryotic genomes. Nucleic Acids Res 2002, 30(19):4264-4271.
117. Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy AC, Rigoutsos I, Salamov A, Korzeniewski F, Land M et al: Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat Meth 2007, 4(6):495-500.
118. Su CH, Hsu MT, Wang TY, Chiang SF, Cheng JH, Weng FC, Kao CY, Wang D, Tsai HK: MetaABC - an integrated metagenomics platform for data adjustment, binning, and clustering. Bioinformatics 2011, 27:2298-2299.
119. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24(8):1596-1599.
120. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ: Microbial diversity in the deep sea and the underexplored 'rare biosphere'. Proc Natl Acad Sci U S A 2006, 103(32):12115-12120.
121. Sauer U, Bodrossy L, Preininger C: Evaluation of substrate performance for a microbial diagnostic microarray using a four parameter ranking. Anal Chim Acta 2009, 632(2):240-246.
122. Spearman C: The proof and measurement of association between two things. Am J Psychol 1904, 15:72-101.
123. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, Brulc JM, Furlan M, Desnues C, Haynes M, Li L et al: Functional metagenomic profiling of nine biomes. Nature 2008, 452(7187):629-632.
124. Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 2000, 16(5):412-424.
125. Weng FC, Su CH, Hsu MT, Wang TY, Tsai HK, Wang DY: Reanalyze unassigned reads in Sanger based metagenomic data using conserved gene adjacency. BMC Bioinformatics 2010, 11(565).
126. Ley RE, Turnbaugh PJ, Klein S, Gordon JI: Microbial ecology: human gut microbes associated with obesity. Nature 2006, 444(7122):1022-1023.
127. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM et al: The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009, 37(Database issue):D141-145.
128. Magurran AE: Ecological diversity and its measurement, vol. 179: Princeton University Press Princeton, NJ; 1988.
129. Ewing B, Green P: Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998, 8(3):186-194.
130. Cardona G, Llabres M, Rossello F, Valiente G: Nodal distances for rooted phylogenetic trees. J Math Biol 2010, 61(2):253-276.
131. Cummings MP, Neel MC, Shaw KL: A genealogical approach to quantifying lineage divergence. Evolution 2008, 62(9):2411-2422.
132. Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH: Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 2013, 31(6):533-538.
133. Pignatelli M, Aparicio G, Blanquer I, Hernandez V, Moya A, Tamames J: Metagenomics reveals our incomplete knowledge of global diversity. Bioinformatics 2008, 24(18):2124-2125.
134. Monier A, Claverie JM, Ogata H: Taxonomic distribution of large DNA viruses in the sea. Genome Biol 2008, 9(7):R106.
135. Gogarten JP, Townsend JP: Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 2005, 3(9):679-687.
136. Jain R, Rivera MC, Lake JA: Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A 1999, 96(7):3801-3806.
137. Zhaxybayeva O, Lapierre P, Gogarten JP: Genome mosaicism and organismal lineages. Trends Genet 2004, 20(5):254-260.
138. Nakamura Y, Itoh T, Matsuda H, Gojobori T: Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 2004, 36(7):760-766.
139. Mitra S, Schubach M, Huson DH: Short clones or long clones? A simulation study on the use of paired reads in metagenomics. BMC Bioinformatics 2010, 11 Suppl 1:S12.
140. Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK, Fierer N, Townsend AR, Cleveland CC, Stanish L et al: Global patterns in the biogeography of bacterial taxa. Environ Microbiol 2011, 13(1):135-144.
141. Sharpton TJ, Riesenfeld SJ, Kembel SW, Ladau J, O'Dwyer JP, Green JL, Eisen JA, Pollard KS: PhylOTU: a high-throughput procedure quantifies microbial community diversity and resolves novel taxa from metagenomic data. PLoS Comput Biol 2011, 7(1):e1001061.
142. Treangen TJ, Koren S, Sommer DD, Liu B, Astrovskaya I, Ondov B, Darling AE, Phillippy AM, Pop M: MetAMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol 2013, 14(1):R2.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62457-
dc.description.abstract地球上蘊含大量且多樣的微生物群落,這些群落對維持生態平衡扮演著很重要的角色。為了對環境生態有更多的認識,本研究提出了一系列不同機制的計算方法來深入探討微生物群落間與群落內之關係。
在原生環境下成長的微生物,隨著時間的累積,適合生長於某一微生物群落之物種會逐漸繁殖,反之,不適合之物種則會消失滅亡。因此,微生物群落通常可由它的物種組成來表示,正確地估量微生物群落內之物種組成為本研究之重點。再者,由於不同群落間之差異與群落多樣性,準確地辨別這些差異亦很重要且具挑戰性。但是,礙於現有方法與技術,有很大比例的微生物無法於實驗室內培養。直到1998年由Jo Handelsman所提出的「多源基因體學(Metagenomics)」,藉由直接萃取環境中微生物之DNA,進行定序並分析,使無法於實驗室中培養的微生物得以窺究。因此,本研究旨在以「多源基因體學」之方式,探討微生物群落間與群落內之關係。
我們分析了三個慣用的距離方程式以辨別不同群落間之差異,發現三者於群落分群時,其結果並無顯著差異。據此,我們增加資料正規化的前處理程序,並提出整合演化距離資訊至計算方法中。研究結果顯示,無論樣本來自真實或是模擬的微生物群,運用比序進行的正規化前處理,且整合演化距離資訊,將能顯著改進群落分群。
本研究進一步提出MetaRank,利用一系列統計假設檢定和物種相對數量來減低採樣偏差的干擾,以得到一個較好的群落內之物種分佈評估。在辨識物種分佈的相關研究中,因受限於序列比對技術,通常捨棄可觀比例的片段,但這些片段可能含有相鄰基因資訊。因此,我們重新分析這些片段,檢視其對辨識物種的意義。此外,我們亦發展出一套「多源基因體」資訊處理平台(MetaABC),整合數種分配工具,並進行資料過濾前處理及結果校正。發現 分配工具的選擇,對物種分佈結果優劣有決定性之影響。綜合上述,本研究更進一步提出一個新穎分配方法(PhymmBLxM),可得到更好的物種分佈評估。
應用本研究提出之演算平台與方法,可增進我們對微生物群落間與群落內差異辨別議題之認識。同時,亦可評估數種關鍵因素對辨別差異效能之影響。最後,期望本研究對於探討地球環境生態之瞭解能有所貢獻。
zh_TW
dc.description.abstractMetagenomics enables the study of unculturable microorganisms in their original environments. The discrimination of the composition of the metagenomes from diverse microbial communities is important and challenging. Usually, each microbial community is represented by its taxonomic composition. It is essential to accurately estimate the taxonomic composition of each microbial community. Therefore, we propose a series of computational methods that use different mechanisms to discriminate the differences between and within distinct microbial communities.
To discriminate the differences between distinct communities, we started with analyzing three well-known distance functions related to the strengths and limitations in the clustering of samples. The similar but distinguishable performance in clustering accuracy motivated us to incorporate suitable normalizations and phylogenetic information into the distance functions. The results indicate significant improvement in sample clustering over that derived by rank-based normalization with phylogenetic information, regardless of whether the samples are from real or synthetic microbiomes.
Inspired by the rank-based normalization, we further proposed MetaRank, which employs a series of statistical hypothesis tests and the relative species abundance to reduce the noise from sampling biases and arrive at a better taxonomic estimation. We also found that existing methods discard a considerable proportion of low similarity reads when performing the taxonomic assignment (binning) process. To overcome this limitation, we retrieved the discarded reads by using conserved gene adjacency mechanism. In addition, current binning tools do not incorporate data adjustment methods while assigning reads to their respective taxa and producing abundance profiles. Hence, we developed a single platform by integrating several binning methods coupled with data filters and normalization techniques for improving the taxonomic assignment. During the development of the platform, we observed that the binning method itself is decisive while producing the species abundance profiles. We thus proposed a novel method by integrating existing binning tools to obtain a better taxonomic estimation in metagenomic analysis.
In conclusion, this study explores the influence of some important factors on discriminating the differences between and within distinct microbial communities in metagenomic analysis. With the accumulation of data from sequencing technology, our study can provide a vivid understanding of more microbial communities. Thus, the analyses presented in this thesis reinforce our understanding of metagenomics in realizing the microbial communities.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:02:47Z (GMT). No. of bitstreams: 1
ntu-102-D95922033-1.pdf: 2749442 bytes, checksum: d856c630b525f781b368c7189bf8cca1 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌 謝 .................................................................................................................................................. ii 
摘要 .....................................................................................................................................................iii 
Abstract ............................................................................................................................................... v 
Contents ............................................................................................................................................ vii 
List of Figures .................................................................................................................................... xi 
List of Tables ................................................................................................................................... xiv 
Chapter 1 Introduction ...................................................................................................................... 1 
1.1 Introduction to Metagenomics .............................................................................................. 1 
1.2 Discriminating the Compositional Differences between Microbial Communities .............. 3 
1.3 Estimating the Taxonomic Composition within Microbial Community .............................. 6 
1.4 Summary of Results .............................................................................................................. 8 
1.4.1 Importance of Normalization and Phylogenetic Information in Clustering Analysis
........................................................................................................................................... 8 
1.4.2 Importance of Rank Conversion, Conserved Gene Adjacency, Integrated Platform,
and Existing Methods Combination in Binning Analysis ................................................. 9 
Chapter 2 Materials and Methods .................................................................................................. 12 
2.1 Methods for Discriminating the Differences between Communities ................................. 12 
2.1.1 The Euclidean, Manhattan and Pearson Distance Functions ................................ 13 
2.1.2 Different Normalizations ........................................................................................ 14 
2.1.3 Distance Calculation with Phylogenetic Information ............................................ 16 
2.2 Datasets for Discriminating the Differences between Communities .................................. 18 
2.2.1 The Source of Phylogenetic Information ............................................................... 18 
2.2.2 Real Dataset ............................................................................................................ 19
2.2.3 Synthetic Dataset .................................................................................................... 20 
2.3 Methods for Analyzing Taxonomic Compositions of Metagenomes ................................. 21 
2.3.1 MetaRank ............................................................................................................... 22 
2.3.1.1 Using Binomial Tests to Select Highly Abundant Members ..................... 22 
2.3.1.2 Using Multinomial Tests to Rank Highly Abundant Members ................. 24 
2.3.1.3 Measuring Variability between Samples Resulting from Sampling Biases
................................................................................................................................ 25 
2.3.2 Retrieval Discarded Metagenomic Reads Using Conserved Gene Adjacency ...... 26 
2.3.2.1 Taxonomic Assignment of Discarded Genomic Fragments ...................... 27 
2.3.2.2 Comparison of Binning Discarded Fragments in the Proposed Approach
and the Original Studies ......................................................................................... 28 
2.3.2.3 Accuracy Evaluation Using Simulated Datasets ........................................ 30 
2.3.3 The Integrated Platform - MetaABC ...................................................................... 32 
2.3.3.1 Removing Duplicates ................................................................................. 32 
2.3.3.2 Binning ....................................................................................................... 32 
2.3.3.2.1 MEGAN ......................................................................................... 33 
2.3.3.2.2 PhymmBL ...................................................................................... 33 
2.3.3.2.3 SOrt-ITEMS .................................................................................. 34 
2.3.3.2.4 DiScRIBinATE .............................................................................. 34 
2.3.3.3 Re-analyzing Unassigned Reads ................................................................ 34 
2.3.3.4 Correcting Community Composition ......................................................... 35 
2.3.3.5 Clustering ................................................................................................... 35 
2.4 Datasets for Analyzing Taxonomic Compositions of Metagenomes ................................. 36 
2.4.1 Real Datasets for Analyzing MetaRank ................................................................. 36 
2.4.2 Synthetic Datasets for Analyzing MetaRank ......................................................... 37 
2.4.3 Real Datasets for Retrieval Discarded Metagenomic Reads .................................. 39 
2.4.4 Collection of Discarded Genomic Fragments ........................................................ 40 
2.4.5 Synthetic Datasets for Retrieval Discarded Metagenomic Reads .......................... 41 
2.4.6 Database of MetaABC............................................................................................ 41 
2.4.7 Synthetic Datasets for Combining Binning Methods ............................................. 41 
2.4.8 Database of Combining Binning Methods ............................................................. 42
Chapter 3 Results and Discussion .................................................................................................. 43 
3.1 The Impact of Normalization and Phylogenetic Information on Estimating the Distance
for Metagenomes ...................................................................................................................... 44 
3.1.1 Comparison of Distance Functions on Clustering Metagenomic Samples ............ 44 
3.1.2 Rank Normalization Significantly Improves the Distance Estimation between
Samples ........................................................................................................................... 46 
3.1.3 Incorporating Phylogenetic Information into Distance Functions Yields More
Reasonable Distance Estimations .................................................................................... 51 
3.1.4 Results from the Synthetic Dataset are Consistent ................................................. 57 
3.1.5 Summary ................................................................................................................ 60 
3.2 The Impact of Rank Conversion, Conserved Gene Adjacency, Integrated Platform and
Existing Methods Combination in Binning Analysis ............................................................... 61 
3.2.1 MetaRank: a Rank Conversion Scheme for Comparative Analysis of Microbial
Community Compositions ............................................................................................... 61 
3.2.1.1 MetaRank Reduces the Variability Resulting from Sampling Biases ....... 62 
3.2.1.2 MetaRank Reveals the Central Tendencies and Helps to Measure the
Similarities of Metagenomes ................................................................................. 70 
3.2.1.3 Summary .................................................................................................... 76 
3.2.2 Reanalyze Unassigned Reads in Sanger Based Metagenomic Data Using
Conserved Gene Adjacency ............................................................................................ 77 
3.2.2.1 Binning Discarded Metagenomic Fragments ............................................. 78 
3.2.2.2 The Consistency of Binning with Discarded Fragments Compared to the
Strategies in Previous Studies ................................................................................ 79 
3.2.2.3 Summary .................................................................................................... 82 
3.2.3 Usage of MetaABC ................................................................................................ 83 
3.2.3.1 Input ........................................................................................................... 83 
3.2.3.2 Data Presentation and Visualization .......................................................... 84 
3.2.3.3 Statistical Analysis of Run Time ............................................................... 87 
3.2.3.4 Summary .................................................................................................... 90 
3.2.4 Results of Combining Binning Methods ................................................................ 91 
3.2.4.1 Comparison of Binning Accuracy of Each Method ................................... 91 
3.2.4.2 Binning Accuracy of Clade-level Exclusions for Each Method ................ 93
3.2.4.3 Comparison of Binning Accuracy of Combined Methods ......................... 98 
3.2.4.4 Binning Accuracy of PhymmBLxM ........................................................ 101 
3.2.4.5 Summary .................................................................................................. 103 
Chapter 4 Conclusions ................................................................................................................... 104 
4.1 Summary ........................................................................................................................... 104 
4.2 Future Works .................................................................................................................... 106 
Bibliography ................................................................................................................................... 108 
Appendix A. List of Publications .................................................................................................. 121 
dc.language.isoen
dc.subject多源基因體學zh_TW
dc.subject物種分配zh_TW
dc.subject保留鄰近基因zh_TW
dc.subject比序轉換zh_TW
dc.subject分群zh_TW
dc.subject距離方程式zh_TW
dc.subject演化資訊zh_TW
dc.subject正規化zh_TW
dc.subjectrank conversionen
dc.subjectMetagenomicsen
dc.subjectnormalizationen
dc.subjectphylogenetic informationen
dc.subjectclusteringen
dc.subjectconserved gene adjacencyen
dc.subjectbinningen
dc.subjectdistance functionen
dc.title以多源基因體計算法檢測微生物群落間與群落內之差異zh_TW
dc.titleDetermining the Differences between and within Microbial Communities: A Computational Metagenomic Studyen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.coadvisor蔡懷寬
dc.contributor.oralexamcommittee楊進木,郭志鴻,李文宗,劉仁沛
dc.subject.keyword多源基因體學,正規化,演化資訊,距離方程式,分群,比序轉換,保留鄰近基因,物種分配,zh_TW
dc.subject.keywordMetagenomics,normalization,phylogenetic information,distance function,clustering,rank conversion,conserved gene adjacency,binning,en
dc.relation.page121
dc.rights.note有償授權
dc.date.accepted2013-07-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.69 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved