Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62424
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳素雲,陳宏
dc.contributor.authorYou-Ren Chenen
dc.contributor.author陳宥任zh_TW
dc.date.accessioned2021-06-16T16:02:21Z-
dc.date.available2014-07-18
dc.date.copyright2013-07-18
dc.date.issued2013
dc.date.submitted2013-07-08
dc.identifier.citation[1] A. Azzalini and A. Capitanio. Statistical applications of the multivariate skew-normal distribution.
J. Roy. Statist. Soc. Series B., 1999.
[2] A. Banerjee, S. Merugu, I. S. Dhillon, S. Inderjit, and J. Ghosh. Clustering with Bregman divergences.
Journal of Machine Learning Research, 2005.
[3] L. M. Bregman. The relaxation method of finding the common points of convex sets and its application
to the solution of problems in convex programming. USSR Computational Mathematics
and Mathematical Physics., 1967.
[4] J. Davis, B. Kulis, S. Sra, and I. S. Dhillon. Information-theoretic metric learning. In Proc. 24th
International Conference on Machine Learning (ICML), 2007.
[5] I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using clustering.
Machine Learning, 2001.
[6] B. Kulis, M. A. Sustik, and I. S. Dhillon. Learning low-rank kernel matrices. In Proc. 23rd
International Conference on Machine Learning (ICML), 2006.
[7] B. Kulis, M. A. Sustik, and I. S. Dhillon. Low-rank kernel learning with Bregman matrix divergences.
Journal of Machine Learning Research, 2009.
[8] J. Sherman and W. J. Morrison. Adjustment of an inverse matrix corresponding to changes in
the elements of a given column or a given row of the original matrix. Annals of Mathematical
Statistics, 1949.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62424-
dc.description.abstractIf a crowd of data (interior data) is encompassed by another set of data (exterior data) and we are
to find a closed surface centralized at the mean of interior data to wrap and separate it from exterior
data, the first candidate for the closed surface may be an ellipse. Kulis et al. (2006) applies Bregman
(1976), named Bregman's modification, trying to find a suitable ellipse to separate this kind of data.
To be more specific, the crowd of data (interior data) can be properly described by its mean and covariance
matrix, while the other set of data (exterior data) can be thought of as an unknown number
of crowds of data (e.g., a mixed multivariate skew normal). However, from the conventional PCA,
ellipses (i.e. semi positive definite matrices) exhibit rigid structures, that is, symmetry and orthogonality.
These two properties are too restrictive for the following situations, assuming that interior data
is like a unit ball (A) and exterior data is like two unit balls (B, C). First, B is 4 units far from A on the
left while C is 40 units far from A on the right. The best cuts should be 2 units far from A on the left
and 20 units far from A on the right. Unfortunately, an ellipse centralized at the center of A can only
have cuts equally far from the left and right of A. Second, B is 4 units far from A on the left while B
is 8 units far from A on the top right. Since an ellipse has orthogonal long and short axes while AB
and AC are not orthogonal, this makes ellipses unsuitable separators. Therefore, we offer a method-
Nonorthognal Ray Decomposition (NRD)- to improve this situation.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T16:02:21Z (GMT). No. of bitstreams: 1
ntu-102-R99221013-1.pdf: 2996723 bytes, checksum: c1681a6cf061306ea000cbb5d0d28cba (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsAcknowledgements i
Abstract (in Chinese) ii
Abstract (in English) iii
Contents iv
List of Figures v
1 Introduction 1
1.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Preliminary 3
2.1 Two Geometric Interpretation For PCA . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Bregman's Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Spherical k-means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Nonorthogonal Ray Decomposition 12
3.1 An extension from QDA: one vs the rest . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Observation (Bregman's Modification) . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Nonorthogonal Ray Decompositon (NRD) . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Evaluation of NRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Bregman's modification with slack variables . . . . . . . . . . . . . . . . . . . . . . 19
4 Pendigits 27
5 Conclusion 36
References 37
dc.language.isoen
dc.subject對稱zh_TW
dc.subject垂直zh_TW
dc.subject橢圓zh_TW
dc.subject非垂直射線分解zh_TW
dc.subject布雷格曼zh_TW
dc.subject外部資料zh_TW
dc.subject內部資料zh_TW
dc.subjectInterior dataen
dc.subjectExterior dataen
dc.subjectEllipseen
dc.subjectSymmetryen
dc.subjectOrthogonalityen
dc.subjectNonorthogonal Ray Decompositionen
dc.title"用局部橢圓來分類資料, 基於布雷格曼矩陣分歧"zh_TW
dc.titlePiecewise elliptical classification based on Bregman matrix
divergence
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳鵬文,鮑興國
dc.subject.keyword內部資料,外部資料,布雷格曼,橢圓,對稱,垂直,非垂直射線分解,zh_TW
dc.subject.keywordInterior data,Exterior data,Ellipse,Symmetry,Orthogonality,Nonorthogonal Ray Decomposition,en
dc.relation.page37
dc.rights.note有償授權
dc.date.accepted2013-07-08
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved