請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62397完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑(Yi-You Huang) | |
| dc.contributor.author | Chen-Han Tseng | en |
| dc.contributor.author | 曾琛涵 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:45:59Z | - |
| dc.date.available | 2015-07-26 | |
| dc.date.copyright | 2013-07-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-08 | |
| dc.identifier.citation | 1.Patricl CW, Jr. Tissue engineering strategies for adipose tissue repair. Anat Rec 2001; 263(4):361-366.
2.Edited by Rexford S. Ahima. Metabolic Basis of Obesity 2011. Chapter 3. Adipose Tissue Development, Structure and Function. 3.Anthony L. Mescher. Junqueira's Basic Histology: Text & Atlas, 12e. Chapter 6. Adipose tissue. 4.Lauren Flynn, Kimberly A. Woodhouse. Adipose tissue engineering with cells in engineered matrices. Organogenesis 2008; 4(4):228-235. 5.Asun Monfort, Ander Izeta. Strategies for human adipose tissue repair and regeneration. Journal of cosmetics, dermatological sciences and applications 2012; 2: 93-107. 6.Langer R, Vacanti JP. Tissue engineering. Science 1993; 260(5110): 920-926. 7.Avram MM. Avram AS, Jamews WD. Subcutaneous fat in normal and diseased states. J Am Acad Dermatol 2007; 56(3): 472-492. 8.Ntambi JM, Young-Cheul K. Adipocyte differentiation and gene expression. J Nutr 2000; 130(12): 3122S-3126S. 9.Kang JH, Gimble JM, Kaplan DL. In vitro 3D model for human vascularized adipose tissue. Tissue Eng Part A 2009; 15(8): 2227-2236. 10.Green, H. & Kehinde, O. Sublines of mouse 3T3 cells that accumulate lipid. Cell 1974, 113-116. 11.Green H KO. Formation of normally differentiated subcutaneous fat pads by an established preadipose cell line. J Cell Physio1979; 1101: 169-171. 12.Liu Hong, Ioana Peptan, Paul Clark, Jeremy J. Mao. Ex vivo adipose tissue engineering by human marrow stromal cell seeded gelatin sponge. Annals of biomedical engineering 2005; 33(4): 511-517. 13.Lauren Flynn, Glenn D. Prestwich, John L. Semple, Kimberly A. Woodhouse. Adipose tissue engineering with naturally derived scaffolds and adipose-derived stem cells. Biomaterials 2007; 28: 3834–3842. 14.Wakako Tsuji, Takashi Inamoto, Hiroyasu Yamashiro, Takayuki Ueno, Hironori Kato, Yu Kimura, Yasuhiko Tabata, and Masakazu Toi. Adipogenesis induced by human adipose tissue–derived stem cells. Tissue Eng Part A 2009; 15(1): 83-93. 15.Elizabeth D. Hay. Cell Biology of Extracellular Matrix, 2e. Chapter 1- Chapter 4. 16.Edward C. Klatt, MD. Robbins and cotran review of pathology, 2e. Chapter 4. Tissue repair: Cellular growth, fibrosis, and wound healing. 17.Edited by Rosario Pignatello. Advances in Biomaterials Science and Biomedical Applications, 2013. Chapter 4. Overview on Biocompatibilities of Implantable Biomaterials. 18.Ji Suk Choi, Hyun-Jin Yang, Beob Soo Kim, Jae Dong Kim, Jun Young Kim, Bongyoung Yoo, Kinam Park, Hee Young Lee, and Yong Woo Cho. Human extracellular matrix (ECM) powders for injectable cell delivery and adipose tissue engineering. Journal of controlled release 2009; 139: 2–7. 19.Cassandra Sobajo, Farhad Behzad, Xue-Feng Yuan, and Ardeshir Bayat. Silk: A potential medium for tissue engineering. Journal of plastic surgery 2008; 8: 438-446. 20.Yang Cao, Bochu Wang. Biodegradation of Silk Biomaterials. Int. J. Mol. Sci 2009; 10: 1514-1524. 21.Ji Heui Kim, Chan Hum Park, Ok-Joo Lee, Jung-Min Lee, Jong Wook Kim, Young Hwan Park, and Chang Seok Ki. Preparation and in vivo degradation of controlled biodegradability of electrospun silk fibroin nanofiber mats. J Biomed Mater Res Part A 2012; 100A: 3287–3295. 22.Hyun CK, Kim IY, Frost SC. Soluble fibroin enhances insulin sensitivity and glucose metabolism in 3T3-L1 adipocyte. J Nutr 2004; 134(12): 3257-3263. 23.Huang G, Li G, Chen H, He Y, Yao Q, Chen K. Proteomic analysis of 3T3-L1 preadipocytes having a higher cell proliferation rate after treatment with low-molecular-weight silk fibroin peptides. Cell Prolif 2010; 43(5):515-527. 24.Andrew M. Altman, Yasheng Yan, Nadine Matthias, Xiaowen Bai, Carmen Rios, Anshu B. Mathur, Yao-Hua Song, and Eckhard U. Alt. IFATS Collection: Human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model. Stem Cells 2009; 27: 250–258. 25.Joshua R Mauney, Trang Nguyen, Kelly Gillen, Carl Kirker-Head, Jeffrey M. Gimble, and David L. Kaplan. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds. Biomaterials 2007; 28(35): 5280–5290. 26.Ji Suk Choi, Hyun-Jin Yang, Beob Soo Kim, Jae Dong Kim, Sang Hoon Lee, Eun Kyu Lee, Kinam Park, Yong Woo Cho, and Hee Young Lee. Fabrication of porous extracellular matrix scaffolds from human adipose tissue. Tissue Eng Part C 2010; 16(3). 27.Beob Soo Kim, Ji Suk Choi, Jae Dong Kim, Young Chan Choi, Yong Woo Cho. Recellularization of decellularized human adipose-tissue-derived extracellular matrix sheets with other human cell types. Cell Tissue Res 2012; 348: 559–567. 28.Christopher J. Poon , Maria V. Pereira E. Cotta, Shiba Sinha, Jason A. Palmer, Alan A. Woods, Wayne A. Morrison, Keren M. Abberton. Preparation of an adipogenic hydrogel from subcutaneous adipose tissue. Acta Biomaterialia 2012. 29.Ji Suk Choi, Beob Soo Kim, Young Chan Choi, Hyun-Jin Yang, Kinam Park, Hee Young Lee, Yong Woo Cho. Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering. Wiley Periodicals, Inc 2011. 30.Young Chan Choi, Ji Suk Choi, Beob Soo Kim, Jae Dong Kim, Hwa In Yoon, and Yong Woo Cho. Decellularized extracellular matrix derived from porcine adipose tissue as a xenogeneic biomaterial for tissue engineering. Tissue Eng Part C 2012; 18(11). 31.Allison E.B. Turner, Claire Yu, Juares Bianco, John F. Watkins, Lauren E. Flynn. The performance of decellularized adipose tissue microcarriers as an inductive substrate for human adipose-derived stem cells. Biomaterials 2012; 33: 4490-4499. 32.D. Adam Young, Dina O. Ibrahim, Diane Hu, Karen L. Christman. Injectable hydrogel scaffold from decellularized human lipoaspirate. Acta Biomaterialia 2011; 7: 1040-1049. 33.Michael P. Francis, Patrick C. Sachs, Parthasarathy A. Madurantakam, Scott A. Sell, Lynne W. Elmore, Gary L. Bowlin, Shawn E. Holt. Electrospinning adipose tissue-derived extracellular matrix for adipose stem cell culture. J Biomed Mater Res Part A 2012; 100A: 1716-1724. 34.Min-Chul Cho, Kyoung Lee, Sang-Gi Paik, and Do-Young Yoon. Peroxisome proliferators-activated receptor (PPAR) modulators and metabolic disorders. PPAR Research 2008. 35.Neuber. Fettransplantation. Verk. Dtsch. Ges. Chir 1893; p. 66 36.L. A. Peer. The neglected free fat graft. Plastic & Reconstructive Surgery 1956; 18(4): 233-250. 37.Kotaro Yoshimura, Katsujiro Sato, Noriyuki Aoi, Masakazu Kurita, Toshitsugu Hirohi, and Kiyonori Harii. Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesth Plast Surg 2008; 32: 48–55. 38.Susumu Takayanagi. Augmentation mammaplasty using implants: A review. Arch Plast Surg 2012; 39:448-451. 39.C.J. Schatz, D.T. Ginat. Imaging of cosmetic facial implants and grafts. American Society of Neuroradiology 2012. 40.D A Young, K L Christman. Injectable biomaterials for adipose tissue engineering. Biomed. Mater 2012. 41.Tan H, Li H, Rubin J P, Marra K G. Controlled gelation and degradation rates of injectable hyaluronic acid-based hydrogels through a double crosslinking strategy. J. Tissue Eng Regen Med. 2011; 5(10): 790–797. 42.Chung H J, Jung J S, Park T G. Fabrication of adipose-derived mesenchymal stem cell aggregates using biodegradable porous microspheres for injectable adipose tissue regeneration. J. Biomater. Sci. Polym. Ed. 2011; 22: 107–122. 43.Alexander T. Hillel, Shimon Unterman, Zayna Nahas, Branden Reid, Jeannine M. Coburn, Joyce Axelman, Jemin J. Chae, Qiongyu Guo, Robert Trow, Andrew Thomas, Zhipeng Hou, Serge Lichtsteiner, Damon Sutton, Christine Matheson, Patricia Walker, Nathaniel David, Susumu Mori, Janis M. Taube and Jennifer H. Elisseeff. Photoactivated composite biomaterial for soft tissue restoration in rodents and in humans. Sci Transl Med. 2011; 3(93): 93ra67. 44.Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials 2011; 32: 3233-3243. 45.L.E. Flynn. The use of decellularized adipose tissue to provide an inductive microenvironment for the adipogenic differentiation of human adipose-derived stem cells. Biomaterials 2010; 31:4715-4724. 46.Iwen Wu, Zayna Nahas, Kelly A. Kimmerling, Gedge D. Rosson, Jennifer H. Elisseeff. An Injectable Adipose Matrix for Soft-Tissue Reconstruction. Plastic and reconstructive surgery 2012. 47.Olde Damink, L. H. H., Dijkstra, P. J., Luyn, M. J. A. van., Wachem, P. B. van., Nieuwenhuis, P., Feijen, J.. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide. Biomaterials 1996; 17: 765-773. 48.van Wezel, A.L. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature 1967; 216(64). 49.Eldardiri, M., Martin, Y., Sharpe, J. The use of microcarriers for culture and delivery of autologous keratinocytes for cutaneous repair. Eur Cell Mater 2010; 20(40). 50.Yu Suk Choi, Si-Nae Park, Hwal Suh. The effect of PLGA sphere diameter on rabbit mesenchymal stem cells in adipose tissue engineering. J Mater Sci: Mater Med 2008; 19: 2165–2171. 51.Breslauer DN, Muller SJ, Lee LP. Generation of monodisperse silk microspheres prepared with microfluidics. Biomacromolecules 2010; 11(3): 643-647. 52.G. Kesava Reddy, Chukuka S. Enwemeka. A simplified method for the analysis of in biological tissues. Clinical Biochemistry 1996; 29(3): 225-229. 53.Brian O. Enobakhare, Dan L. Bader, David A. Lee. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Analytical Biochemistry 1996; 243: 189–191. 54.劉秉勳,丁詩同。豬脂肪前身細胞與脂肪細胞的初代培養。脂肪細胞學研究技術專輯 2003;32-38。 55.Huina Zhang, Chia-Ying Lin, Scott J. Hollister. The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Biomaterials 2009; 30:4063-4069. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62397 | - |
| dc.description.abstract | 先天畸形、外傷及腫瘤移除等各種原因常會造成軟組織缺陷,進而影響病患的心理及人際關係,故整形重建外科一直都受到高度重視;而由於醫學的進步,人們對醫療品質的要求及形體外觀的重視也日益提高,故醫學美容的需求也隨之增加。然而,脂肪組織工程現今面臨的問題為無法持久維持移植後的脂肪體積,因此發展同時具有功能性及美學感的軟組織填充物極為重要。
在本篇論文中,我們利用去細胞化脂肪基質與蠶絲蛋白混合作為支架複合材料,並透過EDC交聯的方式減緩脂肪基質成分的流失速率。將脂肪基質中大部分的細胞及脂質去除後,約有80 %的collagen及30 %的GAGs能被保留,且殘留的活性成分也已被證實能誘導細胞分化,而經水解後的蠶絲蛋白亦有促使細胞增生的能力;另外,這兩種材料都具有高生物相容性,且混合後可增加整體的機械性質。 在in vitro實驗中,我們可以觀察到3T3-L1和脂肪幹細胞都順利地貼附於混合支架上,且於培養幾天後GAGs分泌量皆可增加30 %~ 45 %,與純蠶絲所製備的支架間存有顯著差異。而在in vivo實驗中,我們發現相較於純蠶絲製備的微球體,脂肪基質/蠶絲蛋白微球體更能有效地促使脂肪細胞增生及分化,顯示用脂肪基質和蠶絲蛋白做成的複合支架應用於皮膚填充及軟組織再生具有其發展潛力存在。 | zh_TW |
| dc.description.abstract | The soft tissue defects caused by congenital malformation, trauma, tumor removal and other various reasons affect the patient's psychology and interpersonal relationship, so it has been gaining popularity for Plastic and Reconstructive Surgery. Due to advances in medicine, the emphasis on the requirements of the quality of medical care and physical appearance is increasing, and it also increases the demand for medical cosmetic. However, current challenge of adipose tissue engineering failed to maintain volume of adipose after transplantation, so it is important to find the soft fillers that have both functionality and aesthetics.
In the study, we used decellularized porcine adipose matrix and silk fibroin as composite materials for scaffolds. The loss of the ECM content mixed in the scaffolds was slowed down by cross-linking. Eighty percentage collagen and thirty percentage GAG contents were retained after removing most cells and lipids from porcine adipose tissue. These bioactive contents have been proved to induce cell differentiation, and hydrolyzed silk fibroin also has the ability to promote cell proliferation. In addition, both of these materials have high biocompatibility, and they can increase the overall mechanical properties after blending. In vitro experiments, we observed that 3T3-L1 and adipose stem cells attached to the composite scaffolds successfully, and their GAG content increased 30 % to 45 % after culture several days, and there was remarkable difference between the composite scaffolds and the silk fibroin scaffolds. In vivo experiments, we observed that adipose matrix-silk fibroin composite microspheres were more effective to promote adipose stem cells proliferation and differentiation than silk fibroin microspheres. There are great potentials for the application of these hybrid materials in dermal fillers and soft tissue regeneration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:45:59Z (GMT). No. of bitstreams: 1 ntu-102-R00548030-1.pdf: 5204212 bytes, checksum: 34e2ff3676441540c3d2c6263e7e87dc (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝…………………………………………………………………………………Ⅰ
摘要…………………………………………………………………………………Ⅱ Abstract………………………………………………………………………………Ⅲ 目錄…………………………………………………………………………………Ⅴ 圖目錄………………………………………………………………………………Ⅷ 表目錄………………………………………………………………………………Ⅹ 第一章 緒論…………………………………………………………………………1 1.1 皺紋、軟組織缺陷與脂肪組織………………………………………………1 1.2 脂肪組織工程…………………………………………………………………3 1.2.1 細胞…………………………………………………………………3 1.2.1.1 3T3-L1…………………………………………………………4 1.2.1.2 初代細胞(Primary cell)…………………………………………5 1.2.2支架……………………………………………………………………5 1.2.2.1 蠶絲蛋白支架…………………………………………………7 1.2.2.2 脂肪基質支架…………………………………………………8 1.2.3 生長因子……………………………………………………………… 10 1.3 研究發展及臨床應用………………………………………………………10 1.3.1 自體脂肪移植………………………………………………………… 11 1.3.2 材料的填充…………………………………………………………… 12 1.4 去細胞化……………………………………………………………………13 1.5 生物組織的交聯……………………………………………………………14 1.6 微載體粒子…………………………………………………………………15 1.7 乳化法………………………………………………………………………17 第二章 研究動機與目的……………………………………………………………18 第三章 實驗材料與方法 …………………………………………………………… 20 3.1 實驗藥品……………………………………………………………………20 3.2 實驗儀器……………………………………………………………………23 3.3 從豬的脂肪組織萃取細胞外基質…………………………………………24 3.4 評估脂肪基質去細胞化及去脂質化的程度………………………………24 3.5 溶解已去細胞的脂肪組織…………………………………………………25 3.6 DNA含量測定………………………………………………………………25 3.7 膠原蛋白含量測定…………………………………………………………27 3.8 GAG含量測定………………………………………………………………28 3.9 交聯脂肪基質………………………………………………………………29 3.10 蠶絲蛋白水溶液製備………………………………………………………29 3.11 脂肪幹細胞(ASC)初代培養 ………………………………………………30 3.12 細胞於脂肪基質/蠶絲蛋白薄膜上之貼附率評估 ………………………33 3.13 製備脂肪基質/蠶絲蛋白Sponge …………………………………………34 3.14 Sponge表層孔洞大小分析………………………………………………34 3.15細胞於Sponge上之GAG分泌量評估……………………………………34 3.16 Sponge降解程度測試……………………………………………………35 3.17 製備EDC-脂肪基質/蠶絲蛋白微球體 ……………………………………35 3.18 細胞活性測試………………………………………………………………36 3.19 掃描式電子顯微鏡觀察細胞於脂肪基質/蠶絲蛋白混和材料之貼附 ……37 3.20 利用DAPI螢光染色觀察細胞於微球體之貼附…………………………38 3.21 細胞於二維及三維脂肪基質/蠶絲蛋白支架上之貼附率評估 …………38 3.22 細胞於二維及三維脂肪基質/蠶絲蛋白支架上之增生率評估 …………38 3.23 細胞於微球體上之GAG分泌量評估……………………………………39 3.24 動物實驗……………………………………………………………………40 3.25 統計分析……………………………………………………………………42 第四章 研究結果與討論…………………………………………………………… 43 4.1 萃取豬的脂肪基質………………………………………………………… 43 4.2 脂肪基質的生物活性成分分析……………………………………………46 4.3 脂肪幹細胞在脂肪基質/蠶絲蛋白薄膜上的貼附率比較 ……………… 48 4.4 脂肪基質/蠶絲蛋白Sponge表層分析…………………………………… 49 4.5 3T3-L1培養於Sponge上之觀察…………………………………………51 4.6 3T3-L1培養於Sponge上之GAGs分泌量評估……………………………52 4.7 Sponge降解程度分析………………………………………………………53 4.8 脂肪基質/蠶絲蛋白微球體 ………………………………………………55 4.9 微球體之生物相容性測試…………………………………………………58 4.10 脂肪幹細胞培養於EDC-脂肪基質/蠶絲蛋白微球體上之觀察……………59 4.11 脂肪幹細胞於脂肪基質/蠶絲蛋白支架上之貼附及增生能力評估……60 4.12 脂肪幹細胞培養於EDC-脂肪基質/蠶絲蛋白微球體上之GAGs分泌量評估 …………………………………62 4.13 動物實驗……………………………………………………………………63 第五章 結論…………………………………………………………………………67 參考文獻……………………………………………………………………………68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微球體 | zh_TW |
| dc.subject | 軟組織缺陷 | zh_TW |
| dc.subject | 蠶絲蛋白 | zh_TW |
| dc.subject | 脂肪基質 | zh_TW |
| dc.subject | 去細胞化 | zh_TW |
| dc.subject | 脂肪組織工程 | zh_TW |
| dc.subject | microsphere | en |
| dc.subject | adipose tissue engineering | en |
| dc.subject | decellularization | en |
| dc.subject | adipose matrix | en |
| dc.subject | silk fibroin | en |
| dc.subject | soft tissue defect | en |
| dc.title | 去細胞化脂肪組織/蠶絲蛋白基質及微球體於脂肪組織工程上的應用 | zh_TW |
| dc.title | Application of Decellularized Adipose Tissue/Silk Fibroin Matrix and Microspheres in Adipose Tissue Engineering | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃意真(Yi-Cheng Huang),許馨云(Hsin-Yun Hsu),江鴻生(Hong-Sen Chiang) | |
| dc.subject.keyword | 軟組織缺陷,脂肪組織工程,去細胞化,脂肪基質,蠶絲蛋白,微球體, | zh_TW |
| dc.subject.keyword | soft tissue defect,adipose tissue engineering,decellularization,adipose matrix,silk fibroin,microsphere, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 5.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
