Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62370
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor果伽蘭(Dr. Chia-lam Kuo)
dc.contributor.authorTzu-Chin Huangen
dc.contributor.author黃子芩zh_TW
dc.date.accessioned2021-06-16T13:44:11Z-
dc.date.available2014-07-19
dc.date.copyright2013-07-19
dc.date.issued2013
dc.date.submitted2013-07-10
dc.identifier.citation1. 'Grasso, P.; Gangolli, S.; Gaunt, Ian ,'Our immune system is therefore crucial to our survival. It is currently divided into two categories which are innate (non-specific) immunity and acquired (specific) immunity. Essentials of Pathology for Toxicologists. (2002 Paperback)
2. Alberts, Bruce; Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walters , Molecular Biology of the Cell; Fourth Edition. (2002).
3. Janeway, Charles; Paul Travers, Mark Walport, and Mark Shlomchik Immunobiology; (2001). Fifth Edition.
4. Charles A. Janeway, Paul Travers, Mark Walport, Mark Shlomchik Immunobiology: The Immune System in Health & Disease (2005). Sixth Edition
5. Delves, Peter J. and Roitt, Ivan The immune system: first of two parts. New England journal of medicine (2000)
6. Allman, David; Srivastava, Bhaskar; Lindsley, R. Coleman., 'Alternative routes to maturity: Branch points and pathways for generating follicular and marginal zone B cells'. Immunological Reviews (2004)197: 147–60.
7. Zia Chaudhuri ,Postgraduate Ophthalmology. 2012 first Edition
8. E Hodges, M T Krishna, C Pickard, J L Smith J. ,Diagnostic role of tests for T cell receptor (TCR) genes. Clin Pathol 2003;56:1-11
9. Janeway CA Jr, Travers P, Walport M, et al., T-cell receptor gene rearrangement.. Immunobiology: The Immune System in Health and Disease. New York: Garland Science; 2001. 5th edition
10. Erastus C. Dudley, Howard T. Petrie, Leena M. Shah, Michael J. Owen, Adrian C. Hayday., T cell receptor β chain gene rearrangement and selection during thymocyte development in adult mice. Immunity, Vol. 1, 83-93, May, 1994, Copyright 1994 by Cell Press
11. Ferenc Livak, Michelle Tourigny, David G. Schatz and Howard T. Petrie J., Characterization of TCR Gene Rearrangements During Adult Murine T Cell Development.; Immunol 1999; 162:2575-2580
12. Kathleen Terrence, Christian P. Pavlovich, Errin O. Matechak, and B.J. Fowlkes., Premature Expression of T Cell Receptor (Tcr)αβ Suppresses Tcrγδ Gene Rearrangement but Permits Development of γδ Lineage T Cells JEM, 2000 vol. 192 no. 4 537-548
13. Anna Q. Caia, Kerry A. Landmana,, Barry D. Hughesa, Colleen M. Wittb., T cell development in the thymus: From periodic seeding to constant output. Journal of Theoretical Biology 249 (2007) 384–394
14. Ronald N. Germain., T-cell development and the CD4–CD8 lineage decision. Nature Reviews Immunology. (May 2002) 309-322
15. Swain, S. L., T-cell subsets and the recognition of MHC class. Immunol. Rev. (1983). 74, 129–142
16. Robey, E. & Fowlkes, B. J., Selective events in T-cell development. Annu. Rev. Immunol. (1994). 12, 675–705
17. Mehr, R., Globerson, A., Perelson, A.S., Modeling positive and negative selection and differentiation processes in the thymus. Journal of Theoretical Biology.1995. 175, 103–126
18. Wilfried Ellmeier Shinichiro Sawada Dan R. Littman., THE REGULATION OF CD4 AND CD8 CORECEPTOR GENE EXPRESSION DURING CELL DEVELOPMENT. Annu. Rev. Immunol. 1999. 17:523–54
19. Timothy K. Starr, Stephen C. Jameson,and Kristin A. Hogquist., POSITIVE AND NEGATIVE SELECTION OF T CELLS. Annu. Rev. Immunol. 2003. 21:139–76
20. T Sarah Bevington and Joan Boyes., Transcription-coupled eviction of histones H2A/H2B governs V(D)J recombination. The EMBO Journal (2013) 32(10): 1381–1392
21. van Gent DC, Hiom K, Paull TT, Gellert M., Stimulation of V(D)J cleavage by high mobility group proteins. EMBO J.1997 16:2665–70
22. Sawchuk DJ, Weis-Garcia F, Malik S, Besmer E, Bustin M, Nussenzweig MC,Cortes P., V(D)J recombination: modulation of RAG1 and RAG2 cleavage activity on 12/23 substrates by whole cell extract and DNA bending proteins. J. Exp. Med.1997. 185:2025–32
23. J. Fraser McBlane,*f Dik C. van Gent,*1Dale A. Ramsden, l Charles Romeo,*Christina A. Cuomo,*5 Martin Gellert,*and Marjorie A. Oettinger* .,Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell, November 3, 1995, Vol. 83, 387-395
24. Dudley DD, Chaudhuri J, Bassing CH, Alt FW., Mechanism and Control of V(D)J Recombination versus Class Switch Recombination: Similarities and Differences. Immunol. 2005 ;86:43-112
25. F.W. Alt, E.M. Oltz, F. Young, J. Gorman, G. Taccioli, J. Chen., VDJ recombination. Immunol. (1992) Aug;13(8):306-14
26. Lewis, S.M., The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 1994. 56, 27-150
27. Sebastian D. Fugmann1, Alfred Ian Lee,Penny E. Shockett, Isabelle J. Villey, and David G. Schatz., THE RAG PROTEINS AND V(D)J RECOMBINATION: Complexes, Ends, and Transposition. Annu. Rev. Immunol. 2000 18:495-527
28. Moshe J. Sadofsky*., The RAG proteins in V(D)J recombination: more than just a nuclease. Nucl. Acids Res. (2001) Apr 1;29(7):1399-409
29. Yancopoulos, G. D. & Alt, F. W., This classic study provided the first evidence for, and proposed, the accessibility model for the control of V(D)J recombination. Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell (1985). 40, 271–281
30. David G. Schatz1 & Yanhong Ji2., Recombination centres and the orchestration of V(D)J recombination. Nature Reviews Immunology (April 2011) 11, 251-263
31. Lewis, S. M., The mechanism of V(D)J joining: lessons from molecular, immunological, and comparative analyses. Adv. Immunol. (1994) 56, 27–150.
32. Cobb, R. M., Oestreich, K. J., Osipovich, O. A. & Oltz, E. M., Accessibility control of V(D)J recombination. Adv. Immunol. (2006). 91, 45–109
33. Hesslein, D. G. & Schatz, D. G., Factors and forces controlling V(D)J recombination. Adv. Immunol. (2001) 78, 169–232.
34. Krangel, M. S., T cell development: better living through chromatin. Nature Immunol. (2007). 8, 687–694
35. Grundy, G. J., Yang, W. & Gellert, M., Autoinhibition of DNA cleavage mediated by RAG1 and RAG2 is overcome by an epigenetic signal in V(D)J recombination. Proc. Natl Acad. Sci. USA (2010). 107, 22487–22492
36. Shimazaki, N., Tsai, A. G. & Lieber, M. R. Mol., H3K4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations. Cell (2009). 34, 535–544
37. Liu, Y., Subrahmanyam, R., Chakraborty, T., Sen, R. & Desiderio, S., A plant homeodomain in RAG-2 that binds hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity (2007). 27, 561–571
38. Matthews, A. G. et al., RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature (2007). 450, 1106–1110
39. Bienz, Mariann. 'The PHD finger, a nuclear protein-interaction domain.' Trends in biochemical sciences (2006) 31.1: 35-40.
40. Thorsten Halbach, Nico Scheer, and Wolfgang Werr., Transcriptional activation by the PHD finger is inhibited through an adjacent leucine zipper that binds 14-3-3 proteins. Nucleic Acids Resv; 2000 Sep 15;28(18):3542-50
41. Noriko Shimazaki, Albert G. Tsai, and Michael R. Lieber., H3K4me3 Stimulates the V(D)J RAG Complex for Both Nicking and Hairpinning in Trans in Addition to Tethering in Cis: Implications for Translocations. Mol Cell. 2009 June 12; 34(5): 535–544.
42. Matthews AG, Kuo AJ, Ramon-Maiques S, Han S, Champagne KS, Ivanov D, Gallardo M, Carney D, Cheung P, Ciccone DN, Walter KL, Utz PJ, Shi Y, Kutateladze TG, Yang W, Gozani O, Oettinger MA., RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature. 2007 Dec 13; 450(7172):1106-10.
43. David G. Schatz & Yanhong Ji., Recombination centres and the orchestration of V(D)J recombination. Nature Reviews Immunology 11, 251-263 (April 2011)
44. Jung D, Giallourakis C, Mostoslavsky R, Alt FW., Review Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol. 2006; 24:541-70.
45. Yasutoshi Agata, Tomoya Katakai,Sang-Kyu Ye, Manabu Sugai, Hiroyuki Gonda, Tasuku Honjo, Koichi Ikuta, and Akira Shimizu., Histone Acetylation Determines the Developmentally Regulated Accessibility for T Cell Receptor γ Gene Recombination. JEM 2001 Apr 2;193(7):873-80
46. Michelle Taylor McMurry, Michael S. Krangel*., A Role for Histone Acetylation in the Developmental Regulation of V(D)J Recombination. Science 21 January 2000 Vol. 287 no. 5452 pp. 495-498
47. Michael S Krangel., Gene segment selection in V(D)J recombination: accessibility and beyond. Nature Immunology 4, 624 - 630 (2003)
48. Yina Zhu,1 Dominic van Essen,1,* and Simona Saccani1,*., Cell-Type-Specific Control of Enhancer Activity by H3K9 Trimethylation. Mol Cell. 2012 May 25;46(4):408-23
49. P De, K.K. Rodgers., Putting the pieces together: identification and characterization of structural domains in the V(D)J recombination protein RAG1. Immunol. Rev. 2004 Aug;200:70-82
50. P.C. Swanson., The bounty of RAGs: recombination signal complexes and reaction outcomes. Immunol. Rev., 2004 Aug; 200:90-114.
51. Y. Liu, R. Subrahmanyam, T. Chakraborty, R. Sen, S. Desiderio., A plant homeodomain in RAG-2 that binds Hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity, 2007 Oct;27(4):561-71. Epub 2007 Oct 11
52. A.G. Matthews, A.J. Kuo, S. Ramon-Maiques, S. Han, K.S. Champagne, D. Ivanov, M. Gallardo, D. Carney, P. Cheung, D.N. Ciccone et al., RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature, 2007 Dec 13;450(7172):1106-10. Epub 2007 Nov 21.
53. Yanhong Ji1, Wolfgang Resch2, Elizabeth Corbett1,3, Arito Yamane2, Rafael Casellas2,3,*and David G. Schatz1,4,*The In Vivo Pattern of Binding of RAG1 and RAG2 to Antigen Receptor Loci. Cell.2010 April 30; 141(3): 419–431
54. Artem Barski,1,3 Suresh Cuddapah,1,3 Kairong Cui,1,3 Tae-Young Roh,1,3 Dustin E. Schones,1,3 Zhibin Wang,1,3Gang Wei,1,3 Iouri Chepelev,2 and Keji Zhao1,*., High-Resolution Profiling of Histone Methylations in the Human Genome. cell.2007(129),823-837
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62370-
dc.description.abstract在T細胞表現T細胞接受器alpha/beta以及gamma/delta基因時,必須進行具有基因傳承,發展和位置特定性的V(D)J重組,而成熟的alpha/beta T細胞必須在細胞表面表現功能性的alpha/beta T細胞接受器,在整個T細胞發育的過程當中,前趨物經由骨髓進入胸腺,其依序尚未成熟的CD4-CD8-皆未表現T細胞(CD4-CD8- double negative, DN細胞)發展成CD4+CD8+皆表現的T細胞(CD4-CD8- double positive, DP細胞),最後進入單一表現CD4+或CD8+的成熟T細胞(CD4- or CD8- single positive, SP細胞)。
V(D)J重組機制中涉及recombination activating gene products: RAG1 and RAG2重組蛋白酶的參與,其認知位於V基因、D基因和J基因片段的兩側當中具有7個和9個核苷酸保守序列的重組信號序列(recombination signal sequence, RSS ) 基因位置,除此之外,組蛋白修飾和參與T細胞發育過程中的因子,如何參與不同階段的V(D)J重組初始作用以及調控其是否進行轉錄,目前尚未有完整清楚的分子調控機制,特別是在老鼠模型中,V(D)J重組是如何進行並受調控是值得探討的方向。
而我們的研究目標主要針對C57BL/6老鼠體內的胸腺組織,進行整個T細胞接受器在V alpha 到J alpha基因序列重組過程中,組蛋白修飾作用、RAG1/2重組蛋白酶結合情形以及分子調控的相關因子研究,將T細胞分出DN及DP細胞,利用染色質免疫沉澱及定量PCR檢測不同時期T細胞進行的 V(D)J重組,驗證組蛋白修飾,包括組蛋白H3及H4乙烯化、H3K4及H3K9的不同甲基化程度及RAG1及RAG2重組蛋白酶在T細胞接受器alpha和delta基因位置中,如何調控其進行重組作用,另一實驗則利用液相層析串聯式質譜儀比對結合二維電泳蛋白質點,比較不同T細胞發育階段調控V(D)J重組時蛋白質因子的差異性。
根據染色質免疫沉澱及定量PCR的結果證實組蛋白H3甲基化在T細胞接受器V alpha至J alpha重組過程中扮演的調控角色,而我們的實驗對於重組中心位置的存在以及受到組蛋白修飾等調控,提供與RAG蛋白缺陷的老鼠模型強而有力的一致性結果,另外針對DN與DP細胞核內蛋白,藉由二維電泳和液相層析串聯式質譜儀分析,找出許多差異表現的蛋白質並比對出與V(D)J重組相關的調控因子,我們預期進一步研究這些相關蛋白質,將可能獲得許多V(D)J重組體內機制的重要分子資訊。
zh_TW
dc.description.abstractLineage-, developmental- and site-specific V(D)J recombination is required for expressing T-cell receptor (TCR)αβ or γδ genes in T lymphocytes. Mature αβ T lymphocytes, defined by expressing functional αβ TCR on the cell surface, are developed in the thymus from precursor cells that pass sequentially through CD4-CD8- double negative (DN), CD4+CD8+ double positive (DP) and CD4+CD8-/CD4-CD8+ single positive (SP) stages. Immature thymocytes can only develop into DP stage, during which TCRα gene recombination occurs, after functional production of TCRβ proteins at the DN stage. Chromatin accessibility to the lymphoid specific recombination activating (RAG1 and RAG2 )gene products (the recombinase) that bind to the recombination signal sequence flanking V, D, and J gene segments has been proposed to be the mechanism underlying this tightly regulated process. However, the precise molecular mechanism remains unclear, especially in the context of wild-type,recombination-active chromatins.
The aim of this study is to decipher the factors regulating TCR Vα-to-Jα recombination in wild-type thymocytes. Two approaches were taken; one is to study the epigenetic modifications on histones and RAG1/2-bindings at the TCRα/δ locus in wild-type thymocytes, the other is to search for differentially expressed proteins in DN and DP thymocytes. The first approach would provide information on how epigenetic modifications on chromatins regulate the accessibility to the recombinase. The second approach would provide spectrums of proteins/post-translational modifications potentially involved in regulating the TCRα gene recombination.
Results of chromatin immunoprecipitation (ChIP) assays identify the previous unknown roles of histone H3 methylations to the regulation of TCR Vα-to-Jα recombination. Interestingly, our ChIP data provide solid evidence to support the presence of recombination center as one of the many levels in regulating V(D)J recombination. We also identified differentially expressed proteins factors by the 2D gel electrophoresis and 1D LC-MS-MS analysis. We expect further detail analyses on these proteins would provide important molecular information on V(D)J recombination regulation in vivo.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:44:11Z (GMT). No. of bitstreams: 1
ntu-102-R00b46026-1.pdf: 5451141 bytes, checksum: 0f982d21cd5433db482967c7ce5601a9 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsContents
中文摘要 III
Abstract V
List of Abbreviation VII
Introduction 1
1.1 Immune system 1
1.2 B cell and T cell 2
1.2.1 B cell 2
1.2.2 T cell 3
1.3 T cell receptor (TCR)、Antigen(Ag)、Major Histocompatibility Complex(MHC) 4
1.4 T cell development 5
1.5 TCR loci 7
1.6 TCR V(D)J recombination 9
1.7 Recombination center 11
Materials and Methods 14
2.1 Animals 14
2.2 Methods 14
2.2.1 specimen tissue treatment 14
2.2.2 CD4/CD8 Positive Isolation of T cells with magnetic beads 15
2.2.3 Fluorescence-activated cell sorting, FACS 17
2.2.4 ChIP (chromatin immune-precipitation) 18
2.2.5 Primer design 20
2.2.6 Real-time PCR 22
2.2.7 Agarose Gel electrophoresis 22
2.2.8 Protein fractionation 23
2.2.9 Isoelectric focusing (IEF) 24
2.2.10 Polyacrylamide Gel Electrophoresis 25
2.2.11 2D electrophoresis 25
2.2.12 In-gel digestion for Coomassie blue-stained and LC-MS-MS 26
Results 28
3.1 Epigenetic modifications and RAG1/2 binding in TCR α/δ locus 28
3.1.1 Histone H3/H4 acetylation 28
3.1.2 Histone H3K4 tri-methylation 29
3.1.3 Histone H3K9 di-methylation/H3K9 tri-methylation 29
3.1.4 RAG1/RAG2 binding at Vα/δ and DδJδ locus 30
3.2 Nuclear Factors by LC-MS-MS Analysis in DN/DP T cell subsets 31
3.3 2D gel mapping with MASS Analysis in DN/DP T cell subsets 32
Discussion 33
Reference 36
List of Figures 41
Figure1 Histion H3/H4 acetylation ChIP-qPCR assays 41
Figure2 Histion H3K4 tri-methylation ChIP-qPCR assays 42
Figure3 Histion H3K9 di/tri-methylation ChIP-qPCR assays 43
Figure4 Histion H3K9 tri-methylation ChIP-qPCR assays 44
Figure5 Histion H3K9 tri-methylation ChIP-qPCR assays (Jα) 45
Figure6 RAG1/RAG2 ChIP-qPCR assays 46
Figure7 Analysis LC-MS-MS data display by simulated diagram in DN/DP T cell
subsets 47
Figure8 2D gel mapping with LC-MS-MS Analysis in DN/DP T cell subsets 49
Table 1 Nuclear isolated-proteins by LC-MS-MS analysis 51
Table 2 Nuclear isolated-proteins by LC-MS-MS analysis compare with which by 2D gel 51
Appendix(附錄) 52
dc.language.isoen
dc.subjectT細胞接受器zh_TW
dc.subjectV(D)J重組zh_TW
dc.subject重組活化基因蛋白zh_TW
dc.subject組蛋白修飾zh_TW
dc.subject重組中心zh_TW
dc.subject染色質免疫沉澱zh_TW
dc.subject液相層析串聯式質譜儀分析zh_TW
dc.subjecthistone epigenetic modificationen
dc.subjectT cell receptor(TCR)en
dc.subjectV(D)J recombinationen
dc.subjectLC-MS-MSen
dc.subjectDN/DP thymocytesen
dc.subjectRAGs (recombination activating genes)en
dc.subjectrecombination centeren
dc.subjectchromatin immunoprecipitation(ChIP)en
dc.subjectRSS(recombination signal sequence)en
dc.title調控T細胞接受器alpha及delta基因座內
V(D)J重組機制之組蛋白修飾與相關因子
zh_TW
dc.titleHistone epigenetic modifications and factors associated with regulation of V(D)J recombination at the T-cell receptor alpha/delta locusen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張震東(Dr. Geen-Dong Chang),余榮熾(Dr. Lung-Chih Yu),張?仁(Dr. Ching-Jin Chang)
dc.subject.keywordT細胞接受器,V(D)J重組,重組活化基因蛋白,組蛋白修飾,重組中心,染色質免疫沉澱,液相層析串聯式質譜儀分析,zh_TW
dc.subject.keywordT cell receptor(TCR),V(D)J recombination,DN/DP thymocytes,RAGs (recombination activating genes),RSS(recombination signal sequence),histone epigenetic modification,recombination center,chromatin immunoprecipitation(ChIP),LC-MS-MS,en
dc.relation.page54
dc.rights.note有償授權
dc.date.accepted2013-07-10
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
5.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved