Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62342
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁建均
dc.contributor.authorYu Chenen
dc.contributor.author陳愈zh_TW
dc.date.accessioned2021-06-16T13:42:20Z-
dc.date.available2016-07-19
dc.date.copyright2013-07-19
dc.date.issued2013
dc.date.submitted2013-07-11
dc.identifier.citationReference
Non-blind deconvolution
[1] M. Asif, A. Malik, and T.-S. Choi, “3d shape recovery from image defocus using
wavelet analysis,” in Image Processing, 2005. ICIP 2005. IEEE International Conference
on, vol. 1, pp. I–1025–8, 2005.
[2] P.-C. Chen, C.-H. Liu, C.-W. Chang, C.-C. Chang, and L. Angot, “Digital decoding
design for phase coded imaging system,” pp. 74431A–74431A–9, 2009.
[3] R. Neelamani, H. Choi, and R. Baraniuk, “Forward: Fourier-wavelet regularized
deconvolution for ill-conditioned systems,” Signal Processing, IEEE Transactions
on, vol. 52, no. 2, pp. 418–433, 2004.
[4] M. Sorel and F. Sroubek, “Space-variant deblurring using one blurred and one underexposed
image,” in Image Processing (ICIP), 2009 16th IEEE International Conference
on, pp. 157–160, IEEE, 2009.
[5] C.-T. Shen, W.-L. Hwang, and S.-C. Pei, “Spatially-varying out-of-focus image deblurring
with l1-2 optimization and a guided blur map,” in Acoustics, Speech and
Signal Processing (ICASSP), 2012 IEEE International Conference on, pp. 1069–
1072, 2012.
[6] A. Levin, R. Fergus, F. Durand, and W. T. Freeman, “Image and depth from a conventional
camera with a coded aperture,” in ACM SIGGRAPH 2007 papers, SIGGRAPH
’07, (New York, NY, USA), ACM, 2007.
[7] N. Dey, L. Blanc-Feraud, C. Zimmer, P. Roux, Z. Kam, J.-C. Olivo-Marin, and
J. Zerubia, “Richardson–lucy algorithm with total variation regularization for 3d
confocal microscope deconvolution,” Microscopy Research and Technique, vol. 69,
no. 4, pp. 260–266, 2006.
[8] L. Lucy, “An iterative technique for the rectification of observed distributions,” The
astronomical journal, vol. 79, p. 745, 1974.
[9] W. H. RICHARDSON, “Bayesian-based iterative method of image restoration,” J.
Opt. Soc. Am., vol. 62, pp. 55–59, Jan 1972.
[10] M. Tanaka, K. Yoneji, and M. Okutomi, “High-usability deblurring filter,” in Consumer
Electronics, 2008. ISCE 2008. IEEE International Symposium on, pp. 1–2,
2008.
[11] R. Xiong, W. Ding, S. Ma, and W. Gao, “A new image deblurring algorithm with
less ringing artifacts via error variance estimation and soft decision,” in Image Processing
(ICIP), 2011 18th IEEE International Conference on, pp. 701–704, 2011.
[12] Y.Wang, J. Yang,W. Yin, and Y. Zhang, “A new alternating minimization algorithm
for total variation image reconstruction,” SIAM Journal on Imaging Sciences, vol. 1,
no. 3, pp. 248–272, 2008.
[13] D. Krishnan and R. Fergus, “Fast image deconvolution using hyper-laplacian priors,”
Advances in Neural Information Processing Systems, vol. 22, pp. 1–9, 2009.
[14] P.-C. Chen, Y.-L. Chen, and H.-Y. Sung, “Image restoration based on multiple
psf information with applications to phase-coded imaging system,” in Proc. SPIE,
vol. 7798, p. 779809, 2010.
Blind deconvolution
[15] D. Kundur and D. Hatzinakos, “Blind image deconvolution,” Signal Processing
Magazine, IEEE, vol. 13, no. 3, pp. 43–64, 1996.
[16] W. Dong, L. Zhang, and G. Shi, “Centralized sparse representation for image
restoration,” in Computer Vision (ICCV), 2011 IEEE International Conference on,
pp. 1259–1266, IEEE, 2011.
[17] L. Xu and J. Jia, “Depth-aware motion deblurring,” in Computational Photography
(ICCP), 2012 IEEE International Conference on, pp. 1–8, IEEE, 2012.
[18] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman, “Removing
camera shake from a single photograph,” in ACM SIGGRAPH 2006 Papers, SIGGRAPH
’06, (New York, NY, USA), pp. 787–794, ACM, 2006.
[19] J. Bardsley, S. Jefferies, J. Nagy, and R. Plemmons, “Blind iterative restoration of
images with spatially-varying blur,” 2005.
[20] Q. Shan, J. Jia, and A. Agarwala, “High-quality motion deblurring from a single
image,” ACM Trans. Graph., vol. 27, pp. 73:1–73:10, Aug. 2008.
[21] L. Yuan, J. Sun, L. Quan, and H.-Y. Shum, “Progressive inter-scale and intra-scale
non-blind image deconvolution,” ACM Trans. Graph., vol. 27, pp. 74:1–74:10, Aug.
2008.
Others
[22] J. M. Bardsley, “An efficient computational method for total variation-penalized
poisson likelihood estimation,” Inverse Problems and Imaging, vol. 2, no. 2,
pp. 167–185, 2008.
[23] N. Joshi, R. Szeliski, and D. J. Kriegman, “Psf estimation using sharp edge prediction,”
in Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference
on, pp. 1–8, IEEE, 2008.
[24] S. Berisha and J. G. Nagy, “Iterative methods for image restoration.” http://
www.mathcs.emory.edu/˜nagy/RestoreTools/.
[25] P. C. Hansen, “Rank-deficient and discrete ill-posed problems: Siam,” Philadelphia,
PA, pp. 175–206, 1998.
[26] Y.W. D. Fan and J. G. Nagy, “Synthetic boundary conditions for image deblurring,”
Linear Algebra and Its Applications, vol. 434, no. 11, pp. 2244–2268, 2011.
[27] M. Banham and A. Katsaggelos, “Digital image restoration,” Signal Processing
Magazine, IEEE, vol. 14, no. 2, pp. 24–41, 1997.
[28] M. D. Robinson and D. G. Stork, “Joint design of lens systems and digital image
processing,” pp. 63421G–63421G–10, 2007.
[29] R. G. Brown, P. Y. Hwang, et al., Introduction to random signals and applied
Kalman filtering, vol. 1. John Wiley & Sons New York, 1992.
[30] A. N. Tikhonov and A. Leonov, Ill-posed Problems in Natural Sciences: Proceedings
of the International Conference Held in Moscow, August 19-25, 1991. Vsp,
1992.
[31] D. Geman and G. Reynolds, “Constrained restoration and the recovery of discontinuities,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14,
no. 3, pp. 367–383, 1992.
[32] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal
algorithms,” Physica D: Nonlinear Phenomena, vol. 60, no. 1-4, pp. 259 – 268,
1992.
[33] Y.-W. Tai and M. Brown, “Single image defocus map estimation using local contrast
prior,” in Image Processing (ICIP), 2009 16th IEEE International Conference on,
pp. 1797–1800, 2009.
[34] S. Zhuo and T. Sim, “Defocus map estimation from a single image,” Pattern Recognition,
vol. 44, no. 9, pp. 1852–1858, 2011.
[35] K. He, J. Sun, and X. Tang, “Guided image filtering,” in Computer Vision–ECCV
2010, pp. 1–14, Springer, 2010.
[36] J. M. Ogden, E. H. Adelson, J. R. Bergen, and P. J. Burt, “Pyramid-based computer
graphics,” RCA Engineer, vol. 30, no. 5, pp. 4–15, 1985.
[37] A. Kubota and K. Aizawa, “Reconstructing arbitrarily focused images from two differently
focused images using linear filters,” Image Processing, IEEE Transactions
on, vol. 14, no. 11, pp. 1848–1859, 2005.
[38] E. W. Weisstein, “Cubic formula.” http://mathworld.wolfram.com/
CubicFormula.html.
[39] E. W. Weisstein, “Quartic formula.” http://mathworld.wolfram.com/
QuarticEquation.html.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62342-
dc.description.abstract在這本論文中,我們提出一個對於醫學顯微影像景深拓展系統之點擴散方程式計算與模糊影像重建演算法。利用我們所設計的IDP 影像,理論上IDP 影像可以有效提供所有方向的頻率測量。利用這個特色,我們可以使用真實拍攝的IDP 影像計算出整個顯微影像系統的點擴散方程式。我們提出使用Tikhonov 正規化方法來計算系統的點擴散方程式。當我們得到系統的點擴散方程式後,我們提出一個使用階層式超拉普拉斯L2 空間先驗機率的影像重建方法。藉由這個方法我們可以在影像邊緣部分得到銳利的影像,並且在非邊緣部分得到低雜訊的效果。因為醫學顯微影像比使用一般的相機所照出影像複雜,使用我們的方法也可以應用在一般的數位影像中。zh_TW
dc.description.abstractIn this thesis, the algorithm for microscopic image deblurring and point spread function (PSF) estimation are proposed. By using the identification pattern that provides measurable frequencies at all orientations, we can estimate
the microscopy system PSF from the actual image. We use the Tikhonov regularization to estimate the PSF of the system. After acquiring the PSF, we use the pyramid Hyper-Laplacian L2 norm priors image reconstruction algorithm to restore blurred medical microscopic images. By using the Hyper-
Laplacian and L2 norm priors, we can get sharp reconstruction images and reduce the noise in the smooth region. Since medical microscopic images are much more complicated than the natural images shot by a camera, our
algorithm can also be applied in a digital camera system.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:42:20Z (GMT). No. of bitstreams: 1
ntu-102-R00942049-1.pdf: 11744663 bytes, checksum: 397afee2f964179499d25d7e1bfd47c6 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontentsContents
口試委員會審定書i
誌謝iii
中文摘要v
Abstract vii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Background Information for Image Deblurring 5
2.1 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Blur types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Spatially invariant blurs . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Spatially variant blurs . . . . . . . . . . . . . . . . . . . . . . . 11
3 Related Works 15
3.1 Spatially-varying out-of-foucs image deblurring with L1-2 optimization
and a guided blur map [5] . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1 Blur map generation . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Image deblurring with L1-2 optimization . . . . . . . . . . . . . 20

3.2 High-usability deblurring filter [10] . . . . . . . . . . . . . . . . . . . . 21
3.2.1 High-usability deblurring filter . . . . . . . . . . . . . . . . . . . 22
3.3 A new image deblurring algorithm with less ringing artifacts via error
variance estimation and soft decision [11] . . . . . . . . . . . . . . . . . 23
3.3.1 The estimation problem and iterative solution . . . . . . . . . . . 24
3.3.2 Probabilistic graph model for image deblurring . . . . . . . . . . 25
3.3.3 Prediction and fusion process in belief propagation . . . . . . . . 26
3.3.4 Estimation of error variance . . . . . . . . . . . . . . . . . . . . 26
3.3.5 The propose algorithm . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Image deblurring using a pyramid-based Richardson–Lucy algorithm . . . 29
3.4.1 Pyramid structure with the RL algorithm . . . . . . . . . . . . . 31
3.4.2 Residual deconvolution . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Edge-membership based blurred image reconstruction algorithm . . . . . 35
3.5.1 Edge-membership based image reconstruction algorithm . . . . . 36
3.5.2 Reconstructing all focused images from two differently focused
images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4 Hyper-Laplacian L2 norm priors image reconstruction algorithm 43
4.1 Residual deconvolution and improved pyramid structure . . . . . . . . . 45
4.1.1 Residual deconvolution using in our structure . . . . . . . . . . . 45
4.1.2 Improved pyramid structure . . . . . . . . . . . . . . . . . . . . 46
4.2 System PSF estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Deblurring method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Hyper-Laplacian L2 norm priors image reconstruction algorithm . . . . . 53
4.4.1 lj sub-problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.2 w sub-problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Summary of the proposed method . . . . . . . . . . . . . . . . . . . . . 58
5 Experimental Results 61
5.1 IDP pattern reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 USAF test chart reconstruction . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Other images reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 67
6 Conclusion 83
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Reference 87
dc.language.isoen
dc.subject編碼影像zh_TW
dc.subject景深zh_TW
dc.subject解模糊zh_TW
dc.subject點擴散方程式計算zh_TW
dc.subjectCoded imagingen
dc.subjectDepth of fielden
dc.subjectDeblurringen
dc.subjectPSF estimationen
dc.title醫學顯微影像景深拓展系統之點擴散方程式計算與模糊影像重建演算法zh_TW
dc.titleImage Reconstruction Algorithms for Medical Microscopic Image Deblurring and Point Spread Function Estimationen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許文良,葉敏宏,張銓仲
dc.subject.keyword編碼影像,景深,解模糊,點擴散方程式計算,zh_TW
dc.subject.keywordCoded imaging,Depth of field,Deblurring,PSF estimation,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2013-07-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
11.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved