請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62322完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許永真 | |
| dc.contributor.author | Sio-Fong Hoi | en |
| dc.contributor.author | 許少鋒 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:41:01Z | - |
| dc.date.available | 2015-07-19 | |
| dc.date.copyright | 2013-07-19 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-12 | |
| dc.identifier.citation | [1] A. Anjum and M. Ilyas. Activity recognition using smartphone sensors. In Con- sumer Communications and Networking Conference (CCNC), 2013 IEEE, pages 914– 919, 2013.
[2] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In Pro- ceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’07, pages 1027–1035, Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathematics. [3] M. Berchtold, M. Budde, D. Gordon, H. Schmidtke, and M. Beigl. Actiserv: Activity recognition service for mobile phones. In Wearable Computers (ISWC), 2010 Interna- tional Symposium on, pages 1–8, Oct. [4] S. N. Blair, H. W. Kohl, N. F. Gordon, and R. S. Paffenbarger. How Much Physical Activity is Good for Health? Annual Review of Public Health, 13(1):99–126, 1992. [5] G.J.Brezmes,T.andJ.Cotrina.Activityrecognitionfromaccelerometerdataonmobile phones. In Proceedings of the 10th International WorkConference on Artificial Neural Networks, IWANN ’09, pages 796–799, 2009. [6] S.-H. Cha and S. N. Srihari. On measuring the distance between histograms. Pattern Recognition, 35(6):1355–1370, June 2002. [7] C.C.ChangandC.J.Lin.LIBSVM:Alibraryforsupportvectormachines.ACMTrans. Intell. Syst. Technol., 2(3), May 2011. [8] Y.-C. Chang. Transportation mode detection with single accelerometer on smart phones,nation taiwan university. In Nation Taiwan University, 2010. [9] S. Chernbumroong, A. Atkins, and H. Yu. Activity classification using a single wrist- worn accelerometer. In Software, Knowledge Information, Industrial Management and Applications (SKIMA), 2011 5th International Conference on, pages 1 –6, sept. 2011. [10] T. Choudhury, G. Borriello, S. Consolvo, D. Haehnel, B. Harrison, B. Hemingway, J. Hightower, P. P. Klasnja, K. Koscher, A. LaMarca, J. A. Landay, L. LeGrand, J. Lester, A. Rahimi, A. Rea, and D. Wyatt. The mobile sensing platform: An embedded activity recognition system. IEEE Pervasive Computing, 7(2):32–41, 2008. [11] E. Ekblom-Bak, M.-L. Helle ́;nius, and B. Ekblom. Are we facing a new paradigm of inactivity physiology? British Journal of Sports Medicine, 44(12):834–5, 2010. [12] A. L. Hall. Method for the acquisition of arm movement data using accelerometers. In Massachusetts Institute of Technology, 2005. [13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The weka data mining software: an update. SIGKDD Explor. Newsl., 11(1):10–18, Nov. 2009. [14] J. R. Kwapisz, G. M. Weiss, and S. A. Moore. Activity recognition using cell phone accelerometers. SIGKDD Explor. Newsl., 12(2):74–82, Mar. 2011. [15] B.K.LatinRW.Theaccuracyoftheacsmandanewcycleergometryequationforyoung women. Med Sci Sports Exerc., 1994. [16] M.-W. Lee, A. M. Khan, and T.-S. Kim. A single tri-axial accelerometer-based real-time personal life log system capable of human activity recognition and exercise information generation. Personal Ubiquitous Comput., 15(8):887–898, Dec. 2011. [17] S.-W. Lee and K. Mase. Activity and location recognition using wearable sensors. IEEE Pervasive Computing, 1(3):24–32, July 2002. [18] J. Lester, T. Choudhury, and G. Borriello. A practical approach to recognizing physical activities. In In Proc. of Pervasive, pages 1–16, 2006. [19] J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford. A hybrid discrimi- native/generative approach for modeling human activities. In Proceedings of the 19th international joint conference on Artificial intelligence, IJCAI’05, pages 766–772, San Francisco, CA, USA, 2005. Morgan Kaufmann Publishers Inc. [20] X. Long, B. Yin, and R. Aarts. Single-accelerometer-based daily physical activity clas- sification. In Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, pages 6107 –6110, sept. 2009. [21] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell. The jigsaw continuous sensing engine for mobile phone applications. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems, SenSys ’10, pages 71–84, New York, NY, USA, 2010. ACM. [22] A. Mannini and A. M. Sabatini. Machine learning methods for classifying human physi- cal activity from on-body accelerometers. Sensors, 10(2):1154–1175, 2010. [23] U. Maurer, A. Smailagic, D. Siewiorek, and M. Deisher. Activity recognition and mon- itoring using multiple sensors on different body positions. In Wearable and Implantable Body Sensor Networks, 2006. BSN 2006. International Workshop on, pages 4 pp. –116, april 2006. [24] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. B. Eisenman, X. Zheng, and A. T. Campbell. Sensing meets mobile social networks: the design, imple- mentation and evaluation of the cenceme application. In Proceedings of the 6th ACM con- BIBLIOGRAPHY 77 ference on Embedded network sensor systems, SenSys ’08, pages 337–350, New York, NY, USA, 2008. ACM. [25] D. Mizell. Using gravity to estimate accelerometer orientation. In Proceedings. Seventh IEEE International Symposium on (2003), Wearable Computers, 2003, pages 252–253, 2003. [26] M.MladenovandM.Mock.Astepcounterserviceforjava-enableddevicesusingabuilt- in accelerometer. In Proceedings of the 1st International Workshop on Context-Aware Middleware and Services: affiliated with the 4th International Conference on Commu- nication System Software and Middleware (COMSWARE 2009), CAMS ’09, pages 1–5, New York, NY, USA, 2009. ACM. [27] D. Pelleg and A. Moore. X-means: Extending k-means with efficient estimation of the number of clusters. 2000. [28] T. Phan. Generating natural-language narratives from activity recognition with spurious classification pruning. In Proceedings of the Third International Workshop on Sensing Applications on Mobile Phones, PhoneSense ’12, pages 13:1–13:5, New York, NY, USA, 2012. ACM. [29] M. Rabbi, S. Ali, T. Choudhury, and E. Berke. Passive and in-situ assessment of mental and physical well-being using mobile sensors. In Proceedings of the 13th international conference on Ubiquitous computing, UbiComp ’11, pages 385–394, New York, NY, USA, 2011. ACM. [30] N. Ryu, Y. Kawahawa, and T. Asami. A calorie count application for a mobile phone based on mets value. In Sensor, Mesh and Ad Hoc Communications and Networks, 2008. SECON ’08. 5th Annual IEEE Communications Society Conference on, pages 583 –584, june 2008. [31] T.S.Saponas,J.Lester,J.Froehlich,J.Fogarty,andJ.L.ilearnontheiphone:Real-time human activity classification on commodity mobile phones. Technical report, 2008. [32] R. S. Schoeller DA. A review of field techniques for the assessment of energy expendi- ture. J Nutr., 1990. [33] B. Settles. Active learning literature survey. Technical Report 1648, University of Wisconsin–Madison, 2009. [34] G. B. D. Stephen Glass (Ph. D.). Acsm’s Metabolic Calculations Handbook. Lippincott Williams and Wilkins, 2007. [35] C. Strohrmann, H. Harms, G. Tro ̈ster, S. Hensler, and R. Mu ̈ller. Out of the lab and into the woods: kinematic analysis in running using wearable sensors. In Proceedings of the 13th international conference on Ubiquitous computing, UbiComp ’11, pages 119–122, New York, NY, USA, 2011. ACM. [36] L. Sun, D. Zhang, B. Li, B. Guo, and S. Li. Activity recognition on an accelerometer embedded mobile phone with varying positions and orientations. In Proceedings of the 7th international conference on Ubiquitous intelligence and computing, UIC’10, pages 548–562, Berlin, Heidelberg, 2010. Springer-Verlag. [37] J. Yang. Toward physical activity diary: motion recognition using simple acceleration features with mobile phones. In Proceedings of the 1st international workshop on In- teractive multimedia for consumer electronics, IMCE ’09, pages 1–10, New York, NY, USA, 2009. ACM. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62322 | - |
| dc.description.abstract | In order to help people to maintain a healthy life style in today’s busy world, hav- ing a device that can accurately and conveniently calculate calories consumption will be crucial. This research paper has found a reliable system that can accurately report a user’s calories consumption rate by using the accelerometer, gyroscope and GPS sen- sors in mobile phones. It has successfully overcome the orientation problem that trou- bled many previous scholars. Resolving this issue is critical because mobile phones can be placed anywhere by users in real life.
Firstly, this system can accurately recognize the following six most common phys- ical activities of a user’s walking, running, cycling, going upstairs, going downstairs and idling (stationary). By computing the amplitude of 1) vertical components, 2) magnitude of horizontal components, 3) vibration of the vertical and horizontal com- ponents, and 4) angle of the vertical and horizontal components, this system can attain an average accuracy rate of 90.44%, better than 73.09% in Yang’s method. This high accuracy rate is significant because wrong recognition of activities will amplify the margin of error in calories consumption rate calculation. Secondly, this system will use the ACSM Metabolic Equations, published by Amer- ican College of Sports Medicine and approved by many scholars, to calculate calories consumption. By applying the results generated from the above method to these equa- tions, this system can determine a user’s calories consumption rate with a mere margin of mean absolute error of 11.45%. It is significantly better than the consumption rate generated with Yang’s method, which has a margin of mean absolute error of 24.97%. Together, this system can accurately recognize a user’s activity independent of orien- tation, which is significant in estimating accurately the calories consumption rate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:41:01Z (GMT). No. of bitstreams: 1 ntu-102-R00922145-1.pdf: 1380942 bytes, checksum: feb338d21c5acb2e281608be460dc595 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Abstract iii
List of Figures viii List of Tables xii Chapter 1 Introduction 1 1.1 Motivation................................ 2 1.1.1 Physical Activity Recognition ................. 2 1.1.2 Calories Consumption ..................... 3 1.2 Research Objectives........................... 3 1.3 Challenges................................ 4 1.3.1 The Influence of Realistic Conditions . . . . . . . . 4 1.3.2 The Model of Activity Recognition . . . . . . . . . 4 1.3.3 Orientation Problem ...................... 4 1.3.4 The Most Common Activities Problem . . . . . . . 5 1.4 Thesis Organization........................... 5 Chapter 2 Related Works 7 2.1 Physical Activity Recognition ..................... 7 2.1.1 Different or multiple sensors on different position of different parts of the body ........................ 7 2.1.2 Hardware combining multiple types of sensors . . . . . . . . 8 2.1.3 Only one accelerometer not in mobile phone . . . . . . . . . 9 2.1.4 Mobile Sensor-Based Method ................. 10 2.2 Calories Burnt Estimation........................ 14 Chapter 3 Physical Activity Level and Calories Consumption Estimation 15 3.1 Assumption............................... 16 3.2 Proposed Solution............................ 16 3.2.1 Physical Activity Classification Problem . . . . . . . . . . . . 16 3.2.2 Input Data Preprocessing.................... 37 3.2.3 Calories Consumption Estimation ............... 38 Chapter 4 Implementation 43 4.1 Hardware Setup............................. 43 4.2 Software Setup ............................. 44 4.2.1 Data Collection......................... 44 4.2.2 Data Analysis.......................... 46 Chapter 5 Experiments and Evaluations 49 5.1 Data Collection ............................. 49 5.1.1 Data Description ........................ 50 5.1.2 Data Observation........................ 52 5.1.3 Evaluation ........................... 55 5.1.4 Model Improvement ...................... 65 Chapter 6 Conclusion 69 6.1 Summary of Contributions ....................... 71 6.2 Limitation................................ 71 6.2.1 Sensor data calibration..................... 71 6.2.2 The variable of METs equations................ 72 6.3 Future Works .............................. 72 Bibliography 74 | |
| dc.language.iso | en | |
| dc.subject | 活動識別 | zh_TW |
| dc.subject | 人常生活 | zh_TW |
| dc.subject | 卡路里 | zh_TW |
| dc.subject | daily life | en |
| dc.subject | physical activity recognition | en |
| dc.subject | calories estimate | en |
| dc.title | 以行動智慧裝置進行活動辨識與熱量消耗之研究 | zh_TW |
| dc.title | Physical Activity Recognition and Calories Consumption Estimation by Mobile Phones | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳彥仰,蔡宗翰,黃漢申,朱浩華 | |
| dc.subject.keyword | 活動識別,卡路里,人常生活, | zh_TW |
| dc.subject.keyword | physical activity recognition,calories estimate,daily life, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
