Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62296
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁建均
dc.contributor.authorYi-Fan Changen
dc.contributor.author張一凡zh_TW
dc.date.accessioned2021-06-16T13:39:22Z-
dc.date.available2016-07-19
dc.date.copyright2013-07-19
dc.date.issued2013
dc.date.submitted2013-07-15
dc.identifier.citationTime-Frequency Analysis
[1] S. H. Nawab and T. F. Quatieri. Short-time Fourier transform. In Advanced topics in signal processing, pages 289--337. Prentice-Hall, Inc., 1987.
[2] K. Grochenig. Foundations of time-frequency analysis. Springer, 2001.
[3] S. Qian and D. Chen. Joint Time-Frequency Analysis: Methods and Applications. Prentice-Hall, Inc., 1996.
[4] D. Gabor. Theory of communication. Part 1: The analysis of information. Electrical Engineers-Part III: Radio and Communication Engineering, Journal of the Institution of, 93(26):429--457, 1946.
[5] M. J. Bastiaans. Gabor's expansion of a signal into Gaussian elementary signals. Proceedings of the IEEE, 68(4):594--598, 1980.
[6] S.-C. Pei and J.-J. Ding. Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing. Signal Processing, IEEE Transactions on, 55(10):4839--4850, 2007.
[7] E. Wigner. On the quantum correction for thermodynamic equilibrium. Physical Review, 40(5):749--759, 1932.
[8] T. Classen and W. Mecklenbrauker. The Wigner distribution —a tool for timefrequency signal analysis: Part I. Continuous time signals. Philips J. Res, 35(3): 217--250, 1980.
[9] F. Hlawatsch and G. F. Boudreaux-Bartels. Linear and quadratic time-frequency signal representations. IEEE Signal Processing Magazine, 9(2):21--67, 1992.
[10] L. J. Stankovic and S. Stankovic. An analysis of instantaneous frequency representation using time-frequency distributions-generalized Wigner distribution. Signal Processing, IEEE Transactions on, 43(2):549--552, 1995.
[11] B. Boashash and P. O'Shea. Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra. Signal Processing, IEEE Transactions on, 42(1):216--220, 1994.
[12] B. Barkat and B. Boashash. Design of higher order polynomial Wigner-Ville distributions. Signal Processing, IEEE Transactions on, 47(9):2608--2611, 1999.
[13] L. Cohen. Generalized phase-space distribution functions. Journal of Mathematical Physics, 7:781, 1966.
[14] L. Cohen. Time-frequency analysis, volume 778. Prentice Hall PTR New Jersey, 1995.
[15] G. B. Folland and A. Sitaram. The uncertainty principle: a mathematical survey. Journal of Fourier Analysis and Applications, 3(3):207--238, 1997.
[16] P. Boggiatto, G. De Donno, and A. Oliaro. Uncertainty principle, positivity and Lpboundedness for generalized spectrograms. Journal of mathematical analysis and applications, 335(1):93--112, 2007.
[17] P. Boggiatto, G. De Donno, and A. Oliaro. Two-Window Spectrograms and Their Integrals. In Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations, pages 251--268. Springer, 2010.
[18] A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-time signal processing, volume 5. Prentice hall Upper Saddle River, 1999.
[19] F. Franchetti and M. Puschel. Generating high performance pruned FFT implementations. In Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, pages 549--552. IEEE, 2009.
[20] The whale voice data are available on the web site. http://oalib. hlsresearch.com/Whales/index.html.
[21] N. E. Huang, S. R. Long, and Z. Shen. The mechanism for frequency downshift in nonlinear wave evolution. Advances in Applied Mechanics, 32:59--117C, 1996.
[22] N. E. Huang and S. S. Shen. Hilbert-Huang transform and its applications, volume 5. World Scientific, 2005.
FORMOSAT-3/COSMIC
[23] C.-J. Fong, C.-Y. Huang, V. Chu, N. Yen, Y.-H. Kuo, Y.-A. Liou, and S. Chi. Mission results from FORMOSAT-3/COSMIC constellation system. Journal of Spacecraft and Rockets, 45(6):1293--1302, 2008.
[24] C.-J. Fong, D. Whiteley, E. Yang, K. Cook, V. Chu, B. Schreiner, D. Ector, P. Wilczynski, T. Liu, and N. Yen. Space and ground segment performance of the FORMOSAT-3/COSMIC mission: four years in orbit. Atmospheric Measurement
Techniques Discussions, 4(1):599--638, 2011.
[25] N. Yen and C. Fong. FORMOSAT-3 Evaluation Report and Follow-on Mission Plan. NSPO-RPT-0047_0101, 2009.
[26] C.-J. Fong, T.-P. Lee, Y. Wang, A. Liou, and E. Yang. Applications of Time-Frequency and Hilbert-Huang Transform (HHT) to FORMOSAT-3 Satellite System Key Parameters Trending Data Studies. In 5th FORMOSAT-3/COSMIC Data Users Workshop and International Conference on GPS Radio Occultation (ICGPSRO) 2011, 2011.
[27] T.-P. Lee, C.-J. Fong, S.-K. Yang, T. H. Mao, A. Huang, W. J. Chen, C. Y. Chen, I. T. Lee, and J. Y. Liu. Time Frequency Analysis And Hilbert-Huang Transform (HHT) of Single Event Upset (SEU) in FORMOSAT-2 and FORMOSAT-3 Missions. In ACRS 2011 – The 32nd Asian Conference on Remote Sensing, 2011.
[28] Y. Wang and S. Wang. Visual Signal Online Manuel, AnCAD Inc. http://www.ancad.com.tw/pro_visual_signal_01.htm.
[29] D. Hunt, B. Schreiner, S. Syndergaard, B. Giesinger, and P. Axelrad. Time Frequency Analysis And Hilbert-Huang Transform (HHT) of Single Event Upset (SEU) in FORMOSAT-2 and FORMOSAT-3 Missions. In 4th Asian Space Conference and
2008 FORMOSAT-3 / COSMIC Data Users Workshop, 2008.
[30] C.-J. Fong, S.-K. Yang, N. L. Yen, and T.-P. Lee. Preliminary Studies of the Applications of HHT (Hilbert-Huang Transform) on FORMOSAT-3/COSMIC GOX Payload Trending Data. 2012.
Parkinson's Disease
[31] S. Fahn. The freezing phenomenon in parkinsonism. Advances in neurology, 67:53,1995.
[32] N. GILADI. Freezing of gait: Clinical overview. Advances in neurology, 87:191--197, 2001.
[33] J. Schaafsma, Y. Balash, T. Gurevich, A. Bartels, J. Hausdorff, and N. Giladi. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson's disease. European Journal of Neurology, 10(4):391--398, 2003.
[34] B. R. Bloem, J. M. Hausdorff, J. E. Visser, and N. Giladi. Falls and freezing of gait in Parkinson's disease: a review of two interconnected, episodic phenomena. Movement Disorders, 19(8):871--884, 2004.
[35] A. De Boer, W. Wijker, J. Speelman, and J. De Haes. Quality of life in patients with Parkinson's disease: development of a questionnaire. Journal of Neurology, Neurosurgery & Psychiatry, 61(1):70--74, 1996.
[36] S. T. Moore, H. G. MacDougall, and W. G. Ondo. Ambulatory monitoring of freezing of gait in Parkinson's disease. Journal of neuroscience methods, 167(2):340--348, 2008.
[37] M. Bachlin, M. Plotnik, D. Roggen, I. Maidan, J. M. Hausdorff, N. Giladi, and G. Troster. Wearable assistant for Parkinson's disease patients with the freezing of gait symptom. Information Technology in Biomedicine, IEEE Transactions on, 14(2):436--446, 2010.
[38] S. T. Moore, D. A. Yungher, T. R. Morris, V. Dilda, H. G. MacDougall, J. M. Shine, S. L. Naismith, and S. J. Lewis. Autonomous identification of freezing of gait in Parkinson's disease from lower-body segmental accelerometry. Journal of neuroengineering and rehabilitation, 10(1):19, 2013.
[39] M. Bachlin, J. M. Hausdorff, D. Roggen, N. Giladi, M. Plotnik, and G. Troster. Online detection of freezing of gait in Parkinson's disease patients: a performance characterization. In Proceedings of the Fourth International Conference on Body Area Networks, page 11. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62296-
dc.description.abstract傳統上分析訊號頻率常使用傅立葉轉換,然而其只適用於穩態的線
性訊號上,故近代發展出針對非穩態訊號的時頻分析工具。時頻分析
可觀察信號隨時間的頻率變化,運用範圍日趨廣泛,但時頻圖的解析
度、交叉項與運算量的取捨一直是時頻研究的重點。
本論文針對此問題提出了一個高清晰度的修正廣義頻譜圖,藉由採
用不同大小的窗格與次方項讓時域與頻域的解析度能同時提高。另外
針對寬窗格的情況,我們則提出新的轉換方式以減少運算量。而窗格
的取法,我們亦提出較佳的取法來做更一般化的選取。再者,我們將
此新方法與多項式韋格納—韋立分佈做結合,提出一個新的廣義多項
式韋格納頻譜圖,用以改良傳統的賈伯—韋格納轉換,並且得到更好
的解析度成果。
時頻理論的應用則分為兩大部分:
第一部分為福爾摩沙衛星三號的訊號分析,此部分是與國家太空中
心合作的計畫。我們利用希爾伯特—黃轉換與時頻分析方法,找出衛
星元件老化的趨勢與關鍵因素,並希望使用的可適性方法在未來的衛
星上能有效發揮,提早看出老化趨勢。
第二部分則為帕金森氏症凝凍步態偵測的演算法,此部分為與臺大
物理治療所與慈濟大學合作的計畫,目的是希望藉由時頻分析改良現
有的凝步偵測方法,以提升判斷準確度與更即時的症狀偵測。我們利
用廣義頻譜圖求出凝凍指標,並考慮輸入訊號的能量變化來做進一步
的判斷,再藉由動態閥值找出凝凍步態的發生區段。另外我們使用非
對稱窗格來減少未來資訊的使用,讓判斷時間延遲僅有0.8 秒。我們的
方法達到即時偵測與效果勝出既有方法,並期望在未來實作於產品上
造福更多帕金森氏症患者。
zh_TW
dc.description.abstractTraditionally, we usually use the Fourier transform to analyze the frequency of a signal. However, it is only suitable for the case where signals are stationary and linear. Thus, many time-frequency (TF) analysis tools were
developed for non-stationary signals in recently decades. TF analysis can observe the signal variation in both the time and the frequency domains and has many applications. However, there are always trade-offs among the goals of
high resolution, no cross term, and less computation time.
In this thesis, we propose a high-clarity modified generalized spectrogram (MGS) with different window sizes and different powers, which can get both high resolutions in the time and the frequency domains. We also provide a new implementation way to reduce the computation time for the broad window case and propose a better method to choose the window. Moreover, we propose a new method called the generalized polynomial Wigner spectrogram (GPWS), which combines the MGS with the polynomial Wigner-Ville distribution (PWVD), to further improve the performance of the Gabor-Wigner transform (GWT).
Two applications of the TF theory are introduced in this thesis:
The first application is the analysis of the FORMOSAT-3/COSMIC (F3/ C) signal. It is a cooperation project with the National Space Organization (NSPO). Instead of the traditional trending method, the Hilbert-Huang transform (HHT) and time-frequency analysis are used to analyze the trends of the signals from the F3/C constellation and the deterioration on some key satellite elements. The goal of these adaptive analysis methods is to effectively find
the aging trends of satellites.
The second application is to detect the freezing of gait (FOG) of Parkinson's disease patients. It is a cooperation project with the Graduate Institute of Physical Therapy of National Taiwan University (NTU-PT) and the Tzu-Chi University. The purpose is to improve the detection accuracy of the FOG and develop a more real-time algorithm by using TF analysis. We use the MGS to find the freezing index (FI) and consider the power of the input 3-D accelerator signal for the further decision. With a dynamic threshold, FOG periods can be found. Since existing methods use the symmetric window, which will cause a severe delay, we use an asymmetric window and an asymmetric smooth filter to make the delay less than 0.8 seconds. Our method is real-time and the performance still outperforms existing methods. The ultimate goal is to implement the algorithm in products and benefit Parkinson's disease patients.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:39:22Z (GMT). No. of bitstreams: 1
ntu-102-R00942127-1.pdf: 11242590 bytes, checksum: 67e239553b107e07fabac065dc4b5873 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Chapter 2 Time-Frequency Analysis Overview . . . . . . . . . . . . . . . . . . . 3
2.1 Short-Time Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Gabor Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Wigner Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Cohen's Class Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Polynomial Wigner-Ville Distribution . . . . . . . . . . . . . . . . . . . 6
2.6 Gabor-Wigner Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Hilbert-Hung Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Chapter 3 Generalized Polynomial Wigner Spectrogram . . . . . . . . . . . . . 13
3.1 Modified Generalized Spectrogram . . . . . . . . . . . . . . . . . . . . . 14
3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Discussions and Proof . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Equalization for Variance . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Proposed Generalized Polynomial Wigner Spectrogram . . . . . . . . . . 18
3.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Chapter 4 Adaptive Analysis for FORMOSAT-3 . . . . . . . . . . . . . . . . . . 33
4.1 Constellation Mission Overview . . . . . . . . . . . . . . . . . . . . . . 34
4.1.1 F3/C Constellation System . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 GPS Radio Occultation . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.3 Spacecraft and Payload Configuration . . . . . . . . . . . . . . . 36
4.1.4 F3/C Spacecraft Status . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Satellite Source Data Preparation . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.1 Satellite Sun Beta Angle Analysis . . . . . . . . . . . . . . . . . 39
4.3.2 Satellite Flip-Flop Analysis . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Satellite Battery Trending Analysis . . . . . . . . . . . . . . . . 40
4.3.4 Reaction Wheels Trending Analysis . . . . . . . . . . . . . . . . 45
4.4 GOX Mission Payload SNR Trending Analysis . . . . . . . . . . . . . . 47
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Chapter 5 Parkinson's Freezing of Gait Detection . . . . . . . . . . . . . . . . . 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.1 Medical Background and Patients Data Preparation . . . . . . . . 56
5.1.2 Freezing Index and Time-Frequency Analysis . . . . . . . . . . . 59
5.1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Proposed Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.1 Our Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Latency Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Experimental Result and Performance Comparison . . . . . . . . . . . . 66
5.3.1 Detection Results . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 68
5.3.3 Sensitivity-Specificity Plot . . . . . . . . . . . . . . . . . . . . . 72
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Chapter 6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 77
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
dc.language.isoen
dc.subject趨勢分析zh_TW
dc.subject帕金森氏症zh_TW
dc.subject凝凍步態zh_TW
dc.subject廣義頻譜圖zh_TW
dc.subject交叉項zh_TW
dc.subject多項式韋格納—韋立分佈zh_TW
dc.subject時頻分析zh_TW
dc.subject廣義多項式韋格納頻譜圖zh_TW
dc.subject福衛三號zh_TW
dc.subject衛星zh_TW
dc.subjectFORMOSAT-3en
dc.subjectcross termen
dc.subjectgeneralized spectrogramen
dc.subjectpolynomial Wigner-Ville distributionen
dc.subjectgeneralized polynomial Wigner spectrogramen
dc.subjectfreezing of gaiten
dc.subjectTime-frequency analysisen
dc.subjectsatelliteen
dc.subjecttrend analysisen
dc.title高清晰時頻分析法及衛星訊號分析與帕金森凝步偵測zh_TW
dc.titleHigh Clarity Time-Frequency Analysis Methods and the
Applications for Satellite Signal Analysis and Parkinson's
Freezing of Gait Detection
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許文良,葉敏宏,王逸民
dc.subject.keyword時頻分析,交叉項,廣義頻譜圖,多項式韋格納—韋立分佈,廣義多項式韋格納頻譜圖,福衛三號,衛星,趨勢分析,帕金森氏症,凝凍步態,zh_TW
dc.subject.keywordTime-frequency analysis,cross term,generalized spectrogram,polynomial Wigner-Ville distribution,generalized polynomial Wigner spectrogram,freezing of gait,FORMOSAT-3,satellite,trend analysis,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2013-07-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
10.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved