Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62286
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳俊維
dc.contributor.authorYi-Hsuan Chungen
dc.contributor.author鍾怡萱zh_TW
dc.date.accessioned2021-06-16T13:38:45Z-
dc.date.available2018-07-26
dc.date.copyright2013-07-26
dc.date.issued2013
dc.date.submitted2013-07-16
dc.identifier.citation[1] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.
[2] Avouris, P.; Chen, Z.; Perebeinos, V., Carbon-based electronics. Nature nanotechnology 2007, 2 (10), 605-615.
[3] Geim, A. K.; Novoselov, K. S., The rise of graphene. Nature Materials 2007, 6 (3), 183-191.
[4] Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321 (5887), 385-388.
[5] Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters 2008, 8 (3), 902-907.
[6] Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y., Approaching ballistic transport in suspended graphene. Nature nanotechnology 2008, 3 (8), 491-495.
[7] Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z., Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Letters 2010, 10 (12), 4863-4868.
[8] Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S., Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332 (6037), 1537-1541.
[9] Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nature Materials 2007, 6 (9), 652-655.
[10] Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.; Song, Y.; Kim, Y.-J.; Kim, K.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology 2010, 5 (8), 574-578.
[11] Schwierz, F., Graphene transistors. Nature nanotechnology 2010, 5 (7), 487-496.
[12] Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457 (7230), 706-710.
[13] Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324 (5932), 1312-1314.
[14] Yu, Y.-J.; Zhao, Y.; Ryu, S.; Brus, L. E.; Kim, K. S.; Kim, P., Tuning the Graphene Work Function by Electric Field Effect. Nano Letters 2009, 9 (10), 3430-3434.
[15] Liu, H.; Liu, Y.; Zhu, D., Chemical doping of graphene. Journal of Materials Chemistry 2011, 21 (10), 3335-3345.
[16] Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nature Materials 2007, 6 (9), 652-655.
[17] Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G., Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters 2009, 9 (5), 1752-1758.
[18] Coakley, K. M.; McGehee, M. D., Conjugated Polymer Photovoltaic Cells. Chemistry of Materials 2004, 16 (23), 4533-4542.
[19] Ghosh, A. K.; Feng, T., Merocyanine organic solar cells. Journal of Applied Physics 1978, 49 (12), 5982-5989.
[20] Tang, C. W., Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48 (2), 183-185.
[21] Spanggaard, H.; Krebs, F. C., A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials and Solar Cells 2004, 83 (2-3), 125-146.
[22] Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B., EFFICIENT PHOTODIODES FROM INTERPENETRATING POLYMER NETWORKS. Nature 1995, 376 (6540), 498-500.
[23] Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science 1992, 258 (5087), 1474-1476.
[24] Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials 2005, 15 (10), 1617-1622.
[25] Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu, L., For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Advanced Materials 2010, 22 (20), E135-E138.
[26] Tsumura, A.; Koezuka, H.; Ando, T., Macromolecular electronic device: Field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 1986, 49 (18), 1210.
[27] Tan, H. S.; Mathews, N.; Cahyadi, T.; Zhu, F. R.; Mhaisalkar, S. G., The effect of dielectric constant on device mobilities of high-performance, flexible organic field effect transistors. Appl. Phys. Lett. 2009, 94 (26), 263303-3.
[28] Ikawa, M.; Yamada, T.; Matsui, H.; Minemawari, H.; Tsutsumi, J. y.; Horii, Y.; Chikamatsu, M.; Azumi, R.; Kumai, R.; Hasegawa, T., Simple push coating of polymer thin-film transistors. Nature Communications 2012, 3.
[29] Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J. y.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T., Inkjet printing of single-crystal films. Nature 2011, 475 (7356), 364-367.
[30] Guillaud, G.; Al Sadoun, M.; Maitrot, M.; Simon, J.; Bouvet, M., Field-effect transistors based on intrinsic molecular semiconductors. Chemical Physics Letters 1990, 167 (6), 503-506.
[31] Bao, Z.; Lovinger, A. J.; Brown, J., New Air-Stable n-Channel Organic Thin Film Transistors. Journal of the American Chemical Society 1998, 120 (1), 207-208.
[32] Anthopoulos, T. D.; Singh, B.; Marjanovic, N.; Sariciftci, N. S.; Ramil, A. M.; Sitter, H.; Colle, M.; de Leeuw, D. M., High performance n-channel organic field-effect transistors and ring oscillators based on C[sub 60] fullerene films. Appl. Phys. Lett. 2006, 89 (21), 213504-3.
[33] Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A., A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457 (7230), 679-U1.
[34] Lee, S.; Jo, G.; Kang, S.-J.; Wang, G.; Choe, M.; Park, W.; Kim, D.-Y.; Kahng, Y. H.; Lee, T., Enhanced Charge Injection in Pentacene Field-Effect Transistors with Graphene Electrodes. Advanced Materials 2011, 23 (1), 100-105.
[35] Choe, M.; Lee, B. H.; Jo, G.; Park, J.; Park, W.; Lee, S.; Hong, W.-K.; Seong, M.-J.; Kahng, Y. H.; Lee, K.; Lee, T., Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Organic Electronics 2010, 11 (11), 1864-1869.
[36] Jo, G.; Choe, M.; Cho, C.-Y.; Kim, J. H.; Park, W.; Lee, S.; Hong, W.-K.; Kim, T.-W.; Park, S.-J.; Hong, B. H.; Kahng, Y. H.; Lee, T., Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology 2010, 21 (17).
[37] Wang, Y.; Tong, S. W.; Xu, X. F.; Ozyilmaz, B.; Loh, K. P., Interface Engineering of Layer-by-Layer Stacked Graphene Anodes for High-Performance Organic Solar Cells. Advanced Materials 2011, 23 (13), 1514-1518.
[38] Lee, Y.-Y.; Tu, K.-H.; Yu, C.-C.; Li, S.-S.; Hwang, J.-Y.; Lin, C.-C.; Chen, K.-H.; Chen, L.-C.; Chen, H.-L.; Chen, C.-W., Top Laminated Graphene Electrode in a Semitransparent Polymer Solar Cell by Simultaneous Thermal Annealing/Releasing Method. ACS Nano 2011, 5 (8), 6564-6570.
[39] Lee, S.-K.; Kim, B. J.; Jang, H.; Yoon, S. C.; Lee, C.; Hong, B. H.; Rogers, J. A.; Cho, J. H.; Ahn, J.-H., Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes. Nano Letters 2011, 11 (11), 4642-4646.
[1] Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S.; Colombo, L.; Ruoff, R., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science (New York, N.Y.) 2009, 324 (5932), 1312-1314.
[2] Hwang, J.-Y.; Kuo, C.-C.; Chen, L.-C.; Chen, K.-H., Correlating defect density with carrier mobility in large-scaled graphene films: Raman spectral signatures for the estimation of defect density. Nanotechnology 2010, 21 (46), 465705.
[3] Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.; Song, Y.; Kim, Y.-J.; Kim, K.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology 2010, 5 (8), 574-578.
[4] Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K., Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320 (5881), 1308.
[1] Liu, H.; Liu, Y.; Zhu, D., Chemical doping of graphene. Journal of Materials Chemistry 2011, 21 (10), 3335-3345.
[2] Kasry, A.; Kuroda, M. A.; Martyna, G. J.; Tulevski, G. S.; Bol, A. A., Chemical Doping of Large-Area Stacked Graphene Films for Use as Transparent, Conducting Electrodes. ACS Nano 2010, 4 (7), 3839-3844.
[3] Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.; Song, Y.; Kim, Y.-J.; Kim, K.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology 2010, 5 (8), 574-578.
[4] Delgado, J. L.; Bouit, P.-A.; Filippone, S.; Herranz, M. a. A.; Martin, N., Organic photovoltaics: a chemical approach. Chemical Communications 2010, 46 (27), 4853-4865.
[5] Interfacial Nanostructuring on the Performance of Polymer/TiO2 Nanorod Bulk Heterojunction Solar Cells
[6] Fortunato, E.; Ginley, D.; Hosono, H.; Paine, D. C., Transparent Conducting Oxides for Photovoltaics. MRS Bulletin 2007, 32 (03), 242-247.
[7] Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J., FLEXIBLE LIGHT-EMITTING-DIODES MADE FROM SOLUBLE CONDUCTING POLYMERS. Nature 1992, 357 (6378), 477-479.
[8] Huang, J.; Wang, X.; deMello, A. J.; deMello, J. C.; Bradley, D. D. C., Efficient flexible polymer light emitting diodes with conducting polymer anodes. Journal of Materials Chemistry 2007, 17 (33), 3551-3554.
[9] Wu, Z.; Chen, Z.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G., Transparent, Conductive Carbon Nanotube Films. Science 2004, 305 (5688), 1273-1276.
[10] Jackson, R.; Domercq, B.; Jain, R.; Kippelen, B.; Graham, S., Stability of Doped Transparent Carbon Nanotube Electrodes. Advanced Functional Materials 2008, 18 (17), 2548-2554.
[11] Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; de Leeuw, D. M., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 1999, 401 (6754), 685-688.
[12] Cho, S.; Lee, K.; Yuen, J.; Wang, G.; Moses, D.; Heeger, A. J.; Surin, M.; Lazzaroni, R., Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films. Journal of Applied Physics 2006, 100 (11), 114503-6.
[13] Lee, S.; Jo, G.; Kang, S.-J.; Wang, G.; Choe, M.; Park, W.; Kim, D.-Y.; Kahng, Y. H.; Lee, T., Enhanced Charge Injection in Pentacene Field-Effect Transistors with Graphene Electrodes. Advanced Materials 2011, 23 (1), 100-105.
[14] Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S., High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors. Journal of the American Chemical Society 2004, 126 (11), 3378-3379.
[15] Tang, M. L.; Okamoto, T.; Bao, Z., High-Performance Organic Semiconductors:  Asymmetric Linear Acenes Containing Sulphur. Journal of the American Chemical Society 2006, 128 (50), 16002-16003.
[16] McGovern, M. E.; Kallury, K. M. R.; Thompson, M., Role of Solvent on the Silanization of Glass with Octadecyltrichlorosilane. Langmuir 1994, 10 (10), 3607-3614.
[17] Wang, Y.; Lieberman, M., Growth of Ultrasmooth Octadecyltrichlorosilane Self-Assembled Monolayers on SiO2. Langmuir 2003, 19 (4), 1159-1167.
[18] Chang, J.-F.; Sun, B.; Breiby, D. W.; Nielsen, M. M.; Solling, T. I.; Giles, M.; McCulloch, I.; Sirringhaus, H., Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents. Chemistry of Materials 2004, 16 (23), 4772-4776.
[19] Zen, A.; Pflaum, J.; Hirschmann, S.; Zhuang, W.; Jaiser, F.; Asawapirom, U.; Rabe, J. P.; Scherf, U.; Neher, D., Effect of Molecular Weight and Annealing of Poly(3-hexylthiophene)s on the Performance of Organic Field-Effect Transistors. Advanced Functional Materials 2004, 14 (8), 757-764.
[1] Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J., New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Advanced Materials 2006, 18 (5), 572-576.
[2] Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J., Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics 2009, 3 (5), 297-U5.
[3] Cho, S.; Lee, K.; Heeger, A. J., Extended Lifetime of Organic Field-Effect Transistors Encapsulated with Titanium Sub-Oxide as an ‘Active’ Passivation/Barrier Layer. Advanced Materials 2009, 21 (19), 1941-1944.
[4] Ho, P.-H.; Yeh, Y.-C.; Wang, D.-Y.; Li, S.-S.; Chen, H.-A.; Chung, Y.-H.; Lin, C.-C.; Wang, W.-H.; Chen, C.-W., Self-Encapsulated Doping of n-Type Graphene Transistors with Extended Air Stability. ACS Nano 2012, 6 (7), 6215-6221.
[5] Hill, I. G.; Kahn, A., Interface electronic properties of organic molecular semiconductors. 1998, 168-177.
[6] Anthopoulos, T. D.; Singh, B.; Marjanovic, N.; Sariciftci, N. S.; Ramil, A. M.; Sitter, H.; Colle, M.; de Leeuw, D. M., High performance n-channel organic field-effect transistors and ring oscillators based on C[sub 60] fullerene films. Applied Physics Letters 2006, 89 (21), 213504-3.
[7] Yamaguchi, J.; Yaginuma, S.; Haemori, M.; Itaka, K.; Koinuma, H., An in-situ fabrication and characterization system developed for high performance organic semiconductor devices. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2005, 44 (6A), 3757-3759.
[8] Kitamura, M.; Kuzumoto, Y.; Kamura, M.; Aomori, S.; Arakawa, Y., High-performance fullerene C[sub 60] thin-film transistors operating at low voltages. Applied Physics Letters 2007, 91 (18), 183514-3.
[9] Zhang, X. H.; Domercq, B.; Kippelen, B., High-performance and electrically stable C[sub 60] organic field-effect transistors. Applied Physics Letters 2007, 91 (9), 092114-3.
[10] Farmer, D. B.; Golizadeh-Mojarad, R.; Perebeinos, V.; Lin, Y.-M.; Tulevski, G. S.; Tsang, J. C.; Avouris, P., Chemical Doping and Electron−Hole Conduction Asymmetry in Graphene Devices. Nano Letters 2008, 9 (1), 388-392.
[11] Park, J.; Lee, W. H.; Huh, S.; Sim, S. H.; Kim, S. B.; Cho, K.; Hong, B. H.; Kim, K. S., Work-Function Engineering of Graphene Electrodes by Self-Assembled Monolayers for High-Performance Organic Field-Effect Transistors. The Journal of Physical Chemistry Letters 2011, 2 (8), 841-845.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62286-
dc.description.abstract石墨烯為由碳原子以sp2鍵結方式形成的單原子層二維材料,在近年來受到廣大的討論及研究,因為石墨烯於電性、機械性質及熱導性質上都有特殊的表現。在我的研究中,我著重於將石墨烯優異的電性應用在有機電子元件上的導電電極上,由於純石墨烯具有雙載子傳輸特性,故對其摻雜使之成為P-型或N-型的材料是可行的,這也讓石墨烯電極有更多的應用。
在概述之後本論文會先介紹石墨烯的轉印及圖樣製程,我們利用熱脫膠帶來轉印石墨烯,好處是可大面積轉印且為乾製程,轉印多次堆疊後即可得到透明導電電極應用於有機太陽能電池上;而圖樣製程則用來定義有機薄膜電晶體的通道面積,搭配熱脫膠轉印後可製成上電極的結構而不傷害下方的高分子。
以一般有機電子元件來說,常需要選擇不同的金屬或導電電極來匹配不同有機材料的能帶圖,但石墨烯具有可調變功函數的特性,故我們藉由摻雜來使石墨烯功函數改變以匹配有機材料的能帶結構。在我的研究中,P型摻雜是利用硝酸,摻雜過後應用在P3HT/PCBM 太陽能電池的正極和P3HT 薄膜電晶體的源極/汲極,本研究結果顯示用P型摻雜石墨烯電極的元件表現相較於一般常用的金電極來的好;而N摻雜物則是用之前實驗室發現對石墨烯有良好N型摻雜效果的TiOx並將N型摻雜石墨烯電極應用於C60薄膜電晶體的源極/汲極,雖然摻雜後石墨烯電極元件表現不如鋁電極但相較於純石墨烯電極還是有較好的效果。總結來說,摻雜的石墨烯電極在電子元件上的應用還是展現出很大的發展潛力。
zh_TW
dc.description.abstractGraphene is an atom-thick layer constructed by carbon atoms in honeycomb lattice. It has attracted a lot of research in recent years due to its unique electronic, mechanical and thermal properties. In my research, I focused on the applications of graphene’s outstanding electronic property- as conducting electrodes in organic electronics. Since intrinsic graphene demonstrates ambipolar transport behavior, doping graphene in either p-type or n-type becomes feasible and further enlarges applications of graphene electrodes.
In this thesis, transfer and pattern processes of graphene were narrated at first. We used thermal release tape to transfer graphene, which is a dry process and able to transfer large-area graphene at a time. For organic photovoltaics (OPVs), multilayer graphene films were stack up to form transparent conducting electrodes. And for organic thin film transistors (OTFTs), pattern process was performed to define the channel of source/drain electrodes. The procedures were different depended on the structures of OTFTs and we proposed a dry transfer process that was harmless to the underlying polymer.
In organic electronics, metals and other conducting electrodes are usually chosen for specific organic materials to match their band diagrams except for graphene. Tunable workfunction is one of graphene’s significant features. So here we doped transferred graphene to improve its conductivity and tune its work function to match the band diagrams of different organic electronics.
HNO3 was used for p-type doping. And the doped graphene electrodes were applied in the anode of P3HT/PCBM solar cell as well as the source/drain electrodes in P3HT thin film transistors (TFTs). HNO3-doped graphene electrode showed better performance in P3HT TFTs compared to Au electrode, which is commonly used in p-channel TFTs. On the other hand, we used TiOx as n-dopant and employed the n-doped graphene electrodes in C60 TFTs. TiOx-doped graphene electrodes performed better than pristine graphene electrodes though still not as good as Al electrodes. All in all, tuning workfunction of graphene by either p-type or n-type doping did improve performances of graphene electrodes in organic electronics. Moreover, doped graphene electrodes showed great potential in replacing ITO and metals in organic electronics.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T13:38:45Z (GMT). No. of bitstreams: 1
ntu-102-R00527033-1.pdf: 2783114 bytes, checksum: 7a4a98a85268f004d041d70c167aeb98 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
Acknowledgements i
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xiv
Chapter 1 Introduction 1
1.1 Graphene 1
1.2 Chemical Doping of Graphene 4
1.2.1 Surface transfer doping 4
1.2.2 Substitutional doping 5
1.3 Organic/Polymer Electronics 6
1.3.1 Organic/polymer photovoltaics 7
1.3.2 Organic thin film transistors 10
1.4 Application of Graphene Electrodes in Organic Electronics 12
1.4.1 Graphene electrodes in organic solar cells 13
1.4.2 Graphene electrodes in organic thin film transistors 14
1.5 Motivation 16
1.6 References 17
Chapter 2 Experimental setup 22
2.1 Transparent Conducting Graphene Characterization 22
2.1.1 UV-visible spectroscopy 22
2.1.2 Sheet resistance measurement 22
2.2 Hall Effect Measurement 25
2.3 Raman Spectroscopy 28
2.4 Surface Potential Measurement (KPFM) 29
2.5 Air Mass 1.5 Solar Spectrum 31
Chapter 3 Fabrication of Graphene Electrodes 32
3.1 Synthesis of Chemical Vapor Deposition (CVD) Graphene 32
3.2 Transfer Process for CVD Graphene 33
3.2.1 Morphology of transferred graphene films 35
3.2.2 Optical and electronic properties of transferred graphene 36
3.3 Pattern Process for CVD Graphene 37
3.3.1 Pattern procedures for bottom contact graphene electrodes 38
3.3.2 Pattern procedures for top contact graphene electrodes 39
3.4 Reference 40
Chapter 4 P-Type Doped Graphene Electrodes in Organic Electronics 41
4.1 Introduction 41
4.1.1 Nitric acid treatment 41
4.1.2 P3HT/PCBM bulk heterojunction solar cells 41
4.1.3 P3HT thin film transistors 43
4.2 Characteristics of HNO3-Doped P-Type Graphene 44
4.2.1 Electrical properties of HNO3-doped graphene 44
4.2.2 Transport property of HNO3-doped graphene 45
4.2.3 Workfunction measurement 46
4.3 HNO3-Doped Graphene Electrodes in OPVs 48
4.3.1 Experimental details 48
4.3.2 Performance of device with pristine and HNO3 doped graphene as anode 48
4.4 HNO3-Doped Graphene Electrodes in P3HT TFTs 51
4.4.1 Experimental details 51
4.4.2 Performance of P3HT TFTs with Au and graphene S/D electrodes 53
4.5 Reference 58
Chapter 5 N-Type Doped Graphene Electrodes in C60 TFTs 61
5.1 Introduction 61
5.1.1 Titanium sub-oxide (TiOx) as n-dopant 61
5.1.2 C60 thin film transistors 62
5.2 Properties of TiOx-Doped N-Type Graphene 63
5.2.1 Electrical properties of TiOx-doped graphene 63
5.2.2 Transport properties of TiOx-doped graphene 63
5.2.3 Workfunction measurement 64
5.3 TiOx-Doped Graphene Electrodes in C60 TFTs 65
5.3.1 Experimental details 65
5.3.2 Performance of C60 TFTs with Al and graphene S/D electrodes 66
5.4 Reference 70
Chapter 6 Conclusions 72
dc.language.isoen
dc.subject摻雜zh_TW
dc.subject石墨烯電極zh_TW
dc.subject有機電子元件zh_TW
dc.subjectgraphene electrodeen
dc.subjectdopingen
dc.subjectorganic electronicsen
dc.titleP-型及N-型摻雜石墨烯電極在有機電子元件之應用zh_TW
dc.titleDoped Graphene Electrodes in p-Type and n-Type Organic Electronicsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee溫政彥,王偉華
dc.subject.keyword石墨烯電極,摻雜,有機電子元件,zh_TW
dc.subject.keywordgraphene electrode,doping,organic electronics,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2013-07-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
Appears in Collections:材料科學與工程學系

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
2.72 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved