請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62251完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張寶棣(Pao-Ti Chang) | |
| dc.contributor.author | Yu-Wei Chang | en |
| dc.contributor.author | 張育瑋 | zh_TW |
| dc.date.accessioned | 2021-06-16T13:36:33Z | - |
| dc.date.available | 2013-07-31 | |
| dc.date.copyright | 2013-07-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-07-16 | |
| dc.identifier.citation | BIBLIOGRAPHY
[1] S. L. Glashow, “Partial Symmetries of Weak Interactions,” Phys. Rev. 22 (1961) 579. [2] S. Weinberg, “A Model of Leptons,” Phys. Rev. Lett. 19 (1967) 1264. doi:10.1103/PhysRevLett.19.1264. [3] A. Salam, “Elementary Paricle Theory”, p. 367. Almquist and Wiksells, Stockholm, 1968. [4] F. Englert and R. Brout, “Broken symmetries and the masses of gauge bosons,” Phys. Rev. Lett.13 (1964) 321–323. doi:10.1103/PhysRevLett.13.321. [5] P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys. Rev. Lett. 12(1964) 132–133. doi:10.1103/PhysRevLett.12.132. [6] P. W. Higgs, “Broken symmetry and the mass of gauge vector mesons,” Phys. Rev. Lett. 13(1964) 508. doi:10.1103/PhysRevLett.13.508. [7] G. Guralnik and C. Hagen and T. Kibble, “Global conservation laws and massless particles,”Phys. Rev. Lett. 13 (1964) 585–587. doi:10.1103/PhysRevLett.13.585. [8] P. W. Higgs, “Spontaneous symmetry breakdown without massless bosons,” Phys. Rev. 145(1966) 1156–1163. doi:10.1103/PhysRev.145.1156. [9] T. Kibble, “Symmetry breaking in non-Abelian gauge theories,” Phys. Rev. 155 (1967) 1554–1561. doi:10.1103/PhysRev.155.1554. [10] CMS Collaboration, “Combined results of searches for the standard model Higgs boson in pp collisions at sqrt(s) = 7 TeV,” Physics Letters B 710 (2012), no. 1, 26 – 48. doi:10.1016/j.physletb.2012.02.064. [11] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Physics Letters B 716 (2012), no. 1, 30 – 61. doi:10.1016/j.physletb.2012.08.021. [12] ATLAS Collaboration, “Combined search for the Standard Model Higgs boson using up to 4.9 fb-1 of pp collision data at sqrt(s) = 7 TeV with the ATLAS detector at the LHC,” Physics Letters B 710 (2012), no. 1, 49 – 66. doi:10.1016/j.physletb.2012.02.044. [13] ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Physics Letters B 716 (2012), no. 1, 1 –29. doi:10.1016/j.physletb.2012.08.020. [14] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev. Lett. 13 (Oct,1964) 508–509. doi:10.1103/PhysRevLett.13.508. [15] A. Akeroyd, “Higgs triplets at LEP2,” Phys. Lett. B 353 (1995) 519. doi:10.1016/0370-2693(95)00606-L. [16] A. Akeroyd, “Fermiophobic Higgs bosons at the Tevatron,” Phys. Lett. B 368 (1996) 89. doi:10.1016/0370-2693(95)01478-0. [17] M. E. Peskin and D. V. Schroeder, “An Introduction to Quantum Field Theory”. Addison-Wesley, USA, 1995. [18] D. Gri_ths, “Introduction to Elementary Particles, Second Edition,”. WILEY-VCH. [19] R. Feynman, “QED: the strange theory of light and matter”. Princeton University Press, 1985. [20] G. ’t Hooft, “Recent Developments in Gauge Theories”. Springer, 1980. [21] L. Susskind, “Weak Interactions with Lepton-Hadron Symmetry,” Phys. Rev. D 20 (1979), no. 10, 2619–2625. doi:10.1103/PhysRevD.20.2619. [22] SNO Collaboration, Q. R. Ahmad et. al., “Measurement of the Rate of νe + d to p + p + e- Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory,” Phys. Rev.Lett. 87 (2001) 071301. doi:10.1103/PhysRevLett.87.071301. [23] E. et al., “CP Studies and Non-Standard Higgs Physics”. 2006. arXiv:hep-ph/0608079. [24] J. Gunion, et al., “The Higgs Hunter’s Guide”. Addison-Wesley, Reading, UK, 1990. [25] G. C. Branco, et al., “Theory and phenomenology of two-Higgs-doublet models,” arXiv:1106.0034. [26] Y. Kizukuria and N. Oshimo, “CP violation in minimal supersymmetric standard model,” Nucl. Phys. B 37 (1994), no. 11, 173–179. doi:10.1016/0920-5632(94)90747-1. [27] T. Han, D. Marfatia, and R.-J. Zhang, “Gauge-mediated supersymmetry breaking model with an extra singlet Higgs field,” Phys. Rev. D 61 (1999), no. 1, 013007. doi:10.1103/PhysRevD.61.013007. [28] R. W. Robinett and J. L. Rosner, “Prospects for a second neutral vector boson at low mass in SO(10),” Phys. Rev. D 25 (1982), no. 11, 3036–3064. doi:10.1103/PhysRevD.25.3036. [29] H. Georgi and M. Machacek, “Doubly charged Higgs bosons,” Nucl. Phys. B 262 (1985), no. 3, 463–477. doi:10.1016/0550-3213(85)90325-6. [30] M. S. Chanowitz and M. Golden, “Higgs boson triplets with MW = MZcos_W,” Phys. Lett. B 165 (1985), no. 1–3, 105–108. doi:10.1016/0370-2693(85)90700-2. [31] M. Schmaltz and D. Tucker-Smith, “Little Higgs Review,” Ann. Rev. Nucl. Part. Sci. 55 (2005), no. 229–270,. doi:10.1146/annurev.nucl.55.090704.151502. [32] C. Cs’aki, et al., “Towards a realistic model of Higgsless electroweak symmetry breaking,” Phys. Rev. Lett. 92 (2004), no. 10, 101802. doi:10.1103/PhysRevLett.92.101802. [33] C. Cs’aki, et al., “Gauge theories on an interval: Unitarity without a Higgs,” Phys. Rev. D 69 (2004), no. 5, 055006. doi:10.1103/PhysRevD.69.055006. [34] S. Weinberg, “Implications of dynamical symmetry breaking,” Phys. Rev. D 13 (1976), no. 4, 974–996. doi:10.1103/PhysRevD.13.974. [35] S. Weinberg, “Implications of dynamical symmetry breaking: An addendum,” Phys. Rev. D 19 (1979), no. 4, 1277–1280. doi:10.1103/PhysRevD.19.1277. [36] J. Liu and L. Wolfenstein, “Spontaneous CP violation in the SU(2)LxU(1)Y model with two Higgs doublets,” Nucl. Phys. B 289 (1987) 1–22. doi:10.1016/0550-3213(87)90368-3. [37] Y.-L. Wu and L. Wolfenstein, “Sources of CP Violation in the Two-Higgs-Doublet Model,” Phys. Rev. Lett. 73 (1994), no. 13, 1762–1764. doi:10.1103/PhysRevLett.73.1762. [38] H. Haber, G. Kane, and T. Sterling, “The Fermion mass scale and possible e_ects of Higgs bosons on experimental observables,” Nucl. Phys. B 161 (1978) 493. doi:10.1016/0550-3213(79)90225-6. [39] A. Akeroyd, “Fermiophobic and other non-minimal neutral Higgs bosons at the LHC,” J.Phys. G 24 (1998) 1983–1994, arXiv:9803324v1. doi:10.1088/0954-3899/24/11/001. [40] E. Gabrielli and B. Mele, “Testing E_ective Yukawa Couplings in Higgs Searches at the Tevatron and LHC,” Phys.Rev. D 82 (2010) 113014, arXiv:1005.2498v5. doi:10.1103/PhysRevD.82.113014 10.1103/PhysRevD.83.079901. [41] DELPHI Collaboration, e. a. P. Abreu, “Search for a fermiophobic Higgs at LEP 2,” Nucl. Phys. B 507 (2001) 89–103, arXiv:0104025v1. doi:10.1016/S0370-2693(01)00449-X. [42] L3 Collaboration, e. a. P. Achardr, “Search for a Higgs Boson Decaying into Two Photons at LEP,” Nucl. Phys. B 534 (2002) 28–38, arXiv:0203016v1. doi:10.1016/S0370-2693(02)01572-1. [43] ALEPH Collaboration, e. a. R. Barate, “Search for gamma gamma decays of a Higgs boson produced in association with a fermion pair in e+e collisions at LEP,” Nucl. Phys. B 487 (2000) 241–252, arXiv:0008004v1. doi:10.1016/S0370-2693(00)00821-2. [44] ALEPH Collaboration, e. a. A. Heister, “A flavour-independent Higgs boson search in e+e- collisions at √(s) up to 209 GeV,” Nucl. Phys. B 544 (2002) 25–34, arXiv:0205055v1. doi:10.1016/S0370-2693(02)02241-4. [45] OPAL Collaboration, e. a. G. Abbiendi, “Search for associated production of massive states decaying into two photons in e+e- annihilations at √s = 88-209 GeV,” Nucl. Phys. B 544 (2002) 44–56, arXiv:0207027v1. doi:10.1016/S0370-2693(02)02472-3. [46] D0 Collaboration, e. a. B. Abbott, “Search for nonstandard Higgs bosons using high mass photon pairs in p ‾p toγ+2jets at √s =1.8 TeV,” Phys.Rev.Lett. 82 (1999) 2244–2249, arXiv:9811029v2. doi:10.1103/PhysRevLett.82.2244. [47] D0 Collaboration, e. a. V. Abazov, “Search for hf to γγ with the D0 detector at √s = 1.96 TeV,” Phys.Rev.Lett. 101 (2008) 051801, arXiv:0803.1514v1. doi:10.1103/PhysRevLett.101.051801. [48] CDF Collaboration, e. a. T. A_older, “Search for narrow diphoton resonances and for + W=Z signatures in p ‾p collisions at √s =1.8 TeV,” Phys.Rev. D 64 (2001) 092002, arXiv:0105066v2. doi:10.1103/PhysRevD.64.092002. [49] CDF Collaboration, e. a. T. Aaltonen, “Search for a Fermiophobic Higgs Boson Decaying into Diphotons in p ‾p Collisions at √s = 1.96 TeV,” Phys.Rev.Lett. 103 (2009) 061803, arXiv:0905.0413v2. doi:10.1103/PhysRevLett.103.061803. [50] CDF and D0 Collaboration, “Combined CDF and D0 upper limits on Fermiophobic Higgs Boson Production with up to 8.2 f b-1 of p ‾p data,” arXiv:1109.0576v1. [51] P. W. et al., “CMS ECAL EDR-4, Volume 2: ECAL Preshower,” CMS-GE-ER 0002 (2000). [52] CMS Collaboration, “The CMS hadron calorimeter project : Technical Design Report,” Scientific Committee Paper CERN-LHCC-97-031 (1997). [53] CMS Collaboration, T. Speer, et al., “Track reconstruction in the CMS tracker,” Nucl. Instrum. Meth. 559 (2006) 143–147. doi:10.1016/j.nima.2005.11.207. [54] CMS Collaboration, W. Adam, “Track and vertex reconstruction in CMS,” Nucl. Instrum. Meth. 582 (2007) 781–784. doi:10.1016/j.nima.2007.07.091. [55] R. Fr‥uhwirth, “Application of Kalman filtering to track and vertex fitting,” Nucl. Instrum. Meth. 262 (1987) 444–450. doi:10.1016/0168-9002(87)90887-4. [56] CMS Collaboration, W. Adam, et al., “Reconstruction of electrons with the Gaussian-sum filter in the CMS tracker at the LHC,” J. Phys. G: Nucl. Part. Phys. 31 (2005), no. 9,. doi:10.1088/0954-3899/31/9/N01. [57] R. Fr‥uhwirth and A. Strandlie, “Track fitting with ambiguities and noise: a study of elastic tracking and nonlinear filters,” Comput. Phys. Commun. 120 (1999) 197–214. doi:10.1016/S0010-4655(99)00231-3. [58] CMS Collaboration, E. Chabanat, et al., “Vertex reconstruction in CMS,” Nucl. Instrum. Meth. 549 (2005) 188–191. doi:10.1016/j.nima.2005.04.050. [59] W. Erdmann, “Vertex reconstruction at the CMS experiment,” Journal of Physics: Conference Series 110 (2008), no. 9, 092009. doi:10.1088/1742-6596/110/9/092009. [60] CMS Collaboration, R. Fr‥uhwirth and W. Waltenberger, “Adaptive Vertex Fitting,” CMS Note CMS-NOTE-2007-008 (2007). [61] CMS Collaboration, R. Fr‥uhwirth and T. Speer, “A Gaussian-sum filter for vertex reconstruction,” Nucl. Instrum. Meth. 534 (2004) 217–211. doi:10.1016/j.nima.2004.07.090. [62] K. Rose, E. Gurewitz, and G. Fox, “A deterministic annealing approach to clustering,” Pattern Recognition Letters 11 (1990) 589–594. doi:10.1016/0167-8655(90)90010-Y. [63] E. Chabanat and N. Estre, “Deterministic Annealing for Vertex Finding at CMS,” Computing in High Energy Physics and Nuclear Physics 2004 (2004) 287. [64] CMS Collaboration, S. Ba_oni, et al., “Electron reconstruction in CMS,” The European Physical Journal C 49 (2007) 1099–1116. doi:10.1140/epjc/s10052-006-0175-5. [65] CMS Collaboration, E. Meschi, et al., “Electron Reconstruction in the CMS Electromagnetic Calorimeter,” CMS Note CMS-NOTE-2001-034. [66] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS,” JINST 6 (2011) 11002, arXiv:1107.4277v1. doi:10.1088/1748-0221/6/11/P11002. [67] CMS Collaboration, A. Heister, et al., “Measurement of Jets with the CMS Detector at the LHC,” CMS Note CMS-NOTE-2006-036 (2006). [68] CMS Collaboration, M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt jet clustering algorithm,” JHEP 04 (2008) 063, arXiv:0802.1189v2. doi:10.1088/1126-6708/2008/04/063. [69] CMS Collaboration, M. Mulders, “Muon Reconstruction and Identification at CMS,” Nucl. Phys. B 172 (2007) 205–207. doi:10.1016/j.nuclphysbps.2007.08.049. [70] CMS Collaboration, R. Bellan, “Muon Reconstruction with the CMS Tracking System,” Nucl. Phys. B 177–178 (2008) 253–254. doi:10.1016/j.nuclphysbps.2007.11.118. [71] CMS Collaboration, “Performance of CMS muon reconstruction in cosmic-ray events,” JINST 5 (2010) T03022, arXiv:0911.4994v2. doi:10.1088/1748-0221/5/03/T03022. [72] CMS Collaboration, J. Nysten, “Photon reconstruction in CMS,” Nucl. Instrum. Meth. 534 (2004) 194–198. doi:10.1016/j.nima.2004.07.071. [73] CMS Collaboration, “Studies of Tracker Material,” CMS Physics Analysis Summaries CMS-PAS-TRK-10-003 (2010). [74] CMS Collaboration, “Isolated Photon Reconstruction and Identification at √s = 7 TeV,” CMS Physics Analysis Summaries CMS-PAS-EGM-10-006 (2010). [75] CMS Collaboration, “Particle Flow Event Reconstruction in CMS and Performance for Jets, Taus, and MET,” CMS PAS PFT-09-001 (2009). [76] CMS Collaboration, CMS Collaboration, “Commissioning of the Particle-Flow reconstruction in Minimum-Bias and Jet Events from pp Collisions at 7 TeV,” CMS Physics Analysis Summary CMS-PAS-PFT-10-002 (2010). [77] S. Catani, et al., “Longitudinally invariant Kt clustering algorithms for hadron hadron collisions,” Nucl.Phys. B 406 (1993) 187–224. doi:10.1016/0550-3213(93)90166-M. [78] Y. Dokshitzer, et al., “Better jet clustering algorithms,” JHEP 08 (1997) 001. doi:10.1088/1126-6708/1997/08/001. [79] CMS Collaboration, “Jet Energy Corrections determination at √s = 7TeV,” CMS PAS CMS-PAS-JME-10-010 (2010). [80] CMS Collaboration, H. Pi, et al., “Measurement of missing transverse energy with the CMS detector at the LHC,” Eur. Phys. J. C 46 (2006) 45–56. doi:10.1140/epjcd/s2006-02-004-8. [81] CMS Collaboration, “Missing transverse energy performance of the CMS detector,” Eur. Phys. J. C 46 (2006) 45–56. doi:10.1140/epjcd/s2006-02-004-8. [82] S. Mrenna and J. Wells Phys. Rev. D 63 (2000) 015006, arXiv:hep-ph/0001226. [83] CMS Collaboration, “Measurement of the Di_erential Isolated Photon Production Cross Section in pp Collisions at √s = 7 TeV,” Phys. Rev. D84 (2011) 052011. [84] ATLAS Collaboration, “Measurement of the Inclusive Isolated Prompt Photon Cross Section in pp Collisions at √s = 7 TeV with the ATLAS Detector,” submitted to Phys. Rev. D CERN-PH-EP-2010-068 (2010) arXiv:1012.4389. [85] CMS Collaboration, “Measurement of the Isolated Diphoton Cross-Section in CMS at sqrt(s)=7 TeV,” submitted to JHEP CMS-QCD-10-035 (2011) arXiv:arXiv:1110.6461. [86] S. Alioli, et al., “NLO Higgs boson production via gluon fusion matched with shower in POWHEG,” JHEP 0904 (2009) 002, arXiv:0812.0578. doi:10.1088/1126-6708/2009/04/002. [87] P. Nason and C. Oleari, “NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG,” JHEP 1002 (2010) 037, arXiv:0911.5299. doi:10.1007/JHEP02(2010)037. [88] T. Sjostrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual,” JHEP 05 (2006) 026, arXiv:0603175. [89] LHC Higgs Cross SectionWorking Group Collaboration, S. Dittmaier et al., “Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables,” arXiv:1101.0593. [90] F. Maltoni and T. Stelzer, “MadEvent: automatic event generation with MadGraph (arXiv:hep-ph/0208156),” JHEP 02 (2003), no. 027,. [91] T. Binoth, et al., “A Full next-to-leading order study of direct photon pair production in hadronic collisions,” Eur. Phys. J. C16 (2000) 311–330. [92] S. Catani, et al., “Cross-section of isolated prompt photons in hadron hadron collision,” JHEP 0205 (2002) 028. [93] CMS Collaboration, “Search for a Higgs boson decaying into two photons in the CMS detector,” CMS Physics Analysis Summary CMS-PAS-HIG-11-010 (2011). [94] The CMS Collaboration, “Electromagnetic calorimeter calibration with 7 TeV data,” CMS Physics Analysis Summary PAS-EGM-10-003 (2010). [95] CMS Collaboration, “Search for Standard Model Higgs Boson in pp Collisions at √s = 7 TeV and integrated luminosity up to 1.7fb1,” CMS Note HIG-11-022 (2011). [96] T. Junk, “Confidence level computation for combining searches with small statistics,” Nucl. Instrum. Meth. A434 (1999) 435–443, arXiv:9902006. doi:10.1016/S0168-9002(99)00498-2. [97] A. L. Read, “Modified frequentist analysis of search results (the CLs method),” CERN Yellow Report CERN-2000-005 (2000) 81. [98] S. S. Wilks, “The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses,” Ann. Math. Statist. 9 (1938) 60–62. doi:10.1214/aoms/1177732360. [99] CMS Collaboration, “Absolute Calibration of Luminosity Measurement at CMS: Winter 2012 Update,” CMS Physics Analysis Summary CMS-PAS-SMP-12-008 (2012). [100] A. Akeroyd, “Fermiophobic and other non-minimal neutral Higgs bosons at the LHC,” J. Phys. G: Nucl. Part. Phys. 24 (1998) 1983–1994. [101] E. Gabrielli and B. Mele, “Testing E_ective Yukawa Couplings in Higgs Searches at Tevatron and LHC,” Phys. Rev. D82 (2010) 113014. [102] M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas,” Phys.Lett. B659 (2008) 119–126, arXiv:0707.1378. doi:10.1016/j.physletb.2007.09.077. [103] CMS Collaboration Collaboration, S. e. a. Chatrchyan, “Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS,” JINST 6 (2011) P11002, arXiv:1107.4277. doi:10.1088/1748-0221/6/11/P11002. [104] A. Ballestrero, G. Bevilacqua, and E. Maina, “A complete parton level analysis of boson-boson scattering and ElectroWeak Symmetry Breaking in lv + four jets production at the LHC,” JHEP 05 (2009) 015, arXiv:0812.5084. doi:10.1088/1126-6708/2009/05/015. [105] D. L. Rainwater, R. Szalapski, and D. Zeppenfeld, “Probing color singlet exchange in Z + two jet events at the CERN LHC,” Phys. Rev. D54 (1996) 6680–6689, arXiv:hep-ph/9605444. doi:10.1103/PhysRevD.54.6680. [106] G. B. et al., “Acceptance uncertainties for the inclusive W and Z cross section measurements,” CMS AN (2011), no. 055,. [107] CMS Collaboration, “MET Analysis,” CMSPublic-WorkBook. [108] CMS Collaboration, “Jet Energy Scale performance in 2011,” CMS Detector Performance Summaries CERN-CMS-DP-2012-006 (2012). [109] CMS Collaboration, CMS Collaboration, “Particle-flow commissioning with muons and electrons from J/Psi and W events at 7 TeV,” CMS Physics Analysis Summary CMS-PAS-PFT-10-003 (2010). [110] CMS Collaboration, S. Chatrchyan et al., “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys.Lett. B716 (2012) 30–61, arXiv:1207.7235. doi:10.1016/j.physletb.2012.08.021. [111] ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys.Lett. B716 (2012) 1–29, arXiv:1207.7214. doi:10.1016/j.physletb.2012.08.020. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/62251 | - |
| dc.description.abstract | 作為標準模型的眾多延伸模型之一, 若系統含有一希格斯玻色子在樹圖的層次下只與向量玻色子耦合, 則此系統被人們稱做為fermiophobic希格斯玻色子模型。在這樣的基準模型下,若是希格斯玻色子的不變質量越低, 其衰變到兩個光子的分支比將會獲得越大幅度的增強, 因此雙光子衰變管道在此變成了適合用來尋找這種希格斯玻色子的黃金管道。
此分析在110到150GeV/c^2的搜尋範圍內尋找fermiophobic希格斯玻色子衰變到兩個光子的蹤跡, 目標事件的搜尋藉著基準模型的特性被更進一步地細分成數個不同的事件類型以增加分析的靈敏度。其中以兩個光子伴隨著兩個噴流的類別顯得特別重要, 因其主要的生成機制來自於向量玻色子的融合生成, 善加利用此機制的特性能在目標訊號及背景訊號的比率上得到非常好的成果。 此分析使用了緊湊緲子線圈偵測器所紀錄到的大強子對撞機於2011年在7TeV對撞質心能量下運轉時所產生的5.1 fb^-1之質子與質子的對撞資料, 與2012前半年在8TeV質心能量下所產生的5.3 fb^-1的對撞資料。在95%的信心水準下,不變質量由110到147GeV/c^2之fermiophobic希格斯玻色子都遭到排除。 | zh_TW |
| dc.description.abstract | As one of extensions of the Standard Model, a model in which a Higgs boson couples only to the vector bosons at tree level is referred to as a fermiophobic Higgs model. With this benchmark model, the branching ratio of h_f -> gamma gamma is much enhanced in the low Higgs mass region, and thus the diphoton decay channel becomes a golden channel.
In this analysis, the search for a fermiophobic Higgs boson decaying into 2 photons in the mass region 110–150 GeV/c^2 is reported. The event search is further divided into several event classes to improve the sensitivity based on the characteristic signature of the fermiophobic Higgs boson. The dijet tagged event class, which well exploits the signature of the Higgs boson from the Vector Boson Fusion production and has an excellent signal to background ratio in the search range, is a very important event class in this search. Using data correspond to an integrated luminosity of 5.1 fb^-1 at sqrt(s) = 7 TeV and of 5.3 fb^-1 at sqrt(s) = 8 TeV recorded by the Compact Muon Solenoid detector at the Large Hadron Collider in 2011 and 2012, a fermiophobic Higgs boson is excluded at 95% confidence level in the mass range 110–147 GeV/c^2. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T13:36:33Z (GMT). No. of bitstreams: 1 ntu-102-D97222017-1.pdf: 9468444 bytes, checksum: 70ba4df1564ea9654ead5f3639ce40e0 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | CONTENTS
Abstract : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : i Acknowledgements : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : iii List of Contents : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : v List of Figures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ix List of Tables : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : xv 1. Introduction of Fermiophobic Benchmark Scenario : : : : : : : : : : : : : : : : : : : : : : 1 1.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Gauge Field Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 The Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Beyond the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.1 Two Higgs Doublet Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 The Fermiophobic Higgs in 2HDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.1 Searches for The Fermiophobic Higgs Boson in the Past . . . . . . . . . . . . 14 2. The LHC and CMS Experment : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15 2.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 The CMS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1 Superconducting Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.2 Inner Tracking System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3 Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.4 Hadron Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.5 Muon System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.6 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3. Reconstruction of Physics Objects at CMS : : : : : : : : : : : : : : : : : : : : : : : : : : : 27 3.1 Reconstruction of Basic Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.1 Track . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.2 Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.3 ECAL Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.4 HCAL Tower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.5 Standalone Muon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Reconstruction of Physics Observables . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.1 Muon Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.2 Electron Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.3 Photon Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.3 Particle Flow Reconstruction Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3.1 PF Jet Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3.2 PF Missing Transverse Energy Reconstruction . . . . . . . . . . . . . . . . . 37 4. Analysis Method and Strategy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 39 4.1 Rates and Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.1 Data Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.2 Signal Monte Carlo Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.2.3 Background Monte Carlo Samples . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.4 Pile-up Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 High Level Trigger Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4 Vertex Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4.1 Base Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.4.2 Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.5 Photon Energy Reconstruction and Identification . . . . . . . . . . . . . . . . . . . . 50 4.5.1 Photon Energy Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.5.2 Variables for Photon Identification . . . . . . . . . . . . . . . . . . . . . . . . 52 4.5.3 Photon Identification Selections . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.6 Signal Extraction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.6.1 Extended Unbinned Maximum Likelihood Method . . . . . . . . . . . . . . . 57 4.6.2 Signal Model Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.6.3 Background Model Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.7 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.7.1 Combination Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.7.2 Profile Likelihood Asymptotic Approximation . . . . . . . . . . . . . . . . . 60 4.7.3 p-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5. Common Systematic Uncertainties : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63 6. Search for the Exclusive Di-jet Tag Subchannels : : : : : : : : : : : : : : : : : : : : : : : : 67 6.1 Analysis Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.2 Jet Selection Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3 Optimization of Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.3.1 Pile-up Jet Substraction Criteria in 2012 . . . . . . . . . . . . . . . . . . . . . 72 6.4 Signal and Background Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.4.1 Signal Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.4.2 Background Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.5 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.5.1 Signal Efficiency due to Photon ID and Reconstruction . . . . . . . . . . . . . 76 6.5.2 Signal Efficiency due to Jet Reconstruction . . . . . . . . . . . . . . . . . . . 76 6.5.3 Theoretical Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.6 Results of the Di-jet Tag Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.6.1 Signal Yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.6.2 Fitting Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.6.3 Exclusion Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7. Search for the exclusive MET Tag Subchannel : : : : : : : : : : : : : : : : : : : : : : : : : 89 7.1 Analysis Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.2 Particle Flow Emiss_T Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.3 Optimization of the EBEB Category . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.4 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.5 Signal and Background Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.6 Systematic Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.7 Limit and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 8. Combined Result of Search for the Fermiophobic hf -> γγ Decays at CMS : : : : : : : : : 97 8.1 Description of Exclusive Lepton Tag Event Classes . . . . . . . . . . . . . . . . . . . 97 8.1.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.1.2 Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8.1.3 Fitted Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8.2 Description of Inclusive Event Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.2.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.2.2 Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.2.3 Fitted Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.3 Combined Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 8.3.1 Statistical Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 8.3.2 Summary of 2011 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 8.3.3 Summary of 2012 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 8.3.4 Summary of the Combined Search of 2011+2012 . . . . . . . . . . . . . . . . 106 9. Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 111 Appendix 113 A. Tables of Energy Scale and Energy Resolution Corrections : : : : : : : : : : : : : : : : : : 115 B. Summary Table of the Systematic Uncertainty : : : : : : : : : : : : : : : : : : : : : : : : : 121 Bibliography : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 131 | |
| dc.language.iso | en | |
| dc.subject | 高能粒子物理 | zh_TW |
| dc.subject | 緊湊緲子線圈偵測器 | zh_TW |
| dc.subject | 大強子對撞機 | zh_TW |
| dc.subject | CMS | en |
| dc.subject | HEP | en |
| dc.subject | LHC | en |
| dc.title | 尋找fermiophobic希格斯玻色子至兩個光子的衰變 | zh_TW |
| dc.title | Search for a Fermiophobic Higgs Boson Decaying into Two Photons at CMS | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李湘楠(Hsiang-Nan Li),王名儒(Min-Zu Wang),陳凱風(Kai-Feng Chen),侯維恕(Wei-Shu Hou),何小剛(Xiao-Gang He) | |
| dc.subject.keyword | 高能粒子物理,緊湊緲子線圈偵測器,大強子對撞機, | zh_TW |
| dc.subject.keyword | HEP,CMS,LHC, | en |
| dc.relation.page | 131 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-07-17 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 9.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
